
ACADÉMIE DE BORDEAUX

U N I V E R S I T É D E B O R D E A U X
Sciences et Technologies

THÈSE

Présentée au Laboratoire Bordelais de Recherche en Informatique pour
obtenir le grade de Docteur de l’Université de Bordeaux

Spécialité : Informatique
Formation Doctorale : Informatique
École Doctorale : Mathématiques et Informatique

Web application development with third-party components

par

Hanyang CAO

Soutenue le 5 Février 2019, devant le jury composé de :

Directeur de thèse
Xavier BLANC, Professeur . Université de Bordeaux, France

Rapporteurs
Olivier BARAIS, Professeur . Université de Rennes 1, France
Romain ROUVOY, Professeur . Université de Lille, France

Examinateurs
Li ZHANG, Professeur . Beihang University, Chine
David AUBER, Professeur . Université de Bordeaux, France

Abstract

Web applications are highly popular and using some of them (e.g., Facebook, Google) is be-
coming part of our lives. Developers are eager to create various web applications to meet people’s
increasing demands. To build a web application, developers need to know some basic program-
ming technologies. Moreover, they prefer to use some third-party components (such as server-side
libraries, client-side libraries, REST services) in the web applications. By including those compo-
nents, they could benefit from maintainability, reusability, readability, and efficiency. In this thesis,
we propose to help developers to use third-party components when they create web applications.
We present three impediments when developers using the third-party components: What are the
best JavaScript libraries to use? How to get the standard specifications of REST services? How to
adapt to the data changes of REST services? As such, we present three approaches to solve these
problems. Those approaches have been validated through several case studies and industrial data.
We describe some future work to improve our solutions, and some research problems that our ap-
proaches can target.

Keywords: Web Application, Library Recommendation, REST, JSON, Specification

Résumé

Les applications Web sont très populaires et l’utilisation de certaines d’entre elles (p. ex. Fa-
cebook, Google) fait de plus en plus partie de nos vies. Les développeurs sont impatients de créer
diverses applications Web pour répondre à la demande croissante des gens. Pour construire une
application Web, les développeurs doivent connaître quelques technologies de programmation de
base. De plus, ils préfèrent utiliser certains composants tiers (tels que les bibliothèques côté ser-
veur, côté client, services REST) dans les applications web. En incluant ces composants, ils pour-
raient bénéficier de la maintenabilité, de la réutilisabilité, de la lisibilité et de l’efficacité. Dans cette
thèse, nous proposons d’aider les développeurs à utiliser des composants tiers lorsqu’ils créent
des applications web. Nous présentons trois obstacles lorsque les développeurs utilisent les com-
posants tiers: Quelles sont les meilleures bibliothèques JavaScript à utiliser? Comment obtenir les
spécifications standard des services REST? Comment s’adapter aux changements de données des
services REST? C’est pourquoi nous présentons trois approches pour résoudre ces problèmes. Ces
approches ont été validées par plusieurs études de cas et données industrielles. Nous décrivons
certains travaux futurs visant à améliorer nos solutions et certains problèmes de recherche que nos
approches peuvent cibler.

Mots clés : Application Web, Recommandation de la bibliothèque, REST, JSON, Spécification

LaBRI — 351, Cours de la Libération — 33400 Talence — France

Contents

1 Introduction 1
1.1 Context: Web application development . 2
1.2 Problem Statement . 6

1.2.1 What are the best JavaScript libraries to use? 6
1.2.2 How to get the standard specifications of REST services? 7
1.2.3 How to adapt to the data changes of REST services? 8

1.3 Contributions . 8
1.3.1 What are the best JavaScript libraries to use? 8
1.3.2 How to get the standard specifications of REST services? 9
1.3.3 How to adapt to the data changes of REST services? 10

1.4 Thesis Outline . 10

2 Background 11
2.1 What are the best JavaScript libraries to use? 12
2.2 How to get the standard specifications of REST services? 15

2.2.1 REST concepts . 15
2.2.2 Automated or semi-automated approaches 18
2.2.3 Crowd-sourcing approach . 22

2.3 How to adapt to the data changes of REST services? 23
2.3.1 Pull mode and Push mode . 24
2.3.2 Transformation platforms . 25
2.3.3 JSON document and JSON patch . 28
2.3.4 JSON Patch Algorithms . 30

2.4 Summary . 32

i

ii CONTENTS

3 What are the best JavaScript libraries to use? 33
3.1 Introduction . 34
3.2 Methodology . 35

3.2.1 Definitions . 35
3.2.2 Recognition Strategies . 35
3.2.3 ARJL Combined Strategy . 38

3.3 Implementation . 39
3.4 Evaluation . 40

3.4.1 Thresholds of the File Matching Strategy 40
3.4.2 Precision of the Strategies . 41
3.4.3 Comparison of the Strategies . 42
3.4.4 Efficiency . 42

3.5 Observations and Suggestions . 43
3.5.1 Statistics . 44
3.5.2 Analysis of the October 2015 Snapshot 45
3.5.3 Analysis of a Three Years Period . 46

3.6 Conclusion . 47

4 How to get the standard specifications of REST services? 49
4.1 Introduction . 50
4.2 Background . 51

4.2.1 Main challenges . 51
4.3 ExtrateREST: an automated extractor for the generation of REST API spec-

ification . 52
4.3.1 Global architecture . 52
4.3.2 Step 1: gather relevant HTML documentation pages 53
4.3.3 Step 2: extract information from relevant pages 55

4.4 Evaluation . 58
4.5 Conclusion . 63

5 How to adapt to the data changes of REST services? 65
5.1 Introduction . 66
5.2 JDR: a JSON patch algorithm . 66
5.3 Efficiency evaluation . 75
5.4 Conclusion . 79

6 Conclusion 83
6.1 Summary of contributions . 83
6.2 Perspectives . 85

6.2.1 What are the best JavaScript libraries to use? 85
6.2.2 How to get the standard specifications of REST services? 85

CONTENTS iii

6.2.3 How to adapt to the data changes of REST services? 86

A Résumé en Français 87

List of Figures 101

List of Tables 103

CHAPTER

1
Introduction

This chapter introduces the context, motivations, and contributions of our thesis.
This thesis is based on the increasing need for developers to use third-party compo-
nents (e.g., libraries, REST services) when they create web applications. More pre-
cisely we tackle three main problems faced by these developers: 1) Which compo-
nents to choose since there exists plenty of ones? 2) How to get knowledge of these
components? and 3) How to adapt them to better fit their needs? In this chapter
we describe these three problems and highlight the underlying challenges. We then
present our main contributions. Finally, we conclude with the general structure of
the manuscript.

Contents
1.1 Context: Web application development 2

1.2 Problem Statement . 6

1.3 Contributions . 8

1.4 Thesis Outline . 10

1

2 CHAPTER 1. INTRODUCTION

1.1 Context: Web application development

Web applications have shown their popularity and importance over the last years. To
build a web application, developers need to know some fundamental programming tech-
nologies, such as HTML, JavaScript, CSS, database system, etc. Meanwhile, they use some
third-party components (e.g., libraries, REST services) to improve the time efficiency and
achieve their business logic. We will illustrate the context of web application development
in the following example.

Running example. Imagine that Mr. Jobs decides to build a web application that could
display, backup and update users’ public opinions (e.g., Tweets, Facebook and Instagram
posts). The web application could present and analyze the public influence of those opin-
ions. For instance, the web application could monitor President Donald Trump’s tweets
and investigate the financial influence of these tweets (e.g., USD/EUR exchange rate fluc-
tuations, crude oil price changes).

In order to achieve his idea, Mr. Jobs prepares the development context of the targeted
web application, as shown in the Figure 1.1. He needs to develop two parts of the web
application: server and client. The server concentrates on achieving the business logic.
The client is the graphical user interface that runs in a web browser. Both sides would
benefit from using third-party components. Using a third-party component improves code
quality, prevents errors and speeds up productivity [Baldassarre et al., 2005].

For instance Mr. Jobs tends to include various client-side JavaScript libraries (e.g.,
jQuery, AngularJS, Backbone) in the Client side. Such libraries would help to visualize ac-
quired data and provide a good-looking and user-friendly interface. Furthermore, Mr. Jobs
would certainly need to take advantage of third-party REST services to achieve the busi-
ness logic. For instance, he would call Twitter REST service 1 to get Donald Trump’s tweets,
and request Xignite service 2 for real-time global currencies.

We call third-party components both libraries (i.e., server-side libraries and client-side
libraries) and REST services. As shown in our simple example, Mr. Jobs then relies on the
third-party components to accomplish his web application. In the following, we give some
more formal definitions and illustrate the problems developers faced when using third-
party components.

Web application. A web application is a web-based system that publishes a set of content
and functionality to a wide range of end users [Conallen, 1999]. It employs a client-server
structure where the client runs in a web browser [Davidson and Coward, 1999; Gellersen
and Gaedke, 1999]. Different from the desktop application, web application doesn’t need

1. https://developer.twitter.com/en.html
2. https://www.xignite.com/developers

https://developer.twitter.com/en.html
https://www.xignite.com/developers

1.1. CONTEXT: WEB APPLICATION DEVELOPMENT 3

Client

Web Application
Server

Libraries REST Services

Third-party
Components

static Adapt dynamic

Figure 1.1 – Context of web application development.

to be installed in the operating system, and developers can easily update them without
disturbing the users [Per, 2014].

Web application developer. A web application developer is a programmer that builds
and maintains web applications. Although there is no black-and-white rule, it can be clas-
sified as the server-side and client-side developer. The former concentrates on achieving
the business logic while the latter focuses on the data visualization and interaction with
users.

third-party components. We call third-party components reusable modules or function-
alities that are provided by third-party vendors. They are widely used to make the develop-
ment easier, cheaper and with better quality. The third-party components include libraries
and REST services:

— A library is a reusable chunk of source code that helps developers to achieve their
business logic. In the context of web application, a library can be either server-side

4 CHAPTER 1. INTRODUCTION

or client-side. Server-side libraries can be used to connect the database, handle the
HTTP communication, automate test, retrieve data from REST service, etc. For in-
stance, ExpressJS is a server-side library to set the application, configure the router,
and handle requests. Client-side libraries are usually written in JavaScript and can be
executed by the browser. They mainly help the developers to handle the HTML DOM
elements, cookies, HTTP requests, etc. For example, jQuery makes it easier to ma-
nipulate an HTML document, select DOM elements, create animations and handle
events.

— A REST service gives access to a set of so-called resources [Fielding and Taylor, 2002].
Following the REST principles, the accesses to the resources are all done thanks to
HTTP requests, where the verb used by the request defines how the resource is ma-
nipulated (GET for reading, PUT for writing, etc.). For example, Instagram provides a
REST service that gives access to the media resources published by its users (pictures,
movies, etc.).

When a developer wants to use third-party components he/she encounters the follow-
ing problems, expressed here as research questions:

RQ1: What are the best third-party components to use? In the running example, let’s
consider that Mr. Jobs wants to include a client-side library in his project. Since there are
more than 50 available candidates (e.g., such as AngularJS, Backbone or Polymer), he then
wants to know which one is the best for his needs? He may then ask Google but will get
many different answers. Furthermore, if Mr. Jobs wants to include the famous jQuery li-
brary within its project. By browsing the web, he will then notice that there are two major
versions for jQuery (1.x.x and 2.x.x) and several minor versions. If he now tries to under-
stand which is the best version, he will end up into StackOverflow with several different
and sometimes opposite answers 3.

Recommending third-party components to a potential user has been widely studied in
the literature (see details in Section 2.1). It mainly contains two steps: 1) obtain a large
dataset of existing third-party components, and 2) sort them according to various criteria
(e.g., popularity, similarity). We contribute to that field by focusing on client-side libraries
used by famous existing web applications. Such web applications are quite often closed
source, which makes them hard to analyze. Hence, our specific research question is SQ1:
What are the best JavaScript libraries to use?

RQ2: How to get knowledge of third-party components? In our example, Mr. Jobs needs
to learn how to communicate with the Twitter REST service to retrieve the real-time tweets.
Usually, he will go to the official Twitter HTML documentation cite 4, look up usage in-
struction of related resources, and then manually write code to handle with the HTTP re-
quests, responses, and authentication. Despite, Mr. Jobs would certainly prefer to have

3. Here is the answer at the time of the 20th of August 2015, http://stackoverflow.com/questions/
22289583/what-version-of-jquery-should-i-act ually-use

4. https://developer.twitter.com/en/docs

http://stackoverflow.com/questions/22289583/what-version-of-jquery-should-i-act
http://stackoverflow.com/questions/22289583/what-version-of-jquery-should-i-act
ually-use
https://developer.twitter.com/en/docs

1.1. CONTEXT: WEB APPLICATION DEVELOPMENT 5

a machine-readable specification of Twitter service (such as OpenAPI). This specification
can be treated as a user guide for computer, to help him deal with the low-level details.
However, such Twitter specification currently is not available.

Generating a machine-readable specification from the textual documentation of a
third-party component has been studied in the literature (see details in Section 2.1). We
contribute to that field by focusing on server-side third-party components and more pre-
cisely on REST service. REST services usually provide on-line documentations of their
products. However, there are very few machine-readable specifications of them. Devel-
opers have then no choice than reading the documentation and comprehend how to use
the REST services, which is error-prone. In our thesis, we then aim to answer the following
question SQ2: How to get the standard specifications of REST services?

RQ3: How to adapt third-party components? In our example, the Twitter service returns
a time-line of tweets that changes quite frequently. Mr. Jobs should then call the service
periodically to get an update of the time-line, whether the time-line changed or not. The
periodically calling may have a high cost in bandwidth and system resources, which is in-
adequate for services whose data is periodically changing. Mr. Jobs would certainly prefer
to adapt the REST service to get notification messages only when the time-line has really
changed.

The adaption of existing components is essential. There are mainly two kinds of adap-
tation: version migration or data adaptation. The version migration is performed when
a web application wants to use a new version of a third-party component. In this case,
developers need to ensure their API calls are compatible with the target version. A lot of
existing work focus on REST service migration [Li et al., 2013; Espinha et al., 2014; Wang
et al., 2016] and library migration [Meng et al., 2012; Dig et al., 2008]. The data adaption
means that the web applications should efficiently retrieve the frequently updated data.
The data adaption only exists in dealing with REST service since other components do not
return data. The existing way of communicating with the REST service is to call the service
periodically, which is not efficient when data changes frequently and unpredictably. In our
thesis, we focus on this kind of adaptation and then aim to answer the following question
SQ3: How to adapt to the data changes of REST services?

The Table 1.1 present three problems faced by developers of web applications. It further
highlights how these problems relate to libraries of REST services. Then it pinpoints the
specific cases we choose to focus on in this thesis.

As a summary, in this thesis we aim to help the web application developers by solve
three problems (i.e., RQ1, RQ2, RQ3) they encounter when using third-party components.
Due to the universality of these problems, we provide concrete solutions for subproblems
(i.e., SQ1, SQ2, SQ3). SQ1 is based on investigating the famous web application, which is
a unique problem for library and has not been studied before. SQ2 focus on getting the
standard specification, which is a unique problem for REST service. SQ3 is also a unique
problem that just happens in dealing with REST service. We will illustrate the subproblems
in the following section.

6 CHAPTER 1. INTRODUCTION

Table 1.1 – Research problems about leveraging third-party components in web applica-
tion development.

Library REST Service

What are the best third-
party components to
use?

Open source web application
Famous web application X

Open source web application

How to get knowledge
of third-party compo-
nents?

Documentation
Source code

Documentation
Specification X

How to adapt to changes
of third-party compo-
nents?

Version migration
Version migration
Data adaption X

1.2 Problem Statement

After clarifying the research context and introducing the problems, we present them in
more detail in this section. For each of the problems, we present the main motivations,
highlight the challenges and discuss the web application developers’ expectations.

1.2.1 What are the best JavaScript libraries to use?

Motivation. Using a third-party library provides many benefits as reusing high quality
code prevents errors and speeds up productivity[Baldassarre et al., 2005]. However, it
comes with the main problem of the choice of the best library to use from a software devel-
opment perspective [Teyton et al., 2012]. Indeed, there are so many libraries with so many
versions that it becomes too complex for a developer to choose which one to include in a
software project. This is even more difficult for JavaScript libraries, because of the popular-
ity of JavaScript 5, the outstanding pace of JavaScript libraries production, and the fact that
web applications are doomed to evolve at the Internet speed to be used and not to become
deprecated [Baskerville et al., 2003].

Challenge. To help developers in this difficult choice, popularity indicators are fre-
quently used with the main hypothesis that most used libraries are the best ones. In order
to get those indicators, existing approaches are based on the analysis of the development

5. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

1.2. PROBLEM STATEMENT 7

components (source code files or deployment descriptors) and therefore rely on the obser-
vation of open source projects that make such components available. This is however not
possible with web applications as most of the famous web applications are closed-source
applications, and their development components are not available at all. The develop-
ment components of a commercial web application are only available on-line by browsing
it through its root URL.

Expectation. When web application developers choose which JavaScript libraries should
be included in their projects, they want to get recommendations of popular JavaScript li-
braries and related versions. Currently, there is no available solution for identifying the
third-party libraries in commercial web applications. We then must offer a solution to
recognize JavaScript libraries in the real world and provide popularity indicators to web
application developers.

1.2.2 How to get the standard specifications of REST services?

Motivation. The REST architectural style is nowadays very popular and widely adopted
by services providers. To use REST services, the web application developers can be helped
by two artefacts: a structured REST specification and an HTML documentation. The best
practice is to have a REST specification since it can speed up the development process by
automatically generating client-side [Fokaefs and Stroulia, 2015], or even service composi-
tion [Wagner et al., 2012]. Additionally, a rigorous specification can be used to reach a bet-
ter quality by inferring parameters dependency constraints [Wu et al., 2013] or performing
automating tests production [López et al., 2013] for example.

Challenge. Having a rigorous specification can help developers to accelerate the devel-
opment process. However, there are few available REST specifications while most of the
REST services providers only provide HTML documentations [Danielsen and Jeffrey, 2013].
According to an in-depth analysis of the most 20 popular REST Services [Renzel et al.,
2012], only 20% of them provide WSDL [Chinnici et al., 2007] specifications whereas 75%
offer no rigorous specification and only plain HTML pages. Such a situation then calls for
an automatic transformation of plain HTML documentations into rigorous specifications.

Expectation. When web application developers want to use REST services, they prefer
to get REST specifications rather than HTML documentations. Since most of the REST
services provide only HTML documentation and rarely present rigorous specification, a
solution to transform HTML documentation to REST specification can be provided.

8 CHAPTER 1. INTRODUCTION

1.2.3 How to adapt to the data changes of REST services?

Motivation. REST APIs together with JSON are commonly used by modern web applica-
tions to export their services. However, these services are usually reachable in a pull mode
which is not suitable for accessing changing data. The pull mode needs to periodically call
the service to check if the data have changed or not. The polling frequency (e.g., five sec-
onds) is predefined by the web application developers, while the data updating moment
is random and hard to predict. Furthermore, the pull mode could waste bandwidth by ac-
quiring unchanged data, and increase battery usage for mobile web applications. For the
web application developers, they actually need the push mode that will get notification
messages only when the data have changed. Hence, turning a service from a pull to a push
mode is therefore frequently asked by web application developers.

Challenge. Converting a pull API into a push one obviously requires to make periodi-
cal calls to the API but also to create a patch between each successive version of the data.
The latter is the most difficult part and this is where existing solutions have some imper-
fections. Indeed, creating a patch between two documents is a well-known very complex
problem [Zhang and Shasha, 1989; Buttler, 2004], which has not been studied yet for JSON
documents. A JSON document is a labeled unordered tree that contains arrays (ordered
sequences). Creating a patch between two JSON documents may therefore lead to an NP-
hard problem depending both on the change operations that are considered (add, remove,
move, copy), and on the quality of the created patch (in terms of size).

Expectation. web application developers prefer to acquire data in a push mode that is
more adequate for accessing changing data, but very few web applications support it.
Therefore a solution to transform a pull mode API into a push one can be provided.

1.3 Contributions

We present our contributions that address the three issues that we have detailed previ-
ously. The ultimate goal of this thesis is to solve a few problems when developers use the
third-party components in their web applications. To this extent, we propose three main
contributions.

1.3.1 What are the best JavaScript libraries to use?

To help web application developers who want to choose which JavaScript (JS) libraries
to include in the client side, we overcome the difficulties and exhibit which are the popu-
lar JavaScript libraries. We provide an approach that uses both syntactical and dynamical
analysis of the on-line resources of the web applications and detects their used JS libraries.

1.3. CONTRIBUTIONS 9

Our approach browses web applications and detects their used JavaScript libraries with
the underlying assumption that the libraries they use are most probably the ones that
should be used. To get significant results we decide to observe the Alexa global top 100
websites 6. Based on such observations we can then output trends and give recommenda-
tions.

We make the following contributions:

— We provide an automatic and efficient approach that browses web applications and
detects their used JavaScript libraries.

— By applying our approach on the 100 most popular websites, we provide statistics of
the use of JavaScript libraries.

— We then present how our observations can be used to provide trends and recommen-
dations.

1.3.2 How to get the standard specifications of REST services?

To help the web application developers who want to have REST API specifications for
using existing REST APIs, we propose a semi-automated approach ExtrateREST, which au-
tomates the creation of REST service specifications from existing HTML documentations.
Our approach inputs the index page of the HTML documentation of a REST API provider,
performs an analysis of all its HTML pages, and generates the corresponding OpenAPI 7

specification. Many specification formats exist, and OpenAPI turns out to be the most
popular one, with over 350,000 downloads per month. Furthermore, once an OpenAPI
specification exists, translating it into another format such as WADL, for instance, is very
easy. For instance, our approach has been used to generate the OpenAPI specification
of Instagram (see Figure 2.3) by inputting its HTML documentation (see Figure 2.1). Ex-
trateREST outputs the four mandatory parts that compose an OpenAPI specification: the
base URL, the path templates, the HTTP verbs and the associated formal parameters.

As the main result, we provide:

— A semi-automated approach that generates an OpenAPI specification from the plain
HTML documentation of an existing REST service.

— A validation of our prototype and the OpenAPI specifications that are yielded from
topmost popular REST services.

— Public directory of OpenAPI specifications for REST services.

6. http://www.alexa.com/topsites
7. https://www.openapis.org/

http://www.alexa.com/topsites
https://www.openapis.org/

10 CHAPTER 1. INTRODUCTION

1.3.3 How to adapt to the data changes of REST services?

We provide a solution to transform pull mode API into a push one. The central of the
conversion is to create a patch between each successive version of the JSON document.
Existing solutions don’t perform well for generating the patch.

To face this issue, we propose a new patch algorithm that is tailored to JSON docu-
ments, and that drastically improves the conversion of pull mode APIs into push mode
ones. Our algorithm returns a JSON Patch as specified by the JSON Patch RFC [Bryan and
Nottingham, 2013]. It therefore handles any changes that can be done on JSON documents,
either on their basic properties or on their arrays, and supports simple changes (add, re-
move) as well as complex ones (move, copy), which allows clients to deeply understand
changes that have been done.

We implement our algorithm in JavaScript as it is the most common language used in
web applications. We finally provide a very simple prototype showing how it can be used
to easily convert a pull mode service into a push mode one.

As the main result, we provide:

— A new JSON patch algorithm that fully complies with the JSON Patch RFC.

— A JavaScript implementation of our algorithm that performs better than the existing
ones.

— A prototype framework that can be used to convert a pull service into a push one (see
the online demo 8).

1.4 Thesis Outline

The remainder of this document is organized as follows. We first present in Chapter 2
an overview of the state of the art in the field of third-party components. In Chapter 3, we
present an approach to automatically identify JavaScript libraries used in web applications.
Then, in Chapter 4, we detail our work on crawling the REST HTML documentation and
extracting relevant REST specification. We then present in Chapter 5, our contributions
on the generating the JSON Patch for turning a pull REST API into a push one. Finally, we
conclude in Chapter 6 by summarizing the contributions and the main perspectives.

8. http://diff-and-patch.netlify.com/

http://diff-and-patch.netlify.com/

CHAPTER

2
Background

In this chapter, we present the state of the art for each of the three problems ad-
dressed in this thesis. Our first problem is “What are the best JavaScript libraries to
use?” We then present here related work to third-party components recommenda-
tion. The second problem is “How to get the standard specifications of REST ser-
vices?” We then present the existing literature that is related to the creation of REST
specifications. Finally, the third problem is “How to adapt to the data changes of
REST services?” We then introduce the two data update styles (pull mode and push
mode) and current transformation platforms.

Contents
2.1 What are the best JavaScript libraries to use? 12

2.2 How to get the standard specifications of REST services? 15

2.3 How to adapt to the data changes of REST services? 23

2.4 Summary . 32

11

12 CHAPTER 2. BACKGROUND

2.1 What are the best JavaScript libraries to use?

In this section, we present the work done in the fields of third-party component rec-
ommendation. As shown in Table 2.1, we summary the existing literature into two aspects:
obtain third-party library usage dataset, and sort the libraries according to underlying re-
quirements.

Table 2.1 – Summary table of different approaches dealing with the problem of third-party
library recommendation.

Source Sort algorithm

O
p

en
so

u
rc

e
p

ro
je

ct

C
ro

w
d

so
u

rc
ed

kn
ow

le
d

ge

Fa
m

o
u

s
w

eb
ap

p
lic

at
io

n

Si
m

il
ar

it
y

m
in

in
g

Po
p

u
la

ri
ty

in
d

ic
at

o
r

Library

[Thung et al., 2013] X X
[Teyton et al., 2014] X X
[Chen et al., 2016] X X
[Ishio et al., 2016] X N/A N/A
[Yu et al., 2017] X X
[Ouni et al., 2017] X X
[Katsuragawa et al., 2018] X X
W3Techs N/A X

Step 1: obtain third-party library usage dataset. In order to build the library usage
dataset, we need to identify libraries from various sources such as open source projects,
crowdsourced knowledge, or famous web application.

Open source projects. Thung et al. [Thung et al., 2013] describe an approach that sup-
ports library recommendation. This approach constructs a dataset of 1008 open source
projects from GitHub 1. Each project in the dataset relies on Maven 2. The approach then
identifies library usage through the Maven configuration files. Some researchers follow

1. http://github.com
2. https://maven.apache.org

2.1. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE? 13

this idea and also use Maven to construct their dataset of libraries [Ouni et al., 2017; Kat-
suragawa et al., 2018].

Teyton et al. [Teyton et al., 2014] analyze a large set of open source software systems to
mine their library migrations (replacement of a library by a competing one). They build a
dataset of 15168 projects from GitHub. Their dataset is composed of Java project and is not
limited to Maven projects.

Yu et al. [Yu et al., 2017] propose a combined approach to identify libraries used in mo-
bile apps. For apps which used Maven to build the system, it analyzes the configuration
file (i.e., pom.xml) to identify the libraries. For the rest apps, it analyzes the “import” state-
ments in the source code files to infer the used libraries.

Ishio et al. [Ishio et al., 2016] provide a method to detect third-party components in
Java Software Release files. Without the access to the build file of the project, it analyzes
the JAVA release jar files (e.g., junit.jar) and succeeds to detect the included components.
Given a target Java jar file and a repository of jar files of existing components, it executes a
signature-based comparison and selects jar files that are matched.

Crowdsourced knowledge. Chen et al. [Chen et al., 2016; Chen and Xing, 2016] provide
an approach that automatically recommends analogical libraries across different program-
ming languages. Instead of obtaining library usage through source code or configuration
files, it takes advantages of the crowdsourced knowledge from domain-specific sites (e.g.,
Stack Overflow 3). It extracts library usage from tags (e.g., library name, language, os) of
Stack Overflow questions.

Famous web application. To the best of our knowledge, there is only one survey, which is
done by the W3Techs company, that provides statistics on the library usage among famous
web applications 4. The famous web applications are usually closed source project, and
W3Techs does not communicate its underlying identification methodology.

Step 2: sort the libraries according to underlying requirements. For the potential devel-
opers, there are two main scenarios where they need library recommendation. The first
scenario is when developers want to find similar libraries to replace the ones they use.
This scenario happens when developers have an existing project and want to improve its
dependencies. In this case, “best” libraries means similar ones with higher capabilities or
richer features. The other scenario is when developers want to choose libraries that fit their
needs. In this case, we consider that “best” libraries means the most popular ones that fit
their needs.

3. https://stackoverflow.com/
4. http://w3techs.com/technologies/overview/javascript_library/all

https://stackoverflow.com/
http://w3techs.com/technologies/overview/javascript_library/all

14 CHAPTER 2. BACKGROUND

similarity mining. There are several techniques that are related to similarity mining: As-
sociation rule mining [Agrawal et al., 1994], Collaborative Filtering [Terveen and Hill, 2001],
Natural Language Processing [Mikolov et al., 2013], Latent Dirichlet Allocation [Blei et al.,
2003] and Migration Graph [Teyton et al., 2014]. Many previous studies have proposed
approaches to recommend libraries based on these techniques.

To recommend a library, Thung et al. [Thung et al., 2013] use a hybrid approach that
combines association rule mining and collaborative filtering. The association rule min-
ing [Agrawal et al., 1994] recommends libraries that are commonly used together. While
the collaborative filtering [Terveen and Hill, 2001] recommends similar libraries. Similar
to Thung et al., other work also apply this idea to recommend libraries [Ouni et al., 2017;
Katsuragawa et al., 2018]

Teyton et al. [Teyton et al., 2014] propose a migration graph method to recommend
a given library. It relies on two factors: the technical domain of the library (log, http,
database, dom, etc.) and the date of the migration. For each main technical domain, it
then presents a migration graph that indicates the best and the worst library depending on
when existing migrations have been observed. Thanks to this approach, developers can
know the massively adopted library as well as the emerging one.

Chen et al. [Chen et al., 2016; Chen and Xing, 2016] provide an approach to recom-
mends analogical libraries based on a knowledge base of analogical libraries mined from
tags of millions of Stack Overflow questions. It takes advantage of nature language pro-
cessing model [Mikolov et al., 2013] to learn tag embeddings. The aim is to find libraries
that are discussed together in the context by developers.

Yu et al. [Yu et al., 2017] propose a hybrid approach AppLibRec which combines Latent
Dirichlet Allocation [Blei et al., 2003] and Collaborative Filtering to recommend third-party
libraries for mobile applications. The LDA model takes README file (textual description)
of a library as input to compute the similarities with other libraries’ descriptions.

popularity mining. W3Techs leverages the wisdom of the crowds and provides a rank of
existing JavaScript libraries according to their popularity. The underlying assumption is
that the choice of the majority should be a wise choice. It mines the popular websites
according to Alexa ranking 5 and provides total library usage statistics. The popularity of
libraries can be used as recommendations for a developer who wants to build a new web
application.

Summary. To set up the library usage dataset, existing approaches mainly rely on open
source project or other crowdsourced knowledge (as shown in Table 2.1). There are some
obstacles to identify the library usage for famous web applications as most of the famous
web applications are closed-source applications.

5. https://www.alexa.com/siteinfo

https://www.alexa.com/siteinfo

2.2. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES? 15

There are two main scenarios related to sort and recommend libraries. Existing ap-
proaches focus on the first scenario where developers want to find similar libraries to re-
place the used ones. They utilize several similarity mining algorithms to find “best” li-
braries. We want to concentrate on the second scenario where developers want to choose
appropriate libraries when they design the web applications. We choose to use library pop-
ularity among famous web applications to rank the libraries. The underlying assumption
is that the “best” libraries should be the ones that used by the majority of people.

2.2 How to get the standard specifications of REST
services?

In this section, we first discuss some concepts related to REST services in detail, in-
cluding the REST Service, REST API, REST Endpoint, REST API HTML documentation,
and REST API specification. We then focus on the existing literature that is related to the
creation of REST API specifications. They can be classified into two categories: (semi-
)automated approaches, and crowd-sourcing approaches.

2.2.1 REST concepts

REST Service. A REST service gives access to a set of so-called resources [Fielding and
Taylor, 2002]. Following the REST principles, the accesses to the resources are all done
thanks to HTTP requests, where the verb used by the request defines how the resource
is manipulated (GET for reading, PUT for writing, etc.). For example, Instagram provides
a REST service that gives access to the media resources published by its users (pictures,
movies, etc.).

REST API. Any REST service has a REST API that is used by client applications to access
this service. For instance, Instagram provides its REST API 6 used by many web client, such
as AK Stogram that is an Instagram media viewer with many fancy features 7.

REST Endpoint. A REST endpoint describes the access to a resource with a reference
URL, a relevant HTTP verb and optionally several parameters and a corresponding re-
sponse example. For example, the Instagram endpoint GET /media/media-id describes
how to access media resources with a required parameter ACCESS_TOKEN. The data re-
turned by a REST service is commonly encoded in JSON.

6. https://www.instagram.com/developer/
7. https://www.4kdownload.com/products/product-stogram

https://www.instagram.com/developer/
https://www.4kdownload.com/products/product-stogram

16 CHAPTER 2. BACKGROUND

REST API HTML documentation. A REST API HTML documentation describes a REST
API using plain HTML files. It is composed of a set of web pages. Among the set of pages,
one page is called the index page, and is linked directly or indirectly to all the pages of the
set. All the pages belong to the same domain (the one of the index page). Furthermore,
each page may or may not contain useful information to access the service. Finally, the
HTML layouts and vocabulary can be different from a provider to the other.

As an example, the Figure 2.1 shows the index page of the Instagram API HTML docu-
mentation. This page directly or indirectly points to a set of 24 web pages that compose the
full HTML documentation of the Instagram REST API. Looking more closely, some of these
pages are useful as they describe Instagram endpoints. For example, one page describe the
media resource (see Figure 2.2a). Some pages can be considered to be useless regarding
this purpose as they don’t describe how to access the service (see Figure 2.2b that gives in-
formation about how developers can receive support but does not describe how to access
the REST service).

Figure 2.1 – REST API HTML documentation of Instagram.

REST API specification. A REST API specification rigorously defines how to access the
resources provided by a REST service. Several papers have focused on providing the stan-
dards of machine-readable specifications.

— WADL: Web Application Description Language (WADL) is the de jure standard sub-
mitted by W3C in 2009 [Hadley, 2009]. WADL uses XML description to model the
REST resources and their links. The XML format is machine-readable, but not
human-readable. Due to its complexity, WADL doesn’t gain the interest of API
providers [Ed-douibi et al., 2017; Kopeckỳ et al., 2008].

2.2. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES? 17

(a) Media Endpoint screenshot (b) Developer Support screenshot

Figure 2.2 – Two screenshots in Instagram REST API HTML documentation

— hRESTS: HTML for RESTful Services (hRESTS) is a microformat for web developers
to make the main information machine-readable in the HTML [Kopeckỳ et al., 2008].
They add the pre-defined REST services annotations (e.g., HTTP methods, address,
output) into the HTML documentation according to hRESTS format. Hence, they
transform the human-readable HTML into a machine-readable one.

— RESTdesc: RESTdesc is a semantic web service description [Verborgh et al., 2013]
that based on semantic web language Resource Description Framework (RDF) [Klyne
and Carroll, 2004]. It is a rule-based format that defines the preconditions, postcon-
ditions and request details of the interaction with the REST service. RESTdesc is a
simple and lightweight description while still expresses the semantic of REST ser-
vices.

— WIfL: Web Interface Language (WIfL) defines a set of RDFa annotations that can be
injected into the HTML [Danielsen and Jeffrey, 2013]. WIfL provides an interactive
console that enables the developers to send the requests and analyze the sample
responses directly in the HTML documentation. Moreover, they provide a WIfL tool
that can validate the consistency of the REST APIs.

As a summary, even though a set of specification standards has been proposed by re-
searchers, none of them has been widely adopted by REST service providers [Verborgh
et al., 2013]. The industry practitioners have also proposed several descriptions, such as
RAML 8, API Blueprint 9, and OpenAPI. These API descriptions have a lot in common while
OpenAPI seems to be the winner in the “Great API Description Wars” [Tam, 2017], with

8. http://raml.org/
9. https://apiblueprint.org/

http://raml.org/
https://apiblueprint.org/

18 CHAPTER 2. BACKGROUND

over 350,000 downloads per month. Furthermore, translating an OpenAPI specification
into another format is easy, existing tools (e.g., Apimatic 10) already support this need.

OpenAPI. The OpenAPI specification (formerly known as Swagger) is the de facto stan-
dard that introduced by SmartBear Software. A variety of big technology companies (e.g.,
Google, Microsoft, IBM) have sponsored OpenAPI, which makes it quickly become the
most popular specification description.

At least, it has to describe the following information:

— Base URL: The Base URL is the common prefix of all URLs that give access to the
resources.

— Path Templates: The templates describe how the Base URL must be completed to
make an URL that does give access to a resource. A path template is a relative path
that starts with a leading slash (/).

— Verbs: The verbs list, for each Path Template, the HTTP verbs that are supported by
the REST service (GET, PUT, POST, etc.).

— Parameters: The parameters, for each couple of Path Template and Verb, define the
list of formal parameters that are supported by the request. Each parameter must
have a name and may have a type (String, Integer or even JSON or XML Schema).

— Response Schema: The Response Schema is the definition of response structure. It
is based upon the JSON Schema specification 11, and is compatible with XML. This is
an optional part of the specification.

As an example, the Figure 2.3 shows a small extract of the Instagram REST API speci-
fication generated by our approach. This extract indicates the base URL of the REST API
(https://api.instagram.com/v1), and then indicates that the media resources can be ob-
tained by sending GET HTTP requests targeting the “/media/{media-id}” template. Further,
it indicates that the response will be a Media object, and gives the corresponding JSON
schema.

2.2.2 Automated or semi-automated approaches

In this section, we present the literature related to the creation of the OpenAPI specifi-
cation. Automated or semi-automated approaches use a tool that helps the developers to
build the specification.

SpyREST. Sohan et al. [Sohan et al., 2017, 2015] provide SpyREST, an approach for gen-
erating and maintaining up-to-date documentation by using an HTTP proxy server. The

10. https://apimatic.io/transformer
11. http://json-schema.org/

https://api.instagram.com/v1
https://apimatic.io/transformer
http://json-schema.org/

2.2. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES? 19

{
"swagger ": "2.0" ,
"host": "api.instagram.com",
"schemes ": ["https"],
"basePath ": "/v1",
"paths": {

"/media /{media -id}": {
"GET": {

"parameters ": [
{

"in": "query",
"name": "access_token",
"description ": "A valid access token.",
"required ": "required"

}],
"responses ": {

"200": {
"description ": "Media resource information .",
"schema ": {

"$ref": "#/ definitions/Media"
}}}

}
}
...

},
"definitions ": {

"Media": {
"properties ": {

"id:": {
"type": "string"},

"users_in_photo ": {
"type": "array",
"items": {

"$ref": "#/ definitions/Users_in_photo "}
"link": {

"type": "string"},
...

},
"type": "object"

}
...

}
}

Figure 2.3 – Extract of an OpenAPI specification (generated by our approach) for Instagram

20 CHAPTER 2. BACKGROUND

proxy server capture and analyze multiple raw HTTP requests and responses, and then
generate the corresponding API documentation. As shown in Figure 2.4, it contains a static
description (e.g., query parameters, request headers) showing how to call the endpoint
API 2.4a. Also, it provides dynamic examples that allowing developers actually send the
requests and retrieve responses 2.4b.

Sohan et al. [Sohan et al., 2017] applied SpyREST to generate and maintain API doc-
umentation at Cisco over the eighteen months. Results show that it reduces the massive
manual effort when generating the test code. Also, it helps developers to maintain always-
updated documentation when the API evolved.

SpyREST is the semi-automated approach. It requires a client that knows how to call
the REST services and also requires the client to perform all the possible calls. Also, the
actual output of SpyREST is the REST service documentation, and thus developers miss
the benefit of REST service specification.

SpyREST is dynamic as it listens to the communications that are performed with the
REST services to generate the documentation. However, it may not generate the complete
documentation due to several restraints, such as the availability of endpoints, authentica-
tion, network issues, etc.

(a) API documentation summary (b) API documentation example

Figure 2.4 – A screenshot of SpyREST. It shows a part of auto-generated API documentation
and examples for Github service.

2.2. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES? 21

APIDiscoverer. Ed-douibi et al. [Ed-douibi et al., 2017] provide APIDiscoverer, an
example-driven approach for generating REST API specification by using the API call
(requests and responses) examples. As shown in Figure 2.5, developers need to fulfill the
API calls information and send them to the REST services. It then analyzes requests and
responses to generate the specification.

Figure 2.5 – Screenshot for APIDiscover [Ed-douibi et al., 2017].

This idea is quite similar to the SpyREST, but the output description is the OpenAPI
specification, which is a benefit for the developers. Another advantage is that APIDiscov-
erer can generate the JSON schemas of REST resources. It parses the response JSON data,
and discovers the JSON schemas that represent the REST resources.

RESTler. Alarcon et al. [Alarcón and Wilde, 2010] provide RESTler that crawls a RESTful
service and aims to generate a map that presents all the provided resources and their links.
It has proposed a new description ReLL (Resource Linking Language) to describe RESTful
services. As a comparison, RESTler visualizes the REST resources while others generate
the human-readable documentation or specification. Moreover, RESTler is not an open-
source project, and the authors don’t present its performance.

D2Spec. Yang et al. [Yang et al., 2018; Dolby et al., 2018] provide D2Spec that extract web
API specification from online documentation, which is quite similar to our work. D2Spec

22 CHAPTER 2. BACKGROUND

first crawls all the documentation pages of the REST services, and use several machine-
learning methods to identify the base URL, path templates and HTTP methods, which are
necessary to compose an OpenAPI specification.

D2Spec collects all the URLs in the documentation pages, and use machine-learning
techniques to classify the URLs that are relevant to API description. It then uses an agglom-
erative clustering algorithm to extract the base URL and path templates. D2Spec achieves
high precision and recall on extracting the basis specification parts. Also, it can help the
API consumer to point out the inconsistencies between online documentation and existing
specifications.

However, D2Spec doesn’t target the request parameters, which are also essential to the
API consumer. Also, D2Spec miss to understand the data returned by the APIs. Web appli-
cation developers are eager to have the data structures, sample responses to better under-
stand the REST service.

Comparison. We present a comparison with four existing approaches: SpyREST, APIDis-
coverer, RESTler, and D2Spec, as shown in Table 2.2. The example-driven approaches
SpyREST and APIDiscoverer are quite similar. Developers need to manually search and
input API calls information (e.g., URL, HTTP Verb) within corresponding HTML documen-
tation. To get the whole spectrum, developers also need to recursively find the API calls
for all endpoints. This work is time-consuming and labor-consuming. It is acceptable for
small services that only contain several endpoints (e.g., Instagram includes 21 endpoints).
For large services that involve more than 200 endpoints (e.g., Facebook 12 includes 306 end-
points), it becomes annoying and error-prone. The difference between the two approaches
is that SpyREST outputs ad-hoc documentation while APIDiscoverer generates a standard
OpenAPI specification.

The crawler-based approaches RESTler and D2Spec are feed with an index URL of the
online documentation. By automatically crawling the HTML documentation, developers
don’t need to manually input all API calls. The output parts of these approaches are not
complete.

2.2.3 Crowd-sourcing approach

Some REST API specifications are created through the crowd-sourcing approach. In-
dividuals and API providers can submit API specifications to a public available repository.
For each REST API, the repository reserves sole and latest specification. The specifications
are obtained through the manual effort of API users. Two third-party websites such as API
Stack 13 or APIs.guru 14 offer directories of OpenAPI specifications for REST APIs. As an

12. https://developers.facebook.com/docs/graph-api/
13. http://theapistack.com/
14. https://apis.guru/

https://developers.facebook.com/docs/graph-api/
http://theapistack.com/
https://apis.guru/

2.3. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES? 23

Table 2.2 – Comparison of existing automated/semi-automated approaches to build the
REST API specification.

Input Output format Output parts

SpyREST API calls Documentation

Base URL
Path Templates
Verbs
Parameters

APIDiscoverer API calls Specification

Base URL
Path Templates
Verbs
Parameters
Response Schema

RESTler Index URL Structured map N/A

D2Spec Index URL Specification
Base URL
Path Templates
Verbs

example, Figure 2.6 presents a list of REST services that we can search and directly take
advantage of their related OpenAPI specifications.

The advantage of the crowd-sourcing approach is that some specifications in the repos-
itory have high quality, compared to the automated approaches. Since they are provided
and maintained by REST API providers. Also, developers don’t need to take time to gener-
ate the specification if it’s already in the repository. However, the qualities of the involved
OpenAPI specifications vary a lot since they have been provided by different users. Fur-
thermore, it is possible that they are outdated since these directories only rely on API users.

2.3 How to adapt to the data changes of REST services?

Developers want to handle the changing REST services data in a more efficient way.
In this section, we first demonstrate the pull mode and push mode to communicate with
the REST services. Then we list the existing transformation platforms and their common
design mechanism. In those platforms, the fundamental principle is to generate the JSON
Patch. In the end, we present the JSON Patch and existing JSON Patch algorithms.

24 CHAPTER 2. BACKGROUND

Figure 2.6 – Screenshot for API Stack.

2.3.1 Pull mode and Push mode

Pull mode. The pull mode, or pull technology, is a network communication style that
the clients periodically send the requests to the server to get the up-to-date information.
REST APIs have been however designed to be used in a pull mode request. For example,
Figure 2.7a demonstrates how the client employs pull mode requests to fetch a timeline of
tweets from Twitter REST service. In the beginning, the client sends a poll request to the
Twitter server, and receives the timeline tweets version 1. The client has actually to call
the service according to a predefined frequency even though the timeline tweets have not
been changed (see the client sends poll request #2 and receives the same data). Ultimately
the client receives the up-to-date tweets version 2 after several requests.

The pull mode is inadequate for services that provide access to data that frequently
change. The rates of data change various a lot depending on the services. According to
the investigation for RSS blog [Lee, 2012], 11% of bloggers post daily. While Donald Trump
tweets on average 15 times a day with a high of 87 [Hersak, 2017]. Setting the pulling period
is a trade-off between the promptness of data and the bandwidth cost. The more aggressive
the checking updates strategy, the more waste of CPU and network resources, and causes
a surge in the traffic [Sia et al., 2007]. Existing literature suggests optimal polling rate for

2.3. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES? 25

each service instead of a single common one [Lee, 2012]. However, it’s difficult for the web
developers to find an optimal polling rate. Moreover, if the developers just want to be aware
of new tweets appearing in the timeline, they also have to create the patch describing the
differences between the data they previously received and the new one just returned by the
request, which can be highly complex depending on the structure of the JSON documents
contained in the response of the request.

Push mode. The pull mode, or push technology, is the other network communication
style that the client subscribes to the server and they will receive notification messages only
when the data have changed. For example, Figure 2.7b presents how the client receives
the notifications of timeline tweets in push mode. The client first registers to the Twitter
services and receives the timeline tweets version 1. Without endless requests, the client just
waits for the notification messages when the tweets have changed. Further the messages
contain the set of changes performed to the data rather than the new version of the data,
letting the client react to them if needed.

Apple’s first introduced a push notification service for the iPhone in 2008 [Melanson,
2008]. It allows developers to push textual messages to iPhone through their services,
which can save battery and improve performance. For other mobile platforms, Google an-
nounced Google Cloud Messaging 15 and the newest Firebase Cloud Messaging 16 to notify
client application of notification messages. W3C also define a standard web push protocol,
which allows the server to interact with the client through a push service [Beverloo et al.,
2017].

All of the above push technologies are prepared for the REST service providers. They
focus on helping REST service providers how to design their services to enable push mode.
However, most REST service providers designed their services to be used in a pull mode ac-
cording to our investigation. As evidence, for the 30 topmost popular REST services, none
of them enables push mode requests. The existing circumstances trouble the consumer
side web developers since they prefer push mode services, but they don’t have access to
change the infrastructure of those services. Hence, web developers are eager to have a
platform that transforms a pull mode service to a push mode one without modifying the
source codes.

2.3.2 Transformation platforms

Some commercial companies already found and support the need for transforming the
pull mode service into a push one. We take a brief overview of these transformation plat-
forms.

15. https://developers.google.com/cloud-messaging/
16. https://firebase.google.com/docs/cloud-messaging/

https://developers.google.com/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/

26 CHAPTER 2. BACKGROUND

Client Server

Poll request #1

data V1

Poll request #3

data V2

Pull mode

Tweets V1

Tweets V2

Poll request #2

data V1

Tweets V1

(a) Pull mode request

Client Server

Register

data V1

Notification message

Push mode

Tweets V1

Data
changes

Wait until data
changes

JSON Patch

(b) Push mode request

Figure 2.7 – Two modes for requesting the Twitter REST services

2.3. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES? 27

StreamData.io. Launched in 2015, our partner StreamData.io 17 is a French-based com-
pany that provides a proxy server to convert the pull mode API of an existing web appli-
cation into push mode one. Once the client registers on the platform, the proxy server
will take the place of the client to poll the destination REST API, and analyze the response
data (normally in JSON format). The proxy server then compared the stored previous ver-
sion and the newest version of data, and generate a corresponding JSON patch for the two
JSON documents. When nothing has changed, the platform didn’t transfer useless data
to the client. When the data has updated, the platform only sends back the JSON patch,
which is smaller than the newest data in size. This approach doesn’t save bandwidth cost
and system resource cost for the proxy server since it needs to polling the REST services
continuously. However, for the client part, the load and bandwidth can be reduced by up
to x66 according to StreamData.io [streamdata.io, 2016].

Figure 2.8 – A screenshot of Streamdata architecture. It acts as a proxy server to polling the
REST API and returns JSON Patch to the client only when source data has been changed.
The client then can apply the JSON Patch to recover the up-to-date data.

The most difficult part of this platform is to create a patch between each successive
received versions of the data. Existing solutions have some imperfections on generating
the JSON patch. Section 2.3.3 discusses this issue in detail. We provide a new algorithm for
StreamData.io that can generate the JSON patch in a smaller size and within less time. Our
contribution would improve the performance of this transformation platform.

Diffusion. Founded in 2006, Diffusion 18 is an intelligent platform that provides real-time
data streaming via the push mode. Similar to StreamData.io, it also acts as a proxy server to
manage and synchronize data. It also supports two-way communication that enables the
client to publish a topic and synchronize it with the server. Diffusion is not solely designed

17. http://streamdata.io/
18. https://www.pushtechnology.com/

http://streamdata.io/
https://www.pushtechnology.com/

28 CHAPTER 2. BACKGROUND

for converting REST services, since its target data can be stemmed from any sources (e.g.,
REST services, database). Developers may need additional configurations to fetch the data
from REST services.

Even though Diffusion claims that it greatly reduces the bandwidth requirements and
latency, and offers up to 90% data efficiency improvement [pushtechnology, 2018]. We
made an investigation toward its JSON patch algorithm and found that it only supports the
simple add, remove, and replace patch operations.

Figure 2.9 – A screenshoot of Diffusion architecture. It provides a cluster that can provide
optimal JSON data to endpoint users (i,e., Mobile application, Web application, IoT appli-
cation.).

As a summary, existing transformation platforms follow the same principle that acts as
a proxy server to transforming the polling requests into the push notifications. The main
difference and the most difficult part is the JSON Patch algorithms they used. In the fol-
lowing section, we will discuss the JSON document and JSON Patch in detail, and compare
the existing JSON Patch algorithms.

2.3.3 JSON document and JSON patch

In this section, we give a description of the JSON document and compare the existing
JSON Patch algorithms.

JSON document. A JSON document is a very simple textual serialization of a JavaScript
object. More precisely, it is a tree composed of three kinds of nodes (literal, array or object),
where the root node cannot be a literal. A literal node can be either a boolean, a number or

2.3. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES? 29

a string. An array node is a sequence of nodes. An object node has a set of child properties,
each of them has a label 19 unique within the object, and a value that is a node. As an
example, the Figure 2.10 presents two simple JSON documents that contain literals, objects
and arrays.

{
"isOk": true ,
"rm": "2",
"val": 3,
"mes1": {"who ":"me", "exp":0},
"res": [

"v1",
"v2",
"v3",
"v4",
"v5"

],
"inner" : {

"elts" : ["a","b"] ,
"sum" : "test is ok"

}
}

{
"rank": 6,
"isOk": false ,
"va": 3,
"mes1": {"who":"me", "exp":0},
"mes2": {"who":"me", "exp":0},
"res": [

"v6",
"v1",
"m2",
"v1",
"v5",
"v3"

],
"inner" : {

"in": {
"elts" : ["a","b","c"]

}
},
"sum" : "test is ok"

}

Figure 2.10 – A source (left) JSON document with several properties. A target (right) JSON
document that has been transformed from the source JSON document.

JSON Patch. The JSON Patch RFC is an ongoing standard that specifies how to encode a
patch that can be performed on a JSON document to transform it into a new one[Bryan and
Nottingham, 2013]. The RFC specifies that a patch is a sequence of change operations. It
then specifies the five following change operations (a sixth operation is defined to perform
tests):

— Add: this operation is performed to add a new node into the JSON document. The
new node can be added within an array or as a new property of an object.

— Remove: this operation is performed to remove an existing node of the JSON docu-
ment.

— Replace: this operation is performed to replace an existing node by another one.

— Move: this operation is performed to move an existing node elsewhere in the JSON
document.

19. A string or a JavaScript name.

30 CHAPTER 2. BACKGROUND

[
{ "op": "add", "path": "/rank", "value": 6 },
{ "op": "remove", "path": "/rm"},
{ "op": "replace", "path": "/isOk", "value ": false},
{ "op": "move", "path": "/va", "from": "/val"},
{ "op": "copy", "path": "/mes2", "from": "/mes1"}
{ "op": "add", "path": "/res/0", "value": "v6"},
{ "op": "replace", "path": "/res/2", "value ": "m2"},
{ "op": "remove", "path": "/res/4"},
{ "op": "copy", "path": "/res/3", "from": "/ result /1"},
{ "op": "move", "path": "/res/5", "from": "/ result /4"},
{ "op": "move", "path": "/ inner/in/elts", "from": "/inner/elts"},
{ "op": "add", "path": "/ inner/in/elts/2", "value": "c"},
{ "op": "move", "path": "/sum", "from": "/ inner/sum"}

]

Figure 2.11 – A RFC JSON Patch that, if applied to source JSON document of the Figure 2.10,
would get the target JSON document.

— Copy: this operation is performed to copy an existing node elsewhere in the JSON
document.

The RFC specifies a standard way to encode a patch into a JSON document. More pre-
cisely a patch is an array of change operations where each change operation is encoded
by a single object with properties specifying the kind of operation, the source and target
nodes, and the new value if needed. For instance, the Figure 2.11 presents a patch that
can be applied to source JSON document presented in the Figure 2.10, and that contains
change operations (adding a new literal node r ank, removing a node of the array r es, etc.).
We use that example in the following sections.

Applying a patch to a JSON document is quite easy. It consists in applying all the editing
operations of the patch in their defined order. Creating a patch that, given two versions
of a JSON document, expresses how to transform the first version into the second one is
however much more complex, especially when the goal is to create small patches and to
create them as fast as possible.

2.3.4 JSON Patch Algorithms

JSON documents are mainly labeled unordered trees (object nodes and their proper-
ties), where some nodes are arrays, hence ordered. The theory states that when just the
add , r emove and r epl ace operations are considered, the problem of finding a minimal
patch is O(n3) for ordered trees and NP-hard for unordered trees [Zhang et al., 1992; Bille,
2005; Pawlik and Augsten, 2011; Higuchi et al., 2012]. When the move operation is also
considered, the problem is NP-hard for both kind of trees [Bille, 2005]. That is why several
algorithms from the document engineering research field use practical heuristics. One of
the most famous is the algorithm of Chawathe et al. [Chawathe et al., 1996] that computes

2.3. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES? 31

Table 2.3 – Comparison of existing approaches to generate the JSON Patch.

Libraries

Category Scenario move and copy Ar r aynode

JavaScript

jiff No Stack
Fast-JSON-Patch No No
JSON8 Patch No No
rfc6902 No Stack

Python python-json-patch No Stack

PHP json-patch-php No No

Java json-patch Yes No

patches (containing move actions) on trees representing LaTeX files. Several algorithms
have also been designed specifically for XML documents [Cobena et al., 2002; Al-Ekram
et al., 2005]. One of them [Lindholm et al., 2006] is even capable of detecting copy opera-
tions.

Several existing approaches support the creation of JSON Patches. 20 By analyzing all of
them, it appears that they all take one or two of these simplifications to make the problem
tractable (see Table 2.3):

— They choose not to support the move and copy operations that are yet specified in
the RFC, and therefore provide non-optimal patches. As an example in the Figure
2.11, an optimal patch uses move operation to handle the property label renaming
from val to va. Without such a move operation, the patch then uses a r emove prop-
erty val and a add property va. Moreover, an optimal patch uses a copy operation
for the property mes2 and its value copied from mes1. The Table 2.3 shows that only
one existing approach does support these operations.

— They choose not to support array node, or to support them poorly. In principle all the
editing operations of the JSON RFC apply to array nodes as well as object nodes. A
patch can then express changes done within an array. For instance in Figure 2.11, an
optimal patch uses the move operation to put v3 to the end of the array. Moreover,
it uses the copy operation for copying the existing node v1. Regarding the support
of array, the Table 2.3 shows that half of the approaches do not support array at all,
and consider them as a simple node (with nothing inside). The other half simply
considers that an array is a stack, and therefore supports change operation that can
apply to a stack (push and pop).

20. http://jsonpatch.com/

http://jsonpatch.com/

32 CHAPTER 2. BACKGROUND

The table 2.3 clearly shows that there is no approach that fully complies with the RFC in
terms of change operation coverage. By compliance we mean that it can handle all editing
operations that are defined by the RFC including the move and copy ones (the test one is
not an editing operation). However there is no formal process that truly checks the RFC
compliance. There is only JSON test 21 that just checks if the given patches can be applied.

2.4 Summary

The state of the art brings a lot of information about the usage of third-party compo-
nents in the context of web applications. As a summary, we list the three main lessons that
are learned from the existing literature:

— Our first problem, which is about JavaScript library identification and recommenda-
tion. we summary the existing literature into two aspects: obtain third-party library
usage dataset, and sort the libraries according to underlying requirements. For the
first step, existing studies rely on open source projects while we want to target fa-
mous web applications, which are often closed-source applications. For the second
step, existing approaches focus on the scenario where developers want to find simi-
lar libraries to replace the used ones. We want to concentrate on the scenario where
developers want to choose appropriate libraries when they design the web applica-
tions. We choose to use library popularity among famous web applications to rank
the libraries. The underlying assumption is that the “best” libraries should be the
ones that used by the majority of people.

— Our second problem, namely the generation of standard REST specification, has
been studied by several researchers. Existing approaches relay a lot of manual hu-
man efforts to generate and maintain the specification. Moreover, they fail to create
some parts of the specification that are crucial to the web developers. This phe-
nomenon motivates our second contribution that can reduce human efforts and
generate a complete specification at the same time.

— Our third problem, related to the adaption to the changing data of REST service, has
aroused the interest of the industry. They provide a solution that can transform from
a classical pull mode request to a modern push one. Even though they follow the
same principle for conversion, the fundamental algorithm they use is not perfect.
The existing JSON Patch algorithms do not generate optimal patches, and not take
advantages of some patch operations that defined in the JSON Patch RFC. We want
to address this problem via a new efficient patch algorithm that fully complies with
JSON Patch RFC.

21. https://github.com/json-patch/json-patch-tests

https://github.com/json-patch/json-patch-tests

CHAPTER

3
What are the best JavaScript libraries

to use?

Modern web applications often use JavaScript libraries, such as jQuey or Google
Analytics for example, that make the development easier, cheaper and with better
quality. Choosing the right library to use is however very difficult as there are many
competing libraries with many different versions. To help developers in this difficult
choice, popularity indicators that pinpoint which applications use which libraries
are very useful. Building such indicators is however challenging as popular web ap-
plications usually don’t make their source code available. In this chapter, we address
this challenge with an approach that automatically browses web applications to re-
trieve the JavaScript libraries they use. By applying this approach to the most famous
websites, we then present the trends we observed and the recommendations.

Contents
3.1 Introduction . 34

3.2 Methodology . 35

3.3 Implementation . 39

3.4 Evaluation . 40

3.5 Observations and Suggestions . 43

3.6 Conclusion . 47

33

34 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

3.1 Introduction

In this chapter, we discuss the problem introduced in Section 1.2.1. As a reminder, it
refers to the following scenario: a developer wants to choose which JavaScript library to
include in the web application.

Software projects often use third-party libraries. With Java projects for example, 70% of
the projects use at least four third-party libraries, and 10% use more than ten libraries [Tey-
ton et al., 2014]. For web applications, the growing interest for library management sys-
tems, such as NPM with NodeJS, shows the importance of this topic[Mardan, 2014]. Fur-
ther, it is well known that third-party libraries such as jQuery are almost used by all web
applications [Bibeault and Katz, 2008].

To help developers to chose the right library to include, many existing research ap-
proaches aim to provide popularity indicators on libraries [Bauer et al., 2012; Kula et al.,
2015; Teyton et al., 2012, 2013; Thung et al., 2013; Zimmermann et al., 2005]. In order to
get the popularity indicator, we need to recognize the JavaScript libraries used in web ap-
plication. However, currently there is no publicly available approach since popular web
applications usually don’t make their source code available.

In this chapter, we overcome this difficulty and exhibit which are the popular JavaScript
libraries. Our proposal performs an online observation of popular web applications with
the underlying assumption that the libraries they use are most probably the ones that
should be used. The main difficulty is therefore to identify which are the libraries they
use just by browsing them. To get significant results we decide to observe the Alexa global
top 100 websites 1. Our approach then browses these web applications and recognizes the
JavaScript libraries they use. Based on such observations we can then output trends and
give recommendations.

We make the following contributions:

— We provide an automatic and efficient approach that browses web applications and
detects their used JavaScript libraries (see Section 3.2). Our approach uses both syn-
tactical and dynamical analysis of the online resources of the web applications and
returns high precision results (see Section 3.3 and Section 3.4).

— By applying our approach on the 100 most popular websites, we provide statistics of
the use of JavaScript libraries. Such statistics confirm the fact that libraries are largely
used in web applications (see Section 3.5).

— We then present how our observations can be used to provide trends and recom-
mendations. As an illustration, we present our observation by focusing on jQuery
and AngularJS, Backbone and related libraries (Section 3.5).

1. http://www.alexa.com/topsites

http://www.alexa.com/topsites

3.2. METHODOLOGY 35

Table 3.1 – Library usage matrix.

JavaScript Libraries

Web applications jQuery AngularJS

Alipay ⊥ ?
Dropbox 1.3.1 ⊥
Pixnet ⊥ ⊥

3.2 Methodology

This section first provides definitions for web applications and libraries. It then
presents three strategies that can be used to detect the libraries used by a web application.
Then it presents our global approach that uses these three strategies.

3.2.1 Definitions

First, we consider that a web application is a pair (w,url) where w is the name of the
web application and url is its root url. For instance, (DropBox,www.dropbox.com) is a
web application. Second, we consider that a JavaScript (JS) library is a pair (l ,Vl) where
l is the name of the library and Vl its corresponding ordered set of versions. For instance
(JQuery,{1.1,1.2,1.3}) is a library.

As we briefly presented in Section 3.1, our objective is to automatically identify the JS
libraries used by web applications. Table 3.1 shows a tiny example of the result we want
to obtain, called the library usage matrix. The library usage matrix contains a set of web
application names as rows, and a set of JS library names as columns. The goal of this table
is to indicate which library is used by which web application, and to give the correspond-
ing version. Therefore the value of a cell corresponding to an application w and a library l
belongs to the set Vl ∪ {?,⊥}, where Vl is the set of all versions of library l , as previously de-
fined, and where the symbol ? means that w is using an unknown version of l , and where ⊥
means that the application is not using the library. Table 3.1 states for instance that Drop-
Box uses only the version 1.3.1 of jQuery, Alipay uses an unknown version of AngularJS
and Pixnet does not use any library. We will use the library usage matrix to compute which
libraries are popular, and which particular versions of the libraries are popular, with the
main objective to exhibit trends and to give some recommendations.

3.2.2 Recognition Strategies

Filling the library usage matrix requires to browse web applications and to recognize
which libraries they use. It is done by using several recognition strategies that are programs

36 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

that take as an input a given web application, and produce as an output a row of the li-
brary usage matrix. The remainder of this section presents the three different recognition
strategies we propose that, when combined, provide good results (see Section 3.4).

Comment Strategy

The idea behind the Comment Strategy is to search for names of libraries in the header
comment of the JS files used by a web application. This strategy is quite efficient since
library files often contain this information. For instance, Figure 3.1 shows the three first
lines of a Modernizr JS library file. We clearly see in this header that this file cites the name
of the library (Modernizr) and its version (2.8.3).

To fetch this information, the comment strategy begins by browsing the root URL of
the web application. Browsing this URL returns all the webpage content, including a set
of linked resources. We retain from this set of resources only the ones that correspond to
JS files, by using the content-type information. We then use several regular expressions to
extract the library name and version from the comments, as shown in Figure 3.2. More
precisely, one regular expression is generated for each sought library by substituting the
variable name by the name of the sought library. These regular expressions are then all
checked, in global mode, against a JS file until one matches, ignoring the case. This regular
expression is robust enough to match comments such as jQuery JavaScript Library v1.11.3
or Modernizr v2.8.3.

The comment strategy has the main advantage to be very efficient since executing a
regular expression is quite fast. Furthermore, this strategy can be easily extended to sup-
port the search of new libraries just by adding new library names. Unfortunately, several
web applications remove all the origin comments of a library file, which somehow leads
to no results by using this strategy. The detailed performance results are presented in the
Section 3.4.

/*!
* Modernizr v2.8.3
* www.modernizr.com

Figure 3.1 – The header of a Modernizr JS library file.

name\s(.*\s)?v?([0-9]+)(\.[0-9]+)*

Figure 3.2 – The regular expression used to extract library names and version from com-
ments.

3.2. METHODOLOGY 37

File Matching Strategy

The intuition behind the File Matching Strategy is to check if a JS file used by the web
application is similar to a file that is known to be a JS library. Similarly to the first strategy,
this strategy starts by retrieving all the JS files used by the web application. It also uses
a so-called knowledge base which contains the files of all versions of all JS libraries. This
knowledge base is large: it contains more than 2000 files in our current implementation.

Asking for an extensive comparison with all the files of the knowledge base would take
too long. To perform such a comparison in a reasonable time, we use a two-step processIn
the first step, we use simhashes, which are short hashcodes computed on a large text, and
that can be used for quick comparisons [Sadowski and Levin, 2007]: the more similar the
two texts, the more similar their simhash. Therefore, prior to any comparison, we com-
pute a simhash for all the files of the knowledge base. When analyzing a JS file that is used
by a given web application, we then generate its simhash and compare it, using the Ham-
ming distance [Hamming, 1950] to all simhashes of the knowledge base. We retain only the
files from the knowledge base that have a Hamming distance d ≤ 3. The thresholds of our
strategy will be discussed in Section 3.4.

Since the multiple versions of a same library are usually very close, this process gener-
ally retains several files from the knowledge base. To retain only one result, we perform a
more detailed comparison in the second step. We then compute the Dice coefficient for
each candidate file on the bigrams they contain[Dice, 1945]. We retain only the files hav-
ing a Dice coefficient c ≥ 0.8, and among these files we retain only the file with the greatest
coefficient. If there are several files with a same maximum coefficient, we distinguish two
cases: 1) if the files do not come from the same library, we return no library and 2) if the
files come from the same library, we return the file associated to the greatest version.

The file matching strategy has the main advantage to be robust to small modifications
of the library, as it is sometimes done by web developers. It is quite easy to extend as it
only requires the set of library files. Its first drawback is its cost in time. However, thanks
to our optimization, the total comparison cost time is reasonable as we will measure it in
Section 3.4. Its second drawback is that some web applications modify the source code of
the library or merge several libraries into one JS file. In this situation this strategy fails.

Sensor Strategy

The Sensor Strategy aims at inserting at runtime a sensor in the web application with
the objective to dynamically detect which JS libraries are deployed. Such a sensor is a JS
plug-in that is executed by the browser. To detect a library, the sensor uses two elements.
First it monitors the requests made by the browser in order to detect URLs (called key
URLs) associated to a known library. Then it checks for the existence of JS objects (called
key objects) that are associated to a known library.

For instance, if the sensor detects that the web application is requesting the con-

38 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

Table 3.2 – Key URLs and objects for several libraries.

Element

JavaScript library Key URLs Key objects

jQuery
window.jQuery,

jquery.com window.$,
window.$jq

Modernizr window.Modernizr
Facebook SDK connect.facebook.net window.FB
Twitter Platform platform.twitter.com window.twttr

nect.facebook.net URL, it means that it is using the Facebook SDK library. Similarly, if the
sensor detects that a window.$ object exists, it means that the application is using jQuery.
Table 3.2 shows key URLs and objects for several well known libraries.

When a library is detected thanks to a key URL or object, our sensor then calls a specific
function that aims to detect the version of the library. Such a function uses the internal
knowledge of the library to recognize the version, i.e. objects specific to a particular version
or functions that return the version. Further, the function returns ? when no version can
be detected.

The sensor strategy has the advantage to be quite efficient. Its main drawback is that it
requires a lot of configuration that has to be provided by an expert that knows the internal
of a library. Therefore adding a new library in the knowledge base is expensive. Moreover,
sometimes the libraries do not provide a mean to distinguish between its different versions
(for instance same URLs are requested, and the same objects are defined whatever the
versions). Further, as it relies on executing JS code coming from the web applications and
the plugins, it sometimes fails due to some unexpected runtime error.

3.2.3 ARJL Combined Strategy

The three strategies we presented above give different results according to the input
web application and to the sought library. For instance, Table 3.3 shows the results ob-
tained by these three strategies on several couple of applications and libraries. In this ta-
ble, we see that the library jQuery is detected with the same version by the three strategies
for the Microsoft website. However, in the 360 website, jQuery is detected only by the two
first strategies. Also in the Microsoft website, Sizzle is not detected by the sensor strategy,
and detected in two different versions by the comment and file matching strategies.

Section 3.4 gives much more information regarding the precision of each of the strategy.
However, we clearly see that there is no silver bullet: no strategy always return a correct
result.

3.3. IMPLEMENTATION 39

Table 3.3 – Comparison of three recognition strategies.

Strategy

Web application / JavaScript library Comment File Matching Sensor

Microsoft / jQuery 1.7.2 1.7.2 1.7.2
360 / jQuery ⊥ 1.7.1 1.7.1
DropBox / Modernizr 2.8.3 ⊥ 2.8.3
DropBox / Underscore.js 1.8.3 1.8.3 ⊥
Microsoft / Sizzle 1.9.4 1.9.2 ⊥

We can see that the results obtained by the three strategies should be merged. We there-
fore introduce ARJL (Automatic Recognizer of JS Libraries) that integrates the three strate-
gies mentioned above, as follows. First the comment, file matching and sensor strategies
are applied separately on a given web application. For each library l , we therefore get three
results in the set Vl ∪ {?,⊥}. Recall that Vl is a totally ordered set, i.e. 1.0 < 1.1 < 1.2. We
extend the total order of Vl by considering ⊥ as the smallest element, and ? the second
smallest, i.e. ⊥ <? < 1.0 < 1.1 < 1.1. Using this total order, for a library and a given web
application, the ARJL strategy returns the greatest element in Vl ∪{?,⊥} that has been com-
puted by the strategies. For instance, in Table 3.3, for the Microsoft application and Sizzle
strategy, we have ⊥< 1.9.2 < 1.9.4 therefore 1.9.4 is returned.

3.3 Implementation

Our approach has been implemented using the JavaScript (JS) language on top of the
SlimmerJS 2 scriptable and headless (without GUI) web browser. SlimmerJS is in charge of
applying the three strategies. In particular, we use it to retrieve the JS files from the web
applications (for the comments and file matching strategies), and also to look for the key
URLs and objects (for the sensor strategy). Then, we apply the ARJL strategy on top of the
obtained results.

Since SlimmerJS can experience a heavy network traffic when crawling a web applica-
tion, or even crash when executing the remote JS code, we analyze each web application
in a separate thread. A monitor watches all the threads and when one is running for too
many time (we have a configurable threshold set by default to five minutes), it kills and
relaunches it. Fortunately, we always succeed in analyzing all the web applications we
wanted to analyze as the crashes rarely happen.

Since there exists a huge amount of JS libraries to detect, we had to choose a reasonable
subset of them to test our approach. We therefore chose to select a limited set of famous

2. https://slimerjs.org/

https://slimerjs.org/

40 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

JS libraries from two well-known sources. First, we chose to include the 14 JS libraries
stored by the Google CDN 3. Second, as Wikipedia 4 provides a list of notable JS libraries,
we choose this list but remove the libraries without any update in the last five years or
the ones that are totally abandoned. By merging these two lists, we obtain a list of 52 JS
libraries, with an average of 43 versions per library.

To build the knowledge base of all files of all versions of these libraries, we use the CD-
NJS 5 library hosting website. To elaborate the key objects and URLs for the sensor strat-
egy, we reused the source code of Library Detector 6, a Chromium plugin that detects the
libraries used by a web application. We then have extended it to handle our sensor strategy.

For the list of web applications, we use the Alexa website that ranks websites according
to their popularity. Alexa contains websites that are available on several domains (such as
google.com, google.co.in, google.co.jp). We therefore remove the domain information from
the URL, and select the 100 most popular ones.

To allow researchers and developers to replicate our results, the source code of our
approach is available on GitHub 7.

3.4 Evaluation

In this section we evaluate the strategies described in Section 3.2. Firstly, we describe
how we set up the two thresholds of the file matching strategy. Then, we analyze the pre-
cision of our approach. We also compare the results of the different strategies. Finally, we
measure the time performances of the strategies.

3.4.1 Thresholds of the File Matching Strategy

As described in the previous section, the file matching strategy uses two thresholds: the
maximum Hamming distance d between simhashes, and the minimum Dice similarity s
between the text of the files. To compute these thresholds our objectives was that the strat-
egy should avoid at all costs false positives, and should return the largest set of identified
libraries. In other words, the precision should be 100%, and the recall should be as big as
possible (close to 1).

We then used a manual process that started with the stronger threshold (where d = 0
and s = 1), and aimed to release the thresholds to get more identified libraries without hav-
ing any false positive. In other words, we tried to get the two thresholds with a precision of
100% and with the biggest recall. We ran that process on a set of 10 applications randomly

3. https://developers.google.com/speed/libraries
4. https://en.wikipedia.org/wiki/List_of_JavaScript_libraries
5. https://cdnjs.com/
6. https://github.com/johnmichel/Library-Detector-for-Chrome
7. https://github.com/kenmick/WebCrawler

https://developers.google.com/speed/libraries
https://en.wikipedia.org/wiki/List_of_JavaScript_libraries
https://cdnjs.com/
https://github.com/johnmichel/Library-Detector-for-Chrome
https://github.com/kenmick/WebCrawler

3.4. EVALUATION 41

Table 3.4 – Hamming distance and Dice similarity thresholds, with the associated true and
false positives.

Dice coefficient

Hamming distance 1 0.9 0.8 0.7 0.6

0 (4,0) (9,0) (9,0) (9,0) (9,0)
1 (4,0) (10,0) (10,0) (10,0) (10,0)
2 (4,0) (10,0) (10,0) (10,1) (10,2)
3 (4,0) (10,0) (12,0) (12,2) (12,4)
4 (4,0) (10,0) (12,1) (12,5) (12,7)

chosen from the 100 most popular application from Alexa. Further one author manually
inspected the detected libraries and classified each of them as either a true or a false pos-
itive. The Table 3.4 shows the results of our process where the candidate values for d are
{0,1,2,3,4}, and {1,0.9,0.8,0.7,0.6} for s. For each couple of thresholds (c, s) in the Table,
there is an associated couple (t , f), where t (resp. f) is the number of true (resp. false)
positives. According to our considerations, we therefore selected the thresholds d = 3 and
s = 0.8 as it returned the more libraries (12) without any false positive (0).

3.4.2 Precision of the Strategies

We consider two kinds of precision, called the library-level and the version-level pre-
cisions. The library-level precision focuses on library name, and ignores the versions. In
such a level, a true positive is when a strategy returns a library that is truly used by the web
application, whatever the version returned by the strategy and the one that is truly used
by the application. A false positive is when a strategy returns a library that is not used by
the web application. The version-level precision focuses on versions. In such a level, a true
positive is when a strategy returns the version of a library that is truly used by the web ap-
plication. A false positive is when a strategy returns a version that is not used by the web
application. When the strategy does not return the version (unknown version), we don’t
consider that as a result, so it is not a true nor a false positive.

To evaluate these two precisions, we drew at random 20 web applications from the top
90 applications of Alexa (we excluded the ones used in the threshold experiment). We then
ran our strategies on these applications and collected the results. One of the authors then
checked if the results were true or false positives. To perform this check, the author just
used all the development tools of Mozilla Firefox with the intent to check whether the re-
turn library is really used by the web application.

Table 3.5 shows the precision of our strategies. Regarding the library-level, both the
comment and the file matching strategies have a 100% precision. The sensor strategy has a

42 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

93.5% precision mainly because few web applications use objects that have the same name
than key objects. Regarding the version-level, the precision of all the strategies is very close
to 90%. All together, the precision of our approach is 94.4% for the library-level, and 92.6%
for the version-level, which is quite good.

3.4.3 Comparison of the Strategies

In this section, we perform a comparison of the results obtained using the different
strategies. For this purpose, we ran the comment, file matching and sensor strategies on
the 100 most popular applications of Alexa. In this experiment, we removed the version
information retrieved by the strategies, so if a strategy returns {(jQuer y,1.2)}, it is trans-
formed as {(jQuer y, ?)}. Using this transformed data, we construct the Venn diagram of
Figure 3.3 that shows the intersections of the results of the strategies. This diagram clearly
shows that each strategy is useful because it identifies libraries that are not detected by the
other strategies. The sensor strategy seems to outperform the comment strategy that in
turns seems to outperform the file matching strategy as they find respectively 78%, 40%
and 22% of all libraries. The set of uniquely detected libraries represent 53% of all libraries
for the sensor strategy, 13% for the comment strategy, and 8% for the file matching strategy.

Finally Figure 3.4 shows the comparison of ‘?’ and accurate version for each strategy.
It shows the number of accurate and unknown versions returned by a strategy. This figure
confirms that the comment and file matching strategies never return unknown version, as
expected. Only the sensor strategy returns unknown versions. This Figure also shows that
the sensor strategy return more versions than the other ones, which also explain the Venn
diagram of the Figure 3.3.

3.4.4 Efficiency

In this section, we assess the time performances of our strategies. First, SlimmerJS re-
quire 3 hours to browse all the web applications from top 100 applications of Alexa. Then,
we measure the total time taken by each strategy to analyze all these applications. This
time has been measured using a Intel Core i7-4770 CPU @3.40GHz×8, 16GB of RAM, and
Ubuntu 14.04.2 LTS x86 64. We did not measure the time taken to compute the ARJL strat-

Table 3.5 – Precision of the strategies.

Strategies

Precision Comment File Matching Sensor ARJL

Library-level 100% 100% 93.5% 94.4%
Version-level 88.9% 94.4% 90.9% 92.6%

3.5. OBSERVATIONS AND SUGGESTIONS 43

44

8

23

41

41

4

178

Comment File Matching

Sensor

Figure 3.3 – Venn diagram for 3 strategies

Strategy

N
um

be
r

of
 id

en
tif

ic
at

io
n

0
50

10
0

15
0

20
0

Comment File Matching Sensor

'?' version
Accuarte version

Figure 3.4 – Comparison of ‘?’ and accurate version for each strategies

egy because it only combines the results of the others in a few milliseconds. The fastest
strategy is the comment one (0.1 hours). The sensor strategy is the longest one, since it
takes two hours and a half to process all sources (2.5 hours). This is because runtime errors
that can be experienced when running JS code. Finally, the file matching strategy takes 1
hour. In conclusion, the top 100 websites can be processed in less than 7 hours.

3.5 Observations and Suggestions

This section presents our observations and provides some suggestions regarding the
use of JavaScript (JS) libraries in the context of web development. We first present some
statistics on how famous web applications are using libraries. Then, we present the sug-
gestions that can be provided looking at a recent snapshot of the library usage of the most
famous web applications. Finally, we present our observations on the library usage during

44 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

0 20 40 60 80 100

0
2

4
6

8
10

12

Number of Websites

N
um

be
r

of
 u

se
d

JS
 li

br
ar

ie
s

A(18,1)

B(34,2)

C(92,8)

Figure 3.5 – Statistics for Top 100 web applications on Oct. 20, 2015

a long period of time. Such observations yield interesting insights regarding the pace of
library evolution.

3.5.1 Statistics

Figure 3.5 presents the global usage of JS libraries by the Alexa top 100 web applications.
It shows that most of these web applications use several JS libraries: 82% of them use at
least 1 library, 66% use at least 2 libraries, and 8% use at least 8 libraries (see the points A,
B and C).

By looking into these web applications, we observed that top ranked web applications
use few libraries, even if their company develops and maintains several famous ones. For
example, the Google web application ranks first but does not use any library, even if the
Google company provides widely used libraries such as GoogleAnalytics or GoogleAPI. On
the contrary, web applications that have a lower ranking use more libraries. We have val-
idated this observation by using a Spearman correlation test. The results of this test is
ρ = 0.37 with a p-value of 0.0006. There is therefore a medium correlation between the
rank of a web application in the top 100 and the number of library it uses.

These statistics reinforce our hypothesis that the libraries used by the famous web
applications are the ones to use. Indeed as famous web applications use only a few li-
braries, we claim that they do use the libraries that provide a very strong added-value.
However, this phenomenon questions the number of popular web applications that have
to be considered to perform valuable observations that yield useful suggestions. We cur-
rently choose 100 web applications but we are not sure that this number is representative
enough. Therefore this number could be increased or decreased depending on the ob-
jective: analyzing only widely used web applications, or analyzing also less famous web
applications. We investigated how the results change when using 1000 applications, and
there was a very limited impact on the results.

3.5. OBSERVATIONS AND SUGGESTIONS 45

Table 3.6 – JS library usage frequency for Alexa global top 100 web applications on Oct. 20,
2015

Snapshot-2015-10-20 Library name Frequency

1 jQuery 63
2 GoogleAnalytics 25
3 Modernizr 19
4 jQueryCookie 18
5 Underscore 12
6 jQueryUI 12
7 Facebook SDK 11
8 RequireJS 9
9 SWFObject 8
10 Twitter 7
...

Backbone 7
Bootstrap 3
AngularJS 0
Polymer 0

3.5.2 Analysis of the October 2015 Snapshot

Table 3.6 lists the JS library usage frequency for Alexa global top 100 web applications
on Oct. 20, 2015. We can observe that jQuery is widely used by web applications and ranks
first (63 web applications use it). In the opposite MVC (Model View Controler) libraries
such as AngularsJS, Backbone and Polymer, are rarely used by famous web applications.
These results contradicts the trends provided by JS.ORG 8, which gives statistics about pop-
ular JS projects on GitHub. Table 3.7, which presents the statistics of JS.ORG, states that
AngularsJS ranks first which is very different from the results of our study.

We claim that our results confirm our hypothesis, and that they can be used to give
some suggestions. In particular, we claim that libraries such as jQuery are essentials. On
the contrary, libraries such as AngularJS, Backbone and Polymer should be avoided as they
are possibly not yet mature enough to be included in web applications.

Our observations that focus on versions can be used to give precise suggestions on a
particular library. As an example, Figure 3.6 shows the version distribution of the jQuery
library among the top 100 web applications on Oct. 20, 2015. According to this figure,
jQuery-1.7.2 and jQuery-1.10.2 are the most popular versions. Moreover, most of the fa-
mous web applications prefer to use the version 1.x.x of jQuery than the version 2.x.x.
Figure 3.7 presents our observations for the versions of the Modernizr library. This figure
shows that the version 2.8.3 is the preferred one, and therefore may be used preferentially.

8. http://stats.js.org/

http://stats.js.org/

46 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

Table 3.7 – JS.ORG rank on Oct. 20, 2015

JS.ORG rank Library name

1 AngularJS
2 D3
3 jQuery
4 RevealJS
5 React
6 ImpressJS
7 ThreeJS
8 Backbone
9 jQueryFileUpload
10 SocketIO
...

1.
2.

6

1.
4.

2

1.
4.

3

1.
5.

1

1.
6.

2

1.
6.

4

1.
7.

0

1.
7.

1

1.
7.

2

1.
8.

2

1.
8.

3

1.
9.

1

1.
10

.2

1.
11

.0

1.
11

.1

1.
11

.2

1.
11

.3

1.
11

.3 2.
0

2.
1.

1

2.
1.

3

2.
1.

4

jQuery Versions

N
um

be
r

of
 W

eb
si

te
s

0

2

4

6

8

10

12

Figure 3.6 – jQuery Version Distribution on Oct. 20, 2015

3.5.3 Analysis of a Three Years Period

We used Wayback Machine 9, the internet archive website, to get older versions of the
Alexa top 100 web applications. Thanks to Wayback Machine, we are therefore able to ob-
serve which libraries were used through the history of these web applications. We focused
on a three years period (from Oct. 20, 2012 to Oct. 20, 2015) to observe library usage evolu-
tion. Figure 3.8 shows such observations for the top 10 used JS libraries as computed from
the October 2015 snapshot. It shows that jQuery is the first used library for three years,
and exceeds to a large extent the other libraries. The GoogleAnalytics library has a steep
increasing slope during 20 Oct’12 and 20 Oct’13, but tends to decline since 20 Apr’15. Fur-
ther, in the beginning Modernizr is not widely used by web applications, but accumulates
popularity and exceeds jQueryCookie to rank third around October 2014.

As a main conclusion, Figure 3.8 shows that the usage of JS libraries evolves, but not

9. https://archive.org/web/

https://archive.org/web/

3.6. CONCLUSION 47

1.
6.

0

2.
5.

3

2.
6.

2

2.
7.

1

2.
8.

2

2.
8.

3

3.
0

Modernizr Versions

N
um

be
r

of
 W

eb
si

te
s

0

2

4

6

8

10

Figure 3.7 – Modernizr Version Distribution on Oct. 20, 2015

0
20

40
60

Period

F
re

qu
en

cy

20 Oct'12 20 Apr'13 20 Oct'13 20 Apr'14 20 Oct'14 20 Apr'15 20 Oct'15

●

●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

jQuery
GoogleAnalytics
jQueryCookie
Modernizr
Facebook
jQueryUI
SWFObject
RequireJS
Underscore
Twitter

Figure 3.8 – Evolution of top 10 JS libraries for three years

that fast. During a three years period, which is quite long for web applications, there are
few evolutions.

3.6 Conclusion

In this chapter we propose an approach to automatically identify JavaScript (JS) li-
braries used web applications. Our approach combines three different strategies that re-
spectively aim to (1) look for any name of a library in the comment part of the JS files linked
to the application, (2) compare these same linked JS files with reference files of libraries,
and (3) execute a sensor JS plug-in to dynamically identify library usage.

Our approach has the advantage to be highly precise (more than 92%) once the sought
libraries are included the knowledge base of our approach. We used our approach on the
100 most popular websites referenced by Alexa. We intend to identify the popular JS li-

48 CHAPTER 3. WHAT ARE THE BEST JAVASCRIPT LIBRARIES TO USE?

braries, and to give some suggestions to the developers that have trouble to choose a li-
brary to include within their own web application.

Based on our observations, we can state that there are some essential libraries (such as
jQuery, Modernizr or Underscore), and other ones that are rarely used (such as AngularJS
and Polymer). This contrasts with the rankings that are provided by websites which state
that AngularJS is very popular. We argue that our approach is focused on popular and
commercial web applications, and therefore is resilient to technological buzz.

As a last result, the observations we made on three years show that the library usage
evolves but not that fast. Most, if not all, the libraries that were used three years ago, are
still used nowadays. As a future work, we think about partitioning web applications into
several business domains to check whether some libraries are more used depending on
these domains.

CHAPTER

4
How to get the standard

specifications of REST services?

The REST architectural style is nowadays very popular and widely adopted by ser-
vices providers. To use REST services, developers can be helped by two components:
a structured REST specification and an HTML documentation. The best practice is
to have a REST specification, since it can speed up the development process by gen-
erating client-side or server-side stubs, creating service compositions, etc. However,
there are few available REST specifications while most of the REST services providers
only provide HTML documentations. To face this issue, we describe in this chapter a
semi-automated approach ExtrateREST, that automates the creation of REST service
specifications from existing HTML documentations. Our approach inputs the index
page of the HTML documentation of a REST service provider, performs an analysis
of all its HTML pages, and extracts the four main parts that compose a REST specifi-
cation: the base URL, the path templates, the HTTP verbs, and the associated formal
parameters. ExtrateREST has been extensively validated to evaluate the quality of
the specification it generates. It outperforms our previous approach AutoREST by
being more effective and reliable.

Contents
4.1 Introduction . 50

4.2 Background . 51

4.3 ExtrateREST: an automated extractor for the generation of REST API
specification . 52

4.4 Evaluation . 58

4.5 Conclusion . 63

49

50 CHAPTER 4. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES?

4.1 Introduction

The REST architecture style defined 15 years ago by R.T. Fielding [Fielding and Tay-
lor, 2002], is nowadays very popular and widely adopted. Many studies done either by
researchers [Danielsen and Jeffrey, 2013] or by commercial sites 1 conclude that more than
75% of web services are now REST-oriented.

Curiously, as identified by Danielsen [Danielsen and Jeffrey, 2013], most of the REST
APIs providers only provide a documentation of their REST API in plain HTML pages, and
don’t provide any structured and machine-readable specification. More precisely, accord-
ing to an in-depth analysis of the 20 most popular REST services, only 20% of them provide
WSDL [Chinnici et al., 2007] specifications whereas 75% provide no structured specifica-
tion and only plain HTML pages [Renzel et al., 2012]. Section 2.2 gives a brief background
about the REST API specifications documentations with a running example.

Building and using REST services is however challenging and, according to Renzal et al.,
the best practice is to have a structured specification of the REST API [Renzel et al., 2012].
Having a REST specification speeds-up the development process by enabling developers
to generate client-side or server-side stubs [Fokaefs and Stroulia, 2015], or even service
compositions [Wagner et al., 2012]. Additionally, a structured specification can be used to
reach a better quality by inferring parameters dependency constraints [Wu et al., 2013] or
performing automated tests production [López et al., 2013].

To face this situation, and mainly to help the developers of web clients that want to
have REST API specifications for using existing REST APIs, we describe in this chapter an
approach that automates the creation of REST API specifications from existing HTML doc-
umentations. Our approach inputs the index page of the HTML documentation of a REST
API provider, performs an analysis of all its HTML pages, and generates the corresponding
OpenAPI 2 specification (many specification formats exist and OpenAPI turns out to be the
most popular one, with over 350,000 downloads per month). For instance, our approach
has been used to generate the OpenAPI specification of Instagram (see Figure 2.3) by in-
putting its HTML documentation (see Figure 2.1). Section 4.3 shows the architecture of our
approach.

Our work is related to the topic of web content mining [Cooley et al., 1997; Liu, 2007]
but with two main specific challenges: (1) the dispersal of the information contained in
the HTML pages of a REST API documentation, and (2) the heterogeneity of HTML layouts
and vocabulary of the HTML documentations among the different service providers.

The challenge of the dispersal of information is due to the fact that the useful informa-
tion contained in HTML documentations (the one that should be used to create the REST
API specification) is commonly spread across several web pages. Furthermore, HTML doc-
umentations not only contains web pages with useful information but also web pages with

1. https://www.programmableweb.com/api-research
2. https://www.openapis.org/

https://www.programmableweb.com/api-research
https://www.openapis.org/

4.2. BACKGROUND 51

useless information. As a consequence, there is a need to classify the web pages as use-
ful or useless before to extract the information they contain [Qi and Davison, 2009; Onan,
2016].

The challenge of heterogeneity is because each of the service providers has its HTML
layouts and vocabulary for its HTML documentation. For instance, some providers use
HTML TABLE whereas others use OL or even DIV tags. As there are no common HTML lay-
outs that are shared across all providers, machine learning approaches that aim to identify
the underlying HTML layouts to extract the information are inefficient. Existing machine
learning approaches, supervised [Jiménez and Corchuelo, 2016; Hogue and Karger, 2005;
Sleiman and Corchuelo, 2014] and unsupervised [Velloso and Dorneles, 2017; Shi et al.,
2015; Zeleny et al., 2017], give good results only when the information is contained in web
pages sharing a common style, which is not true for REST API documentations.

Our approach, named ExtrateREST, addresses these two challenges and is a major ex-
tension of our previous work AutoREST [Cao et al., 2017a]. It outperforms AutoREST by
being more effective and reliable (higher precision/recall). In contract to AutoREST that is
fully automated and therefore performs badly on some HTML documentation depending
on their HTML layouts and vocabulary, our new approach now requires a small configura-
tion to better retrieve the information contained in HTML documentations of web service
providers. This approach reaches a good trade-off between human efforts and efficiency.

Furthermore, ExtrateREST has been extensively validated to evaluate the quality of the
Open API specification it generates. Our results show that it achieves a high precision/re-
call for both popular and randomly selected REST services than AutoREST. Section 4.4
presents the performance evaluation and discussion.

4.2 Background

This section highlights the two challenges of the extraction of a REST API specification
from an HTML documentation (dispersal, heterogeneity) using a real example: the Insta-
gram API.

4.2.1 Main challenges

The example of Instagram outlines the two challenges that should be addressed for
extracting a REST API specification from an HTML documentation.

— Dispersal: as shown in the example, not all web pages of the HTML documentation
contain useful information. For example, Figure 2.2b presents a web page to the
Instagram HTML documentation that is useless. As a consequence, before to retrieve
the information, useless pages should be discarded.

— Heterogeneity: Figure 4.1 shows the Instagram endpoint HTML layouts and vocab-
ulary which have to be understood in order to extract the information required to

52 CHAPTER 4. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES?

create the REST API specification. In Figure 4.1, Instagram documentation shows
verb GET and URL /media/media-id together but wraps them in separated
and <code> tags. Unfortunately, the HTML layouts and vocabulary are completely
different from one HTML documentation to another. For instance, Twitter wraps
verb GET and URL favorites/list in the same <h1> tag. As a consequence, the HTML
layouts and the vocabulary should be identified prior to extract the information effi-
ciently.

<section class="card endpoint" >
<header >

<h2>
GET
<code >/media/</code >
media -id

</h2>
</header >
<div class="card -info">

.....
<code >https ://api.instagram.com/v1/media/{media -id}? access_token=ACCESS -

TOKEN
</code >

</div >
......

</section >

Figure 4.1 – Code snippets of Instagram Media Endpoint in HTML documentation

4.3 ExtrateREST: an automated extractor for the
generation of REST API specification

In this section, we first present the overview of our approach, named ExtrateREST, and
then describe its two main steps.

4.3.1 Global architecture

Figure 4.2 presents the workflow of ExtrateREST. It inputs the index page URL of a given
REST API HTML documentation and generates its corresponding OpenAPI specification.
It is composed of two steps that respectively address the dispersal and heterogeneity chal-
lenges :

1. In order to deal with the dispersal of information, the first step aims at collecting the
relevant pages of the REST API documentation that contain useful information. This
step is done by using web crawling and machine learning algorithms. It uses crawling
to gather all the pages that are directly or indirectly linked by the index page and that

4.3. EXTRATEREST: AN AUTOMATED EXTRACTOR FOR THE GENERATION OF REST API
SPECIFICATION 53

Figure 4.2 – Global workflow of ExtrateREST

belong to the same domain. It then uses machines learning algorithms to select the
ones that do describe the REST API and therefore contain useful information. For
instance with Instagram, this steps crawls all the pages that belong to its domain,
and selects only the pages that describe a resource (see Figure 2.2a) and not the ones
that just describes the platform (see Figure 2.2b).

2. The second step addresses the challenge of heterogeneity. To that extent, it runs
some rules to extract the useful information, and to generate the OpenAPI specifi-
cation. We predefined these rules, and each of them satisfies specific HTML layouts
and vocabulary, and therefore uses dedicated mechanisms for extracting the useful
information. To make these rules covering a large variety of HTML layouts and vo-
cabulary, we manually observed 50 HTML documentations and defined a rule per
any specific configuration of layouts and vocabulary. Further, we learned from our
past experience that the identification of rules that apply to a given HTML docu-
mentation cannot be done by using machine learning mechanisms. We therefore
design a feature model that specifies which rules should be used for a REST HTML
documentation that is to be extracted. Thanks to this feature model few questions
are asked to the user for letting him/her expressing the extraction configuration of
his/her target REST HTML documentation.

The remainder of this section details each step.

4.3.2 Step 1: gather relevant HTML documentation pages

This step uses two components: a crawler and a classifier.
The crawler simply extracts all the web pages that are directly or indirectly linked by the

index page of the REST API HTML Documentation. It never goes outside of the domain of
the index page.

54 CHAPTER 4. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES?

The classifier selects web pages that do contain useful information for building a REST
API specification. It uses machine learning classification techniques [W.A and S.M, 2011;
Koprinska et al., 2007].

To build the classifier we constructed a data set that contains HTML pages that have
been manually classified as being relevant (Yes) or not (No) regarding the purpose of ex-
tracting a REST API specification. A page was said to be relevant if it contains at least one
information that can be used to generate a part of a REST API specification. To build the
data set, two of the authors independently looked at the web pages composing the set, and
manually marked them as being relevant or not. In case of divergence between the two
authors, a discussion took place and the page was marked as being useless if no consensus
was obtained.

It should be noted that this data set has been inspired by our previous approach (Au-
toREST) but with two major improvements. First, we eliminated HTML tags and just
considered text content, following the recommendations related to web pages content
preprocessing [Qi and Davison, 2009]. Second, we extended its size and heterogeneity.
Our previous data set contains web pages of the 15 most popular REST Services listed
in ProgrammableWeb where popularity is defined by the number of followers. We now
expand to the 30 most popular REST Services plus 10 randomly selected ones from Pro-
grammableWeb (see full list 3), with a total of 1600 web pages.

Once the data set was built, we then extracted the features it contains. To that extent,
each file of the data set has been treated as a plain text (one string) and transformed into
a numerical feature vector by tokenizing it, counting tokens occurrences and normalizing
tokens. For instance, the string “Get a list of users who have liked this media ...” is tokenized
by using white spaces as token separators. Then, each token is assigned an integer id, such
as {Get: 1, a: 2, list: 3}. Then the tokens are counted and normalized by using the TF-IDF
weighting to build the feature vector [Wu et al., 2008]. We choose Random Forest [Ho, 1995]
as our classification algorithm since it outperforms others in our previous work [Cao et al.,
2017a].

Finally, we computed and evaluated the classifier in two dimensions: internal and ex-
ternal. Regarding internal performance, we consider the performance inside the data set.
We split 75% of data set for the training set and 25% for the testing set, which is a default
setting proposed by Pederegosa et al. [Pedregosa et al., 2011], using 4-fold cross validation.
The result shows internal performance is really good with high precision (96%) and recall
(96%).

Regarding external performance, we treat the whole data set as training set and mea-
sure the performance for a testing set which contains 200 pages. Those pages are selected
from 10 randomly selected REST services not part of our data set. The result shows that we
also achieve a reasonable precision (83%) and recall (81%) for external services.

Our classifier thus can select web pages that do contain useful information with a high

3. https://github.com/caohanyang/ExtrateREST/blob/master/APIList

https://github.com/caohanyang/ExtrateREST/blob/master/APIList

4.3. EXTRATEREST: AN AUTOMATED EXTRACTOR FOR THE GENERATION OF REST API
SPECIFICATION 55

precision (96%) and recall (96%) for pages in our data set, and a reasonable performance
(83% precision and 81% recall) for random pages.

4.3.3 Step 2: extract information from relevant pages

This step is composed of two components: a set of pre-defined extraction rules that
apply to all configurations of HTML layouts and vocabulary, and a feature model with a
wizard-like questionnaire that allows users to easily identify the configurations that apply
to the REST API documentation they want to target.

For building the pre-defined extraction rules, we manually observed the REST HTML
documentations of 50 REST services with the intent to identify a maximum of HTML lay-
outs and vocabulary. Those 50 REST services are composed of the 30 most popular REST
services plus 20 randomly selected.

According to our observations, a REST HTML documentation has always an overview
section that gives overall information about the service (e.g., base URL, authentication, rate
limits). The overview section is either presented in a dedicated HTML page or in several
pages with other information, depending on the service providers. A REST HTML docu-
mentation then has several REST endpoints that describe the access to the resources. Each
REST endpoint is a block in one HTML page that includes a path and verb block, and op-
tionally a parameter block and a response block (see Figure 4.3). Service providers may
choose to present several REST endpoints in one page or each REST endpoint in a dedi-
cated page.

Once we identified all the HTML layouts and vocabulary used by our samples of
50 REST HTML documentations, we then designed the extraction rules that apply to
them. Technically, an extraction rule uses regular-expression, pre-processing and/or post-
processing algorithms. For example there is a rule that extracts the Parameter Type field if it
is encoded by an HTML Table element. Another rule extracts the same field if it is encoded
by an HTML List, etc. Some rules are more complex, such as the one that extracts the Base
Url field when it is encoded as a prefix URL in all URLs that exist in the endpoints. This rule
fetches all of URL encoded in the endpoints and extracts their largest common prefix. For
the sake of simplicity, we don’t present all our extraction rules in this chapter. Figure 4.3
highlights three rules that extract useful information for the Base URL, Path and Verb and
Parameters fields.

Having all extraction rules is mandatory for extracting useful information. However,
when a user wants to target a given HTML documentation, he/she first has to identify
the ones that really apply to its layouts and vocabulary. To that extent, we learned from
our past experience that machine learning algorithms are not efficient in this setting [Cao
et al., 2017a]. Existing machine learning approaches, supervised [Jiménez and Corchuelo,
2016; Hogue and Karger, 2005; Sleiman and Corchuelo, 2014] and unsupervised [Velloso
and Dorneles, 2017; Shi et al., 2015; Zeleny et al., 2017] are not appropriate for identifying
which rules optimally match a given HTML documentation.

56 CHAPTER 4. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES?

{
"swagger": "2.0",
"host": "api.instagram.com",
"schemes": ["https"],
"basePath": "/v1",
"paths": {

"/media/{media-id}": {
"GET": {

"parameters": [
{

"in": "query",
"name": "access_token",
"description": "A valid access token.",
"required": "required"

}],
"responses": {

"200": {
"description": "Media resource

information.",
"schema": {

"$ref": "#/definitions/Media"
}}}

}
}
...

}
}

Endpoint pageOverview page

OpenAPI specification

Base URL

Path and Verb

Parameters

Base URL snippet Endpoint template

Figure 4.3 – The information extractor to build specification.

4.3. EXTRATEREST: AN AUTOMATED EXTRACTOR FOR THE GENERATION OF REST API
SPECIFICATION 57

10/04/2018, 15*18

Page 1 of 1file:///Users/hanyangcao/Desktop/Untitled.svg

Verb-del-abbre

Less than 50 characters

Argument

Base Url

Path-para

Search-base

Common-path

Para-keyword

Extraction configuration

Path-tag

Common-request

Request-example

Path-without-verb

Field

Path-with-verb

More than 50 characters

....

HTTPS

Para-type

Path-stuffing

List

Path-verb-mode

Space

Table

Parameters

Path-keyword

HTTP

Path-postfix

...

Div

Schemes

Full-path-verb

Base-keyword

Particial-path-verb

Para-stuffing

Parameter

Path-keytag

Response-example

Legend:

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Figure 4.4 – Feature model for the extraction configuration (partial).

58 CHAPTER 4. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES?

To face this problem of rules identification, we organized all our rules in a feature model
(see Figure 4.4 for an extract). Each feature of this model expresses a configuration of rules.
The features are decomposed hierarchically, and marked as mandatory or optional if they
target mandatory or optional information. For instance, the Base Url is decomposed of
three sub-features that describe three possible configurations of rules to extract the Base
Url field. Further, the Base Url, Path-verb-mode and Parameter features are mandatory as
they identify the configuration of rules used to build the Base Url, Path Templates, Verbs
and Paramaters mandatory fields of the REST API Specification. In opposite, the Request-
example and Response-example are optional.

Figure 4.4 presents a small extract of our feature model. This extract exhibits the com-
plexity of all the configurations of rules, and reflects the diversity of all layouts and vocab-
ulary that are used by REST documentations. Our feature model contains more than 7000
choices for configurations.

Our feature model is so complex that brute force cannot be performed to identify which
set of configurations should be used to optimally extract the useful information of a given
HTML documentation. For large REST services that involve hundreds of endpoints, using
brute force and testing each of them is too expensive in time. For example, Facebook in-
cludes 306 endpoints and our approach require 2 minutes to extract a specification with
a given configuration. It would then require 9.72 days (14000 minutes) to try all possible
choices of configurations.

To ease the identification of configurations, we therefore designed a wizard-like ques-
tionnaire composed of twelve simple questions that supports users to identify the key
features that best match the HTML documentation they want to target. Our wizard-
questionnaire 4 comes with a web interface that guides developers step by step through
all the questions (see Figure 4.5a).

4.4 Evaluation

ExtrateREST has been developed in Python and Java, and is available on-line as an open
source project 5. This section presents its evaluation. It begins by presenting the quantita-
tive evaluation, and finishes with a discussion including observations explaining the limits
of our approach.

In our quantitative performance evaluation we measure the four mandatory parts of
a REST specification: Base URL, Path Templates, Verbs, and Parameters. The goal is to
reflect the quality of the generated REST specification regarding these parts. We measure
the quality of a generated REST specification according to the following criteria:

4. http://extraterest.ml/
5. https://github.com/caohanyang/ExtrateREST

http://extraterest.ml/
https://github.com/caohanyang/ExtrateREST

4.4. EVALUATION 59

(a) ExtrateREST global rule page screenshot

(b) ExtrateREST parameter page screenshot

Figure 4.5 – Two screenshots for ExtrateREST front-end

— The quality of the Base URL is measured by a boolean. True means that the speci-
fication exactly reflects what is written in the documentation. False means that the
Base URL does not reflect the documentation.

— The quality of the Path Templates is measured by counting the number of Paths tem-
plates in the specification and in the documentation, and by checking how much of
them match. The quality is then expressed with precision (No. Match/No. in Spec.)
and recall (No. Match/No. in Doc.).

— The quality of the Verbs is measured by counting the number of Verbs in the speci-
fication and in the documentation, and by checking how much of them match. Two
verbs match if they have the same Path Template and if they are the same. The quality

60 CHAPTER 4. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES?

Table 4.1 – Quantitative Comparison for topmost popular and random REST service

ExtrateREST Outperform AutoREST ratio
precision recall precision recall

Most popular service
Base URL 80.0% 80.0% 100% 100%
Path Templates 93.9% 93.2% 100% 90.9%
Verbs 96% 92.7% 100% 100%
Parameters 75.5% 71.0% 100% 100%

Randomly selected service
Base URL 86.7% 86.7% 100% 1000%
Path Templates 87.7% 82.9% 90% 70%
Verbs 84.5% 82.3% 90% 90%
Parameters 58.8% 51.6% 100% 100%

is then expressed with precision (No. Match/No. in Spec.) and recall (No. Match/No.
in Doc.).

— The quality of the Parameters is measured by counting the number of Parameters
in the specification and in the documentation, and by checking how much of them
match. Two parameters match if they have the same Path Template, the same verb,
the same name and the same type. The quality is then expressed with precision (No.
Match/No. in Spec.) and recall (No. Match/No. in Doc.).

We evaluate ExtrateREST on two corpora of REST services (see full corpora 6). The first
corpus is composed of the 15 most popular REST services. The second corpus is com-
posed of 15 REST services selected at random from ProgrammableWeb 7. Those randomly
selected services are different from 50 services that used to build the feature model.

The first author did use the questionnaire (see Section 4.3.3) to identify each of the
extraction rules that 30 REST services. It took in average five minutes to answer all the
questions. Once generated, all the quality criteria were measured manually by comparing
the generated specification with its corresponding documentation.

The evaluation done with the first corpus shows how ExtrateREST performs on popular
REST services knowing that it has been trained using some of them (see Section 4.3). The
evaluation done with the second corpus expresses the capacity of ExtrateREST to generate
OpenAPI specifications for random services

As a main result, except for parameters with random REST services, ExtrateREST per-
forms well (see Table 4.1). As shown in the results, ExtrateREST is quite good for generating

6. https://github.com/caohanyang/ExtrateREST/tree/master/ExtrateREST_app/ExtrateREST_
core/Corpus

7. https://www.programmableweb.com

https://github.com/caohanyang/ExtrateREST/tree/master/ExtrateREST_app/ExtrateREST_core/Corpus
https://github.com/caohanyang/ExtrateREST/tree/master/ExtrateREST_app/ExtrateREST_core/Corpus
https://www.programmableweb.com

4.4. EVALUATION 61

a Base URL. We observed that it fails when the overview page includes the Base URL, but
also many other useless information, which makes it filtered out by our classifier. For ex-
ample, it fails with Twilio whose overview page is not classified as an interesting page. It
also fails when REST HTML documentation is rendered dynamically thanks to JavaScript.
For instance, it fails with Wikipedia whose HTML DOM is generated by JavaScript functions
and thus is hard to crawl.

Figure 4.6 and 4.7 then present the precision and recall for the Path Templates, Verbs
and Parameters, respectively. It should be noted that when ExtrateREST fails in finding the
Base URL, it also fails for all of the other parts. For Path Templates and Verbs, ExtrateREST
achieves a good result for both most popular corpus (average precision and recall are more
than 90%) and for randomly selected corpus (average precision and recall are more than
85%). Furthermore, when compares the two corpora, it is clear that ExtrateREST performs
better for popular REST services, as it has been trained on it. After the manual investiga-
tion, we found ExtrateREST fails mainly for two reasons. First, it uses a regular expression
to detect URLs but as there are many URLs in web pages it sometimes fails to distinguish
the ones that correspond to REST services. Second, service providers do not always use the
same templates to present all endpoints, even if it is the case for all the REST documenta-
tion of our training corpus. Hence our ExtrateREST can the extract the main templates
but not all. That’s one of the reasons why ExtrateREST performs worse in random REST
services since their documentations are less consistent. Finally, ExtrateREST is good to
extract the Parameters for popular REST services but not for the ones that have been ran-
domly selected. The main reason is that the documentation provided by the latter is not
structured with tables or lists, as it is expected by our information extractor.

We further made a comparison with our previous approach AutoREST. To that extend,
we performed the same evaluation on the same corpora but by using AutoREST instead
of ExtrateREST. The right part of Table 4.1 presents this comparison. For finding the Base
URL, ExtrateREST obtains better results both on the most popular REST services (12/15 in
contrast to 11/15 for AutoREST), and on randomly selected REST services (13/15 in con-
trast to 10/15 for AutoREST). In order to make a fair comparison, we only calculated pre-
cisions and recalls for the 11 most popular and 10 randomly selected REST services whose
Base URL is true for both approaches. For the Path templates of most popular services,
ExtrateREST achieves an average 93.9% precision and 93.2% recall. Furthermore, ExtrateR-
EST performs equal or better than AutoREST 11 times in the precision and 10 times in the
recall. The improvement is mainly due to the specific extraction configuration for each
REST service, in order to solve the challenge of heterogeneity, by adding human efforts. As
a conclusion, ExtrateREST has largely improved the performance of Path Templates, Verbs,
and Parameters, especially for randomly selected services.

62 CHAPTER 4. HOW TO GET THE STANDARD SPECIFICATIONS OF REST SERVICES?

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●
●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Path templates

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Verbs

●●

●

●

●●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Parameters

Figure 4.6 – Results on the most popular REST Services

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Path templates

●● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Verbs

● ●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Parameters

Figure 4.7 – Results on randomly selected REST Services

4.5. CONCLUSION 63

4.5 Conclusion

REST API specifications provide many useful facilities to developers. However, many
REST services are still only documented by plain HTML pages, and don’t provide such
specifications. In this chapter we then present ExtrateREST, an approach for automatically
transforming an HTML documentation into an OpenAPI specification.

ExtrateREST inputs a single index URL, gets all the documentation pages that are linked
by it, selects the useful ones thanks to a machine-learning algorithm, extracts the endpoint
information according to a manually-built extraction configuration, and then produces the
corresponding OpenAPI specification. It is fully available as an open-source project.

ExtrateREST solves two main challenges. The first one is the dispersal of the informa-
tion contained in the HTML pages of a REST API documentation. It settles this challenge
by classifying the HTML pages and selecting interesting ones. The second challenge is the
heterogeneity of HTML layouts and vocabulary of the HTML documentations among the
different service providers. It then resolves this challenge by using an extraction configu-
ration provided by developers.

The validation we performed shows that ExtrateREST produces good results for popu-
lar REST services as well as randomly selected ones. ExtrateREST returns a partial but quite
complete specification for four-fifths of the popular REST services. For randomly selected
REST services it is less successful mainly because the provided HTML documentation is
not structured as one of the most popular REST services.

As future work, we are exploring how to use real API calls to enhance the specification
produced by ExtrateREST.

CHAPTER

5
How to adapt to the data changes of

REST services?

REST APIs together with JSON are commonly used by modern web applications to
export their services. However, these services are usually reachable in a pull mode
which is not suitable for accessing changing data. Turning a service from a pull to
a push mode is therefore frequently asked by web developers that want to get noti-
fied of changes. Converting a pull API into a push one obviously requires to make
periodical calls to the API but also to create a patch between each successive version
of the data. The latter is the most difficult part and this is where existing solutions
have some imperfections. To face this issue, we present a new patch algorithm sup-
porting move and copy change operations. Our evaluation done with real industrial
data shows that our algorithm creates small patches compared with other libraries,
and creates them faster.

Contents
5.1 Introduction . 66

5.2 JDR: a JSON patch algorithm . 66

5.3 Efficiency evaluation . 75

5.4 Conclusion . 79

65

66 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

5.1 Introduction

Most of the web applications 1 provide an access to their services thanks to a REST
API [Fielding and Taylor, 2002]. Their services are then directly reachable by HTTP re-
quests, where the exchange of data is commonly done in JSON, the JavaScript Object No-
tation [Crockford, 2006].

Converting a pull mode API into a push mode one obviously requires to make period-
ical calls to the API but also to create a patch between each successive received versions
of the data. The latter is the most difficult part and this is where existing solutions have
some imperfections. Indeed, creating a patch between two documents is a well-known
very complex problem [Zhang and Shasha, 1989; Buttler, 2004], which has not been stud-
ied yet for JSON documents. A JSON document is a labeled unordered tree that contains
arrays (ordered sequences). Creating a patch between two JSON documents may therefore
lead to an NP-hard problem depending both on the change operations that are considered
(add, remove, move, copy), and on the quality of the created patch (in terms of size).

In this chapter we propose a new patch algorithm that is tailored to JSON documents,
and that drastically improves the conversion of pull mode APIs into push mode ones. Our
algorithm returns a JSON Patch as specified by the JSON Patch RFC [Bryan and Notting-
ham, 2013]. It therefore handles any changes that can be done on JSON documents, either
on their basic properties or their arrays, and supports simple changes (add, remove) as
well as complex ones (move, copy), which allows clients to deeply understand changes
that have been done.

We implemented our algorithm in JavaScript as it is the most common language used
in web applications. We validate it by making a comparison with other JavaScript libraries
that support the JSON patch RFC. This validation has been done by using real data pro-
vided by our partner StreamData.io.

As the main result, we provide:

— A new JSON patch algorithm that fully complies with the JSON Patch RFC.

— A JavaScript implementation of our algorithm that performs better than the existing
ones.

The structure of the chapter is as follows. The Section 5.2 presents our algorithm
(named JDR). The Section 5.3 then presents the evaluation of our JavaScript framework
implementing our algorithm. The Section 5.4 finally presents our conclusion.

5.2 JDR: a JSON patch algorithm

By running several APIs we observed that changes performed to JSON documents com-
monly target a complete sub-tree, but never target several internal nodes. More precisely,

1. https://www.publicapis.com/

https://www.publicapis.com/

5.2. JDR: A JSON PATCH ALGORITHM 67

root

isOk mes1

who expinner

rm

val

res

elts

res

sum sum

in

mes2

va

rank

Common sub-treeold version new version

replace

copy

move

move

remove add

Figure 5.1 – The two versions of our example as a tree with object and label node presented
with circles and array nodes with square. The central part represents the common sub-
tree. The left part presents nodes direct children of the common tree and that belong to
the ol d version. The right part presents nodes direct children of the common tree and that
belong to the new version.

a change either adds, removes, replaces, moves or copies a complete sub-trees but never
changes the topology of a sub-tree by inserting, removing, or moving some nodes inside
the sub-tree. The same is true for arrays, changes made to arrays always target one array
but they never target two or more different arrays. These observations have then driven
the design of our algorithm that aims to identify large sub-trees or arrays, which are targets
of changes.

Based on this consideration, our algorithm inputs two versions of a JSON document
(the ol d and the new versions) and proceeds the three following steps:

Step 1: build common sub-tree. First it builds a large common sub-tree that is shared
between the ol d and the new versions. This sub-tree contains the root node of both the
ol d and new versions, and all the object and literal nodes that both exist in the ol d and
new versions, in the same locations, with the same labels (values can be different). The

68 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

array nodes are considered in the following steps. The center part of the Figure 5.1 presents
the common sub-tree for our example. Once the common sub-tree has been created, for
each of its label leaf node, if the value is not the same in the ol d and new version, a r epl ace
operation with the value of the new version is put into the patch. With our example, the
i sOk node corresponds to such a case.

Algorithm 1 shows the pseudo code of this step. We assume that nodes have a kind
attribute which has a value in the {literal, object, array} set. We also assume that nodes
have an hash attribute that corresponds to the hash of the subtree rooted at this object
for object nodes, the hash of the value for literal nodes, and the hash of the sequence for
array nodes. They also have a props attribute containing the set of properties owned by
the object. Object nodes and array nodes have a path attribute that contains their JSON
path. JSON Literal have type attribute which has a value in the {boolean, number, string}
set, and a value attribute that contains the literal’s value. In this step, we use a di f f ()
function to build the tree presented in Figure 5.1. It generates the hashmap commons for
the large common sub-tree, hashmap del et i ons for the left part sub-tree and hashmap
addi t i ons for the right part sub-tree. In Line 6, the deepE qual () function recursively
compares two JSON nodes and return true only when they are completely equal. In Line
28, the compar e Ar r ay() function compares two JSON arrays and will be discussed in Step
3.

Step 2: compare two sub-trees. Second, for each object or literal node of the ol d version
that does not belong to the common sub-tree but whose direct parent belongs to it, put
a remove operation in the patch and mark the node as a removed one, unless there is a
marked added node with the same value. In that case, put a move operation in the patch
and mark the node as a moved one. The left part of the Figure 5.1 presents these nodes. The
r m node is a removed node. The val and sum nodes are moved nodes. Symmetrically, for
each node of the new version that does not belong to the common sub-tree but whose
direct parent belongs to it, put an add operation in the patch and mark the node as an
added one, unless there is a marked removed node or a node in the common sub-tree with
the same value. In case of a removed node, put a move operation in the patch and mark
the node as a moved one. In case of a node in the common sub-tree, put a copy operation
in the patch and mark the node as a copied node. The right part of the Figure 5.1 presents
these nodes for our example. The r ank and i n nodes are added nodes. The val and sum
nodes are moved nodes. The mes2 node is a copied node.

Algorithm 2 shows the pseudo code of this step. With input hashmaps (i.e.,
commons, addi t i ons, del et i ons), it loops nodes in del et i ons and compares with
ones in addi t i ons, with purpose of creating related patch actions. In Line 21, the
f i ndCommonNodeB y H ash() function will search the current node in common sub-
tree, if found node with same hash value, it can generate the copy action.

5.2. JDR: A JSON PATCH ALGORITHM 69

Algorithm 1 The diff algorithm

1: commons = hashmap()
2: addi t i ons = hashmap()
3: del et i ons = hashmap()
4: acti ons = l i st ()
5: function DIFF(old, new, actions)
6: if deepE qual (ol d ,new) then // compare two JSON nodes recursively
7: commons.add [ol d .hash].add(ol d)
8: return
9: end if

10: if ol d .ki nd 6= new.ki nd then
11: del et i ons[ol d .hash].add(ol d)
12: addi t i ons[new.hash].add(new)
13: else if ol d .ki nd == l i ter al then // literal node
14: if ol d .value 6= new.value then
15: acti ons.add(r epl ace(ol d .path,new.value))
16: end if
17: else if ol d .ki nd == ob j ect then // object node
18: for all pr op ∈ ol d .pr ops ∩new.pr ops do
19: compar e(ol d [pr op],new[pr op], acti ons)
20: end for
21: for all pr op ∈ ol d .pr ops \ new.pr ops do
22: del et i ons[ol d [pr op].hash].add(ol d [pr op])
23: end for
24: for all pr op ∈ new.pr ops \ ol d .pr ops do
25: addi t i ons[new[pr op].hash].add(new[pr op])
26: end for
27: else if ol d .ki nd == ar r ay then // array node
28: compar e Ar r ay(ol d ,new, acti ons) // compare two JSON arrays
29: end if
30: end function

70 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

Algorithm 2 The compare algorithm

1: commons = hashmap()
2: addi t i ons = hashmap()
3: del et i ons = hashmap()
4: acti ons = l i st ()
5: function COMPARE(old, new, actions)
6: // iterate keys in the deletions hashmap
7: for all ke y ∈ del et i ons.ke y s do
8: del Nodes = del et i ons[ke y]
9: // compare keys in the additions hashmap

10: for all add Node ∈ addi t i ons[ke y] do
11: if del Nodes.si ze() > 0 then
12: del Node = del Nodes.pop()
13: // move or delete operation
14: if del Node.hash == add Node.hash then
15: acti ons.add(move(del Node.path, add Node.path))
16: else
17: acti ons.add(del et i on(del Node.path))
18: end if
19: else
20: // search current node in common sub-tree
21: node = f i ndCommonNodeB y H ash(commons, add Node)
22: // copy or add operation
23: if node 6= NU LL then
24: acti ons.add(copy(node.path, add Node.path))
25: else
26: acti ons.add(addi t i on(add Node.path, add Node. j son))
27: end if
28: end if
29: end for
30: end for
31: end function

5.2. JDR: A JSON PATCH ALGORITHM 71

Step 3: compare JSON array. Third, for each array node in the ol d version whose direct
parent belongs to the common sub-tree, check if there is an array node in the new version,
child of the same parent and with the same label. If so compare the two arrays (see the
following array algorithm). If not, put a remove operation in the patch. For each array
node in the new version whose direct parent belongs to the common sub-tree, put an
add operation in the patch. The Figure 5.1 presents these nodes. The r es nodes are then
compared. The el t s node is removed.

As just described, our algorithm only creates a patch for two versions of a same array if
and only if the array is in the exact same location in the two versions of the JSON document.
Further as the change operations defined by the RFC can only target cells one by one (it is
not possible to remove or move several cells with one operation), there is then no need to
compute a LCS (Longest Common Subsequence [Hirschberg, 1977]). Comparing pairs of
cells is therefore sufficient for creating a patch.

The creation of the patch is then done by comparing the cells of the array with the intent
to identify the common ones, the ones that have been removed and the ones that have
been added. More precisely, our algorithm first sorts the cells of the two versions of the
array by computing a similarity hash 2 of their value. Secondly, thanks to the similarity hash
order, it iterates through the cells in the two versions of the array and creates a temporary
array patch by applying the following rules. If an ol d cell has a corresponding new cell
(with the same value), a move operation is put into a temporary patch. If an ol d cell has
no corresponding new cell, a remove operation is put into the patch. If a new cell has no
corresponding ol d cell, an add operation is put into the patch. The following pseudo code
shows the part 3.

Step 4: transform patch array. Fourth, it transforms the temporary array patch into a
final patch by taking care of the indexes of the changed cells because the execution of a
change operation may have an impact on the indexes of the following ones. This trans-
forming index method is inspired by the classical Operational Transformation (OT) tech-
nology, which aims to solve concurrency control of collaborative editing in distributed sys-
tems [Ellis and Gibbs, 1989; Lamport, 1978]. To that extent, it sorts the operations of the
temporary patch according to the indexes of the changed cells and to the type of change
(move < r emove < add), iterates through them and recompute the indexes. If a move op-
eration moves a cell to the same operation (the target index is equal to the source index), it
is removed from the patch. Furthermore, we would optimize the patch by adding r epl ace
and copy operations during the iteration. A add operation can be converted to r epl ace
when the previous operation is del ete with the same target index. A add operation can be
transformed into copy when cells with same value can be founded in the common part of
the two arrays. This step is complex and we shows the pseudo code in Algorithm 4 and 5 .

2. https://github.com/darkskyapp/string-hash

https://github.com/darkskyapp/string-hash

72 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

Algorithm 3 The compareArray algorithm

1: function COMPAREARRAY(old, new, actions)
2: ol dPos = hashmap()
3: newPos = hashmap()
4: tmpPatch = l i st ()
5: // build new arrays with hash order
6: for i = 0 → i < ol d .si ze do
7: ol dPos[ol d [i].hash].add(i)
8: end for
9: for i = 0 → i < new.si ze do

10: newPos[new[i].hash].add(i)
11: end for
12: // iterate cells owned by both arrays
13: for all ke y ∈ ol dPos.ke y s ∩newPos.ke y s do
14: for i = 0 → i < max(ol dPos[ke y],newPos[ke y]) do
15: if i ≥ ol dPos[ke y].si ze then
16: tmpPatch.add(ar r ay Addi t i on(newPos[ke y][i],new[newPos[ke y][i]]))
17: else if i ≥ newPos[ke y].si ze then
18: tmpPatch.add(ar r ayDel et i on(ol dPos[ke y][i]))
19: else
20: tmpPatch.add(ar r ay Move(ol dPos[ke y][i],newPos[ke y][i]))
21: end if
22: end for
23: end for
24: // cells owned solely by old array should be delete
25: for all ke y ∈ ol dPos.ke y s \ newPos.ke y s do
26: for all i ∈ ol dPos[ke y] do
27: tmpPatch.add(ar r ayDel et i on(i))
28: end for
29: end for
30: // cells owned solely by new array should be add
31: for all ke y ∈ newPos.ke y s \ ol dPos.ke y s do
32: for all i ∈ newPos[ke y] do
33: tmpPatch.add(ar r ay Addi t i on(i ,new[i])
34: end for
35: end for
36: end function

5.2. JDR: A JSON PATCH ALGORITHM 73

Algorithm 4 The transformPatch algorithm

1: tmpPatch = l i st ()
2: acti ons = l i st ()
3: ar rCommon = l i st ()
4: function TRANSFORMPATCH(tmpPatch, actions)
5: // sort the temporary patch according to the indexes and operation type
6: sor t (tmpPatch)
7: for i = 0 → i ≤ tmpPatch.si ze do
8: acti on = tmpPatch[i]
9: if acti on.t y pe == move then

10: acti on. f r om = chang eIndex(acti on, i , tmpPatch)
11: if acti on. f r om == acti on.to then
12: // remove the action
13: ar rCommon.add(acti on)
14: tmpPatch.del ete(acti on)
15: conti nue
16: else
17: // update the move action with new index
18: tmpPatch.upd ate(acti on) // the move operation
19: end if
20: else if acti on.t y pe == del et i on then
21: acti on.at = chang eIndex(acti on, i , tmpPatch)
22: tmpPatch.upd ate(acti on) // the delete operation
23: elseacti on.t y pe == addi t i on
24: acti on.at = chang eIndex(acti on, i , tmpPatch)
25: if tmpPatch[i −1].t y pe == del et i on & acti on.at == tmpPatch[i −1].at

then // the replace operation
26: tmpPatch.del ete(tmpPatch[i −1])
27: acti on.t y pe = r epl ace
28: tmpPatch.upd ate(acti on)
29: else if copy Index = f i ndCopy Index(acti on, i , tmpPatch, ar rCommon) 6=

−1 then // the copy operation
30: acti on.t y pe = copy
31: acti on. f r om = copy Index
32: tmpPatch.upd ate(acti on)
33: else // the add operation
34: tmpPatch.upd ate(acti on)
35: end if
36: end if
37: end for
38: acti ons.add(tmpPatch)
39: end function

74 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

Algorithm 5 The changeIndex algorithm

1: function CHANGEINDEX(action, m, tmpPatch)
2: var i ndex
3: if acti on.t y pe ∈ {add ,r epl ace,copy} then
4: // the indexes of those actions don’t change
5: return acti on.at
6: else if acti on.t y pe == del et i on then
7: i ndex = acti on.at
8: else if acti on.t y pe == move then
9: i ndex = acti on. f r om

10: end if
11: // calculate the impact of previous actions on the index
12: for i = 0 → m ≤ tmpPatch.si ze do
13: pr e Acti on = tmpPatch[i]
14: switch pr e Acti on.t y pe do
15: case r emove
16: if i ndex > pr e Acti on.at then
17: i ndex −− // reduce index since the previous deletion
18: end if
19: case add ,copy
20: if i ndex >= pr e Acti on.at then
21: i ndex ++ // increase index since the previous addition
22: end if
23: case r epl ace // no impact from the previous replacement

24: case move
25: mi n = M ath.mi n(pr e Acti on. f r om, pr e Acti on.to)
26: max = M ath.max(pr e Acti on. f r om, pr e Acti on.to)
27: // only have impact when index in the move (from, to) section
28: if i ndex ∈ (mi n,max) then
29: if pr e Acti on. f r om > pr e Acti on.to then
30: // increase index when previous action move to the front part
31: i ndex ++
32: else
33: // reduce index when previous action move to the back part
34: i ndex −−
35: end if
36: end if
37: end for
38: return i ndex
39: end function

5.3. EFFICIENCY EVALUATION 75

[
{ "op": "add", "path": "/rank", "value": 6 },
{ "op": "remove", "path": "/rm"},
{ "op": "replace", "path": "/isOk", "value ": false},
{ "op": "move", "path": "/va", "from": "/val"},
{ "op": "copy", "path": "/mes2", "from": "/mes1"}
{ "op": "add", "path": "/res/0", "value ": "v5"},
{ "op": "replace", "path": "/res/2", "value": "m2"},
{ "op": "remove", "path": "/res/4"},
{ "op": "copy", "path": "/res/3", "from": "/ result /1"},
{ "op": "move", "path": "/res/5", "from": "/ result /4"},
{ "op": "remove", "path": "/inner/in/elts"},
{ "op": "add", "path": "/ inner/in", "value": {"elts ":["a", "b", "c

"]}},
{ "op": "move", "path": "/sum", "from": "/ inner/sum"}

]

Figure 5.2 – A RFC JSON Patch generated by our approach that, if applied to source JSON
document of the Figure 2.10, would get the target JSON document.

The Figure 5.2 finally presents the patch created by our approach. The main difference
with an optimal patch is that nodes that are not direct children of the common sub-tree
are not target of any change. With our example, the sub-tree with the node i n as a root is
therefore fully created by the patch, and its child node el t s is created from scratch whereas
it should have been moved.

5.3 Efficiency evaluation

Our patch algorithm has been developed in JavaScript and is available as an Open
Source library. 3 We present in this section its efficiency evaluation in comparison with
all other existing JavaScript libraries that support the JSON Patch RFC (see Table 2.3).

Our evaluation consists in asking all the libraries to create JSON patches. We then com-
pare them according to two quantitative factors: the time required to create the patch, and
the size of the patch. Our claim is that a library is considered to be efficient if the patches
it creates are small and if it creates them quickly.

Our evaluation is fully automated. It inputs a given REST service that provides access to
a changing data, and periodically calls it 61 times to get 61 different versions of the chang-
ing data. Then, for each of the 60 consecutive versions it asks to all the existing libraries
to generate the corresponding patch, and compares the time they take as well as the size
of their returned patch. We repeat the generation of the patch 100 times to get an average
value for both time and size. Our evaluation then returns 60 average values for both time
and size for each library and for any given REST service. The evaluation has been executed

3. https://github.com/caohanyang/json_diff_rfc6902

https://github.com/caohanyang/json_diff_rfc6902

76 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

on a desktop computer Intel Core i7-4770 CPU @3.40GHz×8, 16GB of RAM, and Ubuntu
14.04.2 LTS x86 64.

The choice of the called REST service has obviously an impact on the results obtained
by our evaluation. We therefore choose to include into our dataset only real services pro-
vided by well-known web applications. Further, as the existing libraries mainly differ by
their support of changes (see Table 2.3), we choose to include into our dataset three kinds
of services: the one where changes are only made to objects’ properties, the one where
changes are only made to arrays, and the one where changes are made to both. Our indus-
trial partner Streamdata.io then provides us one service for each such kinds. Our dataset,
available on GitHub 4, includes the Xignite GetRealTimeRate, Stackoverflow Answers and
Twitter Timeline services.

The Xignite GetRealTimeRate 5 service provides real-time currencies in the global fi-
nancial market. The service returns a JSON document that contains one node object for
each of the selected currencies (i.e. EURUSD, USDGBP). Changes between two successive
versions are then only made to the properties of these objects. It should be note that a
period of 15 seconds has been advised by our industrial partner between two consecutive
versions.

The Stackoverflow Answers 6 service provides a list of Stackoverflow’s answers . The ser-
vice returns a JSON document that contains an array with the latest 20 answers. Changes
between two successive versions are then only made to the array (new answers are added,
last ones are deleted).

The Twitter Timeline 7 service provides the home timeline of a specific account with
up-to-date Tweets. The service returns a collection of the most recent 20 Tweets of the
authenticated user. Changes between two successive versions can be made to the array or
to the objects themselves when tweets’ properties change.

The Figure 5.3 shows an extract of successive versions that have been obtained by call-
ing the services of our dataset. It clearly shows that changes performed to the data can be
done either on objects’ properties with the Xignite service, or on the array with Stackover-
flow, or on both with Twitter.

The Figure 5.4, 5.5, 5.6 then present the results of our evaluation for each service. Each
figure presents one figure for the time and one figure for the size where the black dots
present the 60 average values, and the bold red dot presents the median of these average
values.

For the Xignite service, Fast-JSON-Patch, JDR and rfc6902 always generate small
patches while jiff doesn’t (see Figure 5.4a). Curiously JSON8 chooses to simply replace
the whole JSON document. Regarding time, Fast-JSON-Patch is the fastest followed by our

4. https://github.com/caohanyang/json_diff_rfc6902/tree/master/dataset
5. http://globalcurrencies.xignite.com/xGlobalCurrencies.json/GetRealTimeRate?Symbol=EURUSD,

USDGBP,EURJPY,CHFDKK&_token=[YOUR_TOKEN]
6. https://api.stackexchange.com/2.2/answers?order=desc&sort=activity&site=stackoverflow
7. https://api.twitter.com/1.1/statuses/home_timeline.json

https://github.com/caohanyang/json_diff_rfc6902/tree/master/dataset
http://globalcurrencies.xignite.com/xGlobalCurrencies.json/GetRealTimeRate?Symbol=EURUSD,USDGBP,EURJPY,CHFDKK&_token=[YOUR_TOKEN]
http://globalcurrencies.xignite.com/xGlobalCurrencies.json/GetRealTimeRate?Symbol=EURUSD,USDGBP,EURJPY,CHFDKK&_token=[YOUR_TOKEN]
https://api.stackexchange.com/2.2/answers?order=desc&sort=activity&site=stackoverflow
https://api.twitter.com/1.1/statuses/home_timeline.json

5.3. EFFICIENCY EVALUATION 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object

Array

Xignite timeline

M
od

ifi
ca

tio
n

ty
pe

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object

Array

Stackoverflow timeline

M
od

ifi
ca

tio
n

ty
pe

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object

Array

Twitter timeline

Polling interval 15s

M
od

ifi
ca

tio
n

ty
pe

Figure 5.3 – Timeline modification type analysis for Xignite (top), Stackoverflow (middle)
and Twitter (bottom), which represent object server, array server and shift server respec-
tively.

library but the difference is no more than 0.5 milliseconds (see Figure 5.4b). rfc6902 takes
much more time than the others.

For the Stackoverflow service it is interesting to see that Fast-JSON-Patch performs bad
in term of size as it generates large patches (see Figure 5.5a). JSON8 is again quite bad as
it generated also large patches. JDR, jiff, rfc6902 behave quite well regarding size as they
always yield small patches. Regarding time all the libraries behave quite well but rfc6902,
which is slower (see Figure 5.5b).

For the Twitter service, the Figure 5.6a clearly shows that JDR always yields small
patches in all situation. In some cases, Fast-JSON-Patch totally fails (see some black dots
with high patch sizes). rfc6902 succeeds almost all the times but is sometimes not that
fast. Regarding time, the Figure 5.6b shows that JSON8 is definitively the fastest, then Fast-
JSON-Patch. JDR and Jiff performs almost within the same time. Finally rfc6902 is slow.

The Figure 5.4, 5.5, 5.6 are consistent with the analyse we provided in the section 2.3.4,

78 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●●●●
●

● ● ●●● ●● ●●●●
●● ●● ●● ●●● ●● ●●● ●● ●● ●●●● ●●● ●●● ●●

●●
● ● ●● ●● ●●●● ●

5000

7500

10000

12500

15000

17500

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

Pa
tc

h
si

ze
(b

yt
e)

Size of the computed patches for the dataset Xignite

(a) Patch size

● ●● ●● ●
●●●● ●●●● ●● ●●● ●●●●● ●●●● ●● ●● ●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●● ●●●● ●

● ●●● ●●●●●●● ●●
●

●●●● ● ●
●
●●●● ●●●

●
● ●●● ●●

●
● ●●●● ●●

●
●●● ●● ●●

●
●●●● ●●

●
●● ●●● ●● ●● ●●●●● ●●●●●●●●● ●●● ●● ●●● ●● ●●● ● ● ●●●● ●●●●●● ●● ● ●● ●●● ●● ● ●

●

● ● ●●●

●

●
● ●●

●●

●

●

●● ●●
●●

●

●●

● ●
●●●

●

● ●

●

●

●
●

●

●
●● ●●●●

●

●

●
●●● ●●

●

●

●

●●●

●

●

●● ●● ● ●●● ●● ●●● ●●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ● ●●●●● ●●● ●●● ●● ●● ●● ●●● ●● ●●0

3

6

9

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

D
iff

 ti
m

e(
m

s)

Time to compute the patches for the dataset Xignite

(b) Diff time

Figure 5.4 – Results for the Xignite dataset

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●
●●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●
●●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●● ●
●●●

●

●

● ●●●
●

●
●

●

●

● ●●

●● ●●
● ●● ●

●●
●

●●
●●

●●
●

● ●●
●

●
● ●● ●
●

●

●

●●
●

●● ●
● ●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●
● ●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●● ●●●
●●

●

● ●●●
●● ●●●●●● ●●●● ●●●● ●● ●●●●●

● ●●● ●●●● ●●●●●

●

●●●●● ●● ●●●

0

5000

10000

15000

20000

25000

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

Pa
tc

h
si

ze
(b

yt
e)

Size of the computed patches for the dataset StackOverflow

(a) Patch size

●
●● ● ●●● ●

●

●
● ●● ●●●

●
●● ●● ●●●●● ●●●● ● ●●●● ●●●● ●● ●●●● ● ●● ●

●

●● ●● ●

●
●
●● ●

●

● ●● ●
● ● ●●

●
●

● ●●●
●

●●● ● ●●●●● ●●
●

●●
●●●●

●●
●

● ●
●●● ●● ●● ●● ●● ●●● ●

●
●●●

● ●

●
● ●

● ●●● ●● ●●● ●
●
●●●● ●● ●● ●●● ●

●
●

●
●●●● ●●●●● ●●●●● ●● ●●● ●
●

●● ● ●● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●● ● ●

●

●●●● ●●●● ● ●●●● ●● ●●●● ● ●●● ●●●● ● ●● ●●● ●●● ●●● ●

●

●●● ●●●● ●●●0

1

2

3

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

D
iff

 ti
m

e(
m

s)
Time to compute the patches for the dataset StackOverflow

(b) Diff time

Figure 5.5 – Results for the StackOverflow dataset

●●

●

●●● ●●● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●● ●●●● ●

●

●

●

●

● ●

●

●●●●●●●

●

●

●

●

● ●
● ●● ●●●● ●

● ●
●

●

0e+00

5e+04

1e+05

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

Pa
tc

h
si

ze
(b

yt
e)

Size of the computed patches for the dataset Twitter

(a) Patch size

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●●

●

●● ●●● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●●● ●● ●●●

●
● ●0

2

4

6

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

D
iff

 ti
m

e(
m

s)

Time to compute the patches for the dataset Twitter

(b) Diff time

Figure 5.6 – Results for the Twitter dataset

5.4. CONCLUSION 79

Table 5.1 – Xignite performance of the 5 existing JavaScript libraries.

Xignite

Library Patch-Size Diff-time Total-time

Fast-JSON-Patch 100% (6683Bytes) 100% (0.103ms) 100% (5.45ms)
JDR 100% 502% 108%
jiff 152% 385% 157%
JSON8 Patch 232% 2% 228%
rfc6902 100% 2531% 281%

Table 5.2 – Stackoverflow performance of the 5 existing JavaScript libraries.

Stackoverflow

Library Patch-Size Diff-time Total-time

JDR 100% (2257Bytes) 100% (0.123ms) 100% (1.94ms)
jiff 104% 216% 112%
rfc6902 100.3% 1880% 228%
JSON8 Patch 232% 6% 484%
Fast-JSON-Patch 1045% 88% 995%

and clearly show the advantages and drawbacks of the existing libraries, depending on the
support they provide to object or array. We then decided to combine the size and time
factors considering that a patch has to be sent into the internet after it has been created
(with a bandwidth of 10 Mbit/s) (See Tables 5.1, 5.2 and 5.3). The Table 5.1 shows that Fast-
JSON-Patch is the best when the changes are only performed to the objects’ properties but
our library JDR is very close. Then, the Table 5.2 shows that our library JDR performs the
best when the changes are only performed to arrays. Finally, the Table 5.3 shows that our
library JDR performs the best when the changes are performed to both objects’ properties
and arrays.

In conclusion, based on industrial real data, our JDR outperforms existing libraries re-
garding the size of created patches and the time needed to create them.

5.4 Conclusion

REST APIs together with JSON are commonly used by modern web applications to ex-
port their services. Such an architecture however makes the services reachable in a pull
mode which is not suitable for accessing data that periodically changes (such as Twitter
timeline, realtime currency, etc.). The push mode is on the contrary more adequate for

80 CHAPTER 5. HOW TO ADAPT TO THE DATA CHANGES OF REST SERVICES?

Table 5.3 – Twitter performance of the 5 existing JavaScript libraries.

Twitter

Library Patch-Size Diff-time Total-time

JDR 100% (2475Bytes) 100% (1.77ms) 100% (3.75ms)
rfc6902 198% 276% 235%
Fast-JSON-Patch 1525% 50% 827%
jiff 2064% 107% 1140%
JSON8 Patch 3575% 3% 1887%

accessing changing data, but very few web applications, if any, support it. Our partner
StreamData.IO therefore provides a proxy server solution for turning a pull REST API into
a push one. The proxy server makes periodical requests to the API and then generates
patches that express the changes made to the new received versions of the data. Gener-
ating a patch for JSON document is obviously the difficult part and existing approaches
handle it poorly. In this chapter we then provide a new JSON patch algorithm towards this
issue, with the objective to fully support the JSON patch RFC and to provide efficiency gain
in comparison to existing libraries.

Our study first shows that the existing approaches are not optimal and that they take
drastic simplifications. More precisely, we show that existing approaches do not support
the move and copy change operations (except Java JSON-patch), and that few of them
fully support changes performed to the array.

We then propose our JSON patch algorithm that is compliant with the JSON Patch RFC
and that further supports all of the five change operations. Indeed, our algorithm succeeds
to support move and copy operations for object nodes and arrays. Its limitation is that
it only considers changes that are performed on a whole sub-tree, and does not consider
changes that modify the structure of a sub-tree. Further, it only considers the change to
the array that is localized in the same place in the two versions of a JSON document. Those
limitations have however been driven by our observations performed on existing REST
API, which showed that such changes almost never happen. Our approach only handles
the transformation of pull mode services into push mode but not their updates. The future
work is to study the subsequent API updates that may involve structural changes, which
aims to better understand how far APIs are updated.

We evaluate the efficiency of the JavaScript implementation of our algorithm against
existing JavaScript libraries that support the JSON Patch RFC. The evaluation has been
done by requesting real web applications with data suggested by our industrial partner. It
clearly shows that our library outperforms the other libraries. It creates a small patch quite
fast, and can handle different situations (where the changes target objects’ properties or
arrays).

5.4. CONCLUSION 81

As a main conclusion, we provide an efficient algorithm to create a path between two
versions of a JSON document. The patch created by our approach fully complies with RFC.
Even it is not optimal, it however expresses all change operations such as the move and
copy ones, and the ones that target arrays. Our work is the essential part for turning a
pull REST API into a push one, which is frequently requested by the web developers to get
notified of data changes. As an example, we provide a prototype framework that can be
used to convert a pull service into a push one (see the online demo 8).

8. http://diff-and-patch.pubstorm.site/

http://diff-and-patch.pubstorm.site/

CHAPTER

6
Conclusion

6.1 Summary of contributions

Web applications are highly popular and using some of them (e.g., Facebook, Google) is
becoming part of our lives. Developers are eager to create various web applications to meet
people’s increasing demands. To build a web application, developers need to know some
basic programming technologies. Moreover, they prefer to use some third-party compo-
nents (such as server-side libraries, client-side libraries, REST services) in the web applica-
tions. By including those components, they could benefit from maintainability, reusabil-
ity, readability, and efficiency. Thanks to some third-party components, they could also
retrieve external data that is essential to their business logic.

In this thesis, we propose to help developers to use third-party components in their
web applications. Since there are several third-party components and each component
has its characteristic, we zoom into those general questions and analyze the existing works
(see Table 1.1). We then decide to provide concrete solutions for these three specific sub-
problems:

— SQ1: What are the best JavaScript libraries to use?

— SQ2: How to get the standard specifications of REST services?

— SQ3: How to adapt to the data changes of REST services?

Our first contribution, presented in Chapter 3, aims at identifying and recommending
the JavaScript libraries to the web application developers. We provide an approach ARJL 1

that uses both syntactical and dynamical analysis of the online resources of the web ap-
plications and detects their used JS libraries. ARJL combines three different strategies: (1)
search for names of libraries in the header comment of the JS files, (2)check if a JS file used

1. https://github.com/kenmick/WebCrawler

83

https://github.com/kenmick/WebCrawler

84 CHAPTER 6. CONCLUSION

by the web application is similar to a file that is known to be a JS library, and (3) insert at
runtime a sensor in the web application with the objective to dynamically detection. By ap-
plying ARJL on the 100 most popular websites referenced by Alexa, we provide a popularity
rank of JavaScript libraries used in these websites. Developers could seek suggestions when
they have trouble to choose a library to include within their own web application. More-
over, thanks to our ARJL, we are able to provide version-level recommendations for popular
libraries (e.g., jQuery). As a last result, we make observations about how the JavaScript li-
brary evolves over three years. The result shows that the library usage evolves but not that
fast. This contribution has been published in the Proceedings of the Symposium on Applied
Computing (2017) [Cao et al., 2017b].

Our second contribution, presented in Chapter 4, aims at automatically transforming
an HTML documentation into an OpenAPI specification. Employing the specification is
the best practice to get knowledge of a third-party component. Since the specification is
standard and can be read by machine for automation (e.g., automated requesting, auto-
mated testing). Our ExtrateREST 2 approach inputs a single index URL, gets all the docu-
mentation pages that are linked by it, selects the useful ones thanks to a machine-learning
algorithm, extracts the endpoint information according to a manually-built extraction con-
figuration, and then produces the corresponding OpenAPI specification. The validation we
performed shows that ExtrateREST produces good results for popular REST services as well
as randomly selected ones. We also provide a public directory of OpenAPI specifications
for REST services. Our contribution presents a way to get the standard specification from
existing documentation. Even though our approach is designed for REST service, it can be
applied to other third-party components. Since third-party components usually provide
API documentations and the extraction configurations can be defined to excerpt the tar-
get information. This contribution has been published in the International Conference on
Service-Oriented Computing (2017) [Cao et al., 2017a].

Our third contribution, presented in Chapter 5, aims at adapting to the data changes of
REST services. Existing REST services usually support pull mode request which web appli-
cations need to call the service periodically for accessing changing data. The push mode is
on the contrary more adequate for accessing changing data, but very few web applications,
if any, support it. Our partner StreamData.IO therefore provides a proxy server solution for
turning a pull REST API into a push one. The proxy server makes periodical requests to
the API and then generates patches that express the changes made to the new received
versions of the data. Generating a patch for JSON document is obviously the difficult part
and existing approaches handle it poorly. We present a new JSON patch algorithm, named
JDR 3, that drastically improves the efficiency of the pull to push conversion. We use real
industrial data to evaluate our algorithm against existing JavaScript libraries that support
the JSON Patch RFC. It clearly shows that our library outperforms the other libraries. It gen-

2. https://github.com/caohanyang/ExtrateREST
3. https://github.com/caohanyang/json_diff_rfc6902

https://github.com/caohanyang/ExtrateREST
https://github.com/caohanyang/json_diff_rfc6902

6.2. PERSPECTIVES 85

erates smallest patch in most cases and quite fast. As a last result, we provide a prototype
framework that can be used to convert a pull service into a push one. This contribution
has been published in the International Conference on Web Engineering (2016) [Cao et al.,
2016].

6.2 Perspectives

As demonstrated throughout this thesis, helping developers to use third-party compo-
nents in the web applications is a general research domain. This leaves room for some
interesting research investigations. We propose here several perspectives that allow to ex-
tend the works presented in this thesis.

6.2.1 What are the best JavaScript libraries to use?

In Sec 3.5, we showed some statistics on how famous web applications are using li-
braries. We then give some suggestions to developers based on the library usage of the
most famous web applications. One of the threat to validity is our popularity indicator
just involve present. Precisely, it only reveals the library usage of the famous web applica-
tions at present. However, we could add more indicators to the predict the future, such as
the most promising library, the worst breaking bad. A web application developer, the best
choice for him is a library that is popular right now and would not be out of fashion in a
few periods. Teyton et al. [Teyton et al., 2014] presents a migration graph that composes a
synthetical indicator to rank the Java library. Inspired by this idea, we could recommend a
JavaScript library according to a synthetical indicator. The synthetical indicator calculates
the influence of both the present and future.

To recommend a JavaScript library to a client, we choose to use user-independent
property (i.e., popularity) to compose the ranking. According to Table 2.1, component rec-
ommendation is a hot research topic, and several works have been done on other third-
party components. They employ collaborative filtering [Rich, 1979] approach to mine the
similarity among user-dependent properties. We need to build a dataset that contains
users’ properties and the JavaScript libraries they use. Based on the dataset, we can rec-
ommend a JS library to a potential user.

6.2.2 How to get the standard specifications of REST services?

In Sec 4.4, we showed the quantitative performance evaluation we measure the four
mandatory parts of a REST specification: Base URL, Path Templates, Verbs, and Parame-
ters. The future work would be improve the performance and extract more parts to com-
plete a REST specification.

86 CHAPTER 6. CONCLUSION

— We plan to use machine learning algorithms to improve the precision/recall results
for the Base URL and Path Templates parts. Our existing approach used Random
forest classification algorithm to select the useful HTML pages. It would be better if
we can use classification algorithms to filter useful URLs, as Yang et al. [Yang et al.,
2018; Dolby et al., 2018] did. Since HTML pages contain several URLs that are not
related to the API. It is hard to set a single rule to remove these noises.

— Despite of the four mandatory parts of a REST specification, there are also some
parts that are essential to the developers, such as Response example, Authentica-
tion method. We plan to extract those components from HTML documentation, to
generate a complete REST specification.

— We are exploring how to use real API calls to enhance the specification produced by
ExtrateREST.

6.2.3 How to adapt to the data changes of REST services?

In Chapter 5, we showed the solution of how to adapt the data changes of REST services.
While web applications also need to adapt to the new version of the third-party compo-
nent, which is related to version migration. In the future, we want to target the version
migration problem for REST services. As shown in Table 2.1, many researchers show their
interests in this topic. One of the challenges is to analyze historical API documentations
for massive REST services. The existing work manually check historical API documenta-
tions and thus they get some statistic for just a few REST services. In the future, we plan
to provide an automatic approach to monitor massive REST services and give migration
suggestions to developers. The structure of the approach would be:

— Use ExtrateREST to crawl the historical HTML documentations of REST services, and
generate specifications of each version.

— Use our JSON Patch algorithm JDR to compare the two versions of REST API spec-
ifications and generate the patch. Since REST API specification is actually a JSON
document.

— The generated patch shows the difference of two versions and exactly presents how
the REST service evolves.

The approach is fully automated and can be applied to a large set of REST services. We
would use this approach to reveal the trend of REST service evolution, or alert developers
when their registered REST services have change.

APPENDIX

A
Résumé en Français

Les applications Web sont très populaires et l’utilisation de certaines d’entre elles (p.
ex. Facebook, Google) fait de plus en plus partie de nos vies. Les développeurs sont im-
patients de créer diverses applications Web pour répondre à la demande croissante. Pour
construire une application web, les développeurs doivent connaître certaines technologies
de programmation fondamentales, telles que HTML, JavaScript, CSS, système de base de
données. De plus, ils préfèrent utiliser des composants tiers dans les applications Web.
Nous appelons composants tiers un ensemble de modules ou de fonctionnalités réutilis-
ables qui sont fournis par des fournisseurs tiers. Ils ont été largement utilisés pour rendre
le développement plus facile, moins cher et de meilleure qualité. Les composants tiers
comprennent les bibliothèques, les services REST et d’autres types de modules. Dans cette
thèse, nous nous concentrons sur les bibliothèques et les services REST.

— Une bibliothèque est un morceau de code réutilisable qui aide les développeurs
à gérer les détails de bas niveau et à réaliser leur logique métier. Selon l’endroit
où elle se trouve, elle peut être classée comme bibliothèque côté serveur ou côté
client. La bibliothèque côté serveur peut être utilisée pour connecter la base de don-
nées, gérer la communication HTTP, automatiser les tests, récupérer les données du
service REST, etc. Par exemple, ExpressJS est une bibliothèque côté serveur pour
définir l’application, configurer le routeur et gérer les requêtes. La bibliothèque côté
client est généralement écrite en JavaScript et peut être exécutée par le navigateur.
Il peut s’agir d’un ensemble de fonctionnalités pour aider les développeurs à gérer
les éléments HTML DOM, cookies, requêtes HTTP, etc. Par exemple, jQuery facilite
la manipulation d’un document HTML, la sélection d’éléments DOM, la création
d’animations et la gestion des événements.

— Un service REST donne accès à un ensemble de ressources [Fielding and Taylor,
2002]. Suivant les principes REST, les accès aux ressources se font grâce à des re-

87

88 APPENDIX A. RÉSUMÉ EN FRANÇAIS

quêtes HTTP, où le verbe utilisé par la requête définit comment la ressource est ma-
nipulée (GET pour lire, PUT pour écrire, etc.). Par exemple, Instagram fournit un ser-
vice REST qui donne accès aux ressources médias publiées par ses utilisateurs (pho-
tos, films, etc.).

En incluant les composants tiers, les développeurs peuvent bénéficier de la mainten-
abilité, de la réutilisabilité, de la lisibilité et de l’efficacité. Grâce à certains composants
tiers, ils peuvent également récupérer des données externes essentielles à leur logique
métier.

Dans cette thèse, nous nous concentrons sur l’aide aux développeurs pour l’utilisation
de composants tiers dans les applications Web. Pour un développeur d’application web,
la première question est RQ1: quels sont les meilleurs composants tiers à utiliser? La
recommandation des composants de développement à un utilisateur potentiel a été large-
ment étudiée par les chercheurs. Elle comporte principalement deux étapes: 1) obtenir
l’ensemble de données sur l’utilisation des bibliothèques par des tiers, et 2) trier les
bibliothèques en fonction de diverses exigences sous-jacentes (p. ex. popularité des
composants, similarité des composants). Plusieurs travaux ont été réalisés pour obtenir
l’utilisation de bibliothèques ou de services REST à partir de projets open source (voir
détails dans la section 2.1). Nous avons choisi de construire l’ensemble de données
d’utilisation de la bibliothèque JavaScript à partir d’applications web célèbres. Puisqu’il
s’agit souvent de projets fermés et donc difficiles à analyser. Par conséquent, nous voulons
répondre à la question SQ1: Quelles sont les meilleures bibliothèques JavaScript à utiliser?

Après avoir choisi les composants, il aurait la deuxième question: RQ2: comment con-
naître les composants tiers ? Les développeurs d’applications Web doivent connaître les
composants tiers pour pouvoir les utiliser. La plupart des composants tiers fournissent
généralement des documentations en ligne de leurs produits. Toutefois, ces documenta-
tions en ligne ne suivent pas la même structure ou spécification, ce qui n’est pas approprié
pour l’automatisation. Les développeurs d’applications Web sont impatients d’obtenir
les spécifications standard des composants tiers, qui peuvent les aider à accélérer leur
développement. Cependant, il existe rarement de telles spécifications pour des com-
posants tiers. Dans notre thèse, nous visons à répondre à cette question SQ2: Comment
obtenir les spécifications standard des services REST? Quatre approches automatisées ou
semi-automatiques: SpyREST [Sohan et al., 2017, 2015], APIDiscoverer [Ed-douibi et al.,
2017], RESTler [Alarcón and Wilde, 2010], et D2Spec [Yang et al., 2018; Dolby et al., 2018],
sont liés à la création des spécifications OpenAPI. Les approches basées sur des exemples
SpyREST et APIDiscoverer s’appuient sur les informations d’appels API données manuelle-
ment (par exemple, URL, HTTP Verb) dans la documentation HTML correspondante. Afin
d’obtenir l’ensemble du spectre, les développeurs doivent également trouver récursive-
ment les appels de l’API pour tous les points finaux. Ce travail prend beaucoup de temps
et de travail. Les approches basées sur des crawlers RESTler et D2Spec sont alimentées
par un index URL de la documentation en ligne. En parcourant automatiquement la doc-

89

umentation HTML, les développeurs n’ont pas besoin de saisir manuellement tous les ap-
pels API. Cependant, les spécifications obtenues ne sont pas complètes, comparées dans
le tableau 2.2.

Le développeur sait comment utiliser les composants tiers et les intègre avec suc-
cès dans l’application Web. Au fil du temps, les composants tiers peuvent être modifiés.
L’application web doit alors s’adapter en conséquence. Voici donc la troisième question:
RQ3: comment s’adapter aux changements de composants tiers? Nous nous concentrons
sur l’adaptation des données, ce qui signifie que les applications Web doivent récupérer
efficacement les données fréquemment mises à jour. L’adaptation des données n’existe
que dans le cadre du service REST puisque les autres composants ne renvoient pas de
données. Par conséquent, notre objectif est de répondre à cette question SQ3: Comment
s’adapter aux changements de données des services REST? La méthode actuelle de commu-
nication avec le service REST consiste à appeler le service périodiquement, ce qui n’est pas
efficace lorsque les données changent fréquemment et de façon imprévisible. La plupart
des fournisseurs de services REST ont conçu leurs services pour être utilisés en mode pull
selon notre enquête. Les circonstances actuelles dérangent les développeurs web côté con-
sommateurs puisqu’ils préfèrent les services en mode push, mais ils n’ont pas accès pour
changer l’infrastructure de ces services. Par conséquent, les développeurs d’applications
Web sont impatients de disposer d’une plate-forme qui transforme un service en mode
pull en un service en mode push sans modifier les codes sources. Certaines entreprises
commerciales comme StreamData.io 1, Diffusion 2 ont déjà trouvé et soutiennent le be-
soin. Même s’ils suivent le même principe de conversion, l’algorithme fondamental qu’ils
utilisent n’est pas parfait. Les algorithmes de patchs JSON existants ne génèrent pas de
patchs optimaux et ne tirent pas profit de certaines opérations de patchs définies dans le
RFC de patchs JSON.

En résumé, nous nous concentrons sur les trois points suivants:

— SQ1: Quelles sont les meilleures bibliothèques JavaScript à utiliser?

— SQ2: Comment obtenir les spécifications standard des services REST?

— SQ3: Comment s’adapter aux changements de données des services REST?

Notre première contribution, présentée dans Chapter 3, vise à identifier et recomman-
der les bibliothèques JavaScript aux développeurs d’applications web. Nous proposons
une approche ARJL qui utilise une analyse syntaxique et dynamique des ressources en
ligne des applications web et détecte leurs bibliothèques JS utilisées. ARJL combine trois
stratégies différentes: (1) rechercher des noms de bibliothèques dans le commentaire d’en-
tête des fichiers JS, (2) vérifier si un fichier JS utilisé par l’application Web est similaire à
un fichier connu pour être une bibliothèque JS, et (3) insérer au moment de l’exécution

1. http://streamdata.io/
2. https://www.pushtechnology.com/

http://streamdata.io/
https://www.pushtechnology.com/

90 APPENDIX A. RÉSUMÉ EN FRANÇAIS

un capteur dans l’application Web avec pour objectif une détection dynamique. En ap-
pliquant ARJL sur les 100 sites Web les plus populaires référencés par Alexa, nous four-
nissons un classement de popularité des bibliothèques JavaScript utilisées dans ces sites.
Les développeurs pourraient solliciter des suggestions lorsqu’ils ont des difficultés pour
choisir une bibliothèque à inclure dans leur application Web. De plus, grâce à notre ARJL,
nous sommes en mesure de fournir des recommandations au niveau des versions pour les
bibliothèques populaires (par exemple, jQuery). Enfin, nous faisons des observations sur
l’évolution de la bibliothèque JavaScript sur trois ans. Le résultat montre que l’utilisation
de la bibliothèque évolue mais pas si vite.

Notre deuxième contribution, présentée dans Chapter 4, vise à transformer automa-
tiquement une documentation HTML en une spécification OpenAPI. L’utilisation de la
spécification est la meilleure pratique pour prendre connaissance d’un artefact d’une
tierce partie. Puisque la spécification est standard et peut être lue par une machine pour
l’automatisation (p. ex. demande automatisée, test automatisé). Notre approche Ex-
trateREST saisit une URL d’index unique, obtient toutes les pages de documentation qui
y sont liées, sélectionne celles qui sont utiles grâce à un algorithme d’apprentissage ma-
chine, extrait les informations du point final selon une configuration d’extraction constru-
ite manuellement, et produit ensuite la spécification OpenAPI correspondante. La valida-
tion que nous avons effectuée montre qu’ExtrateREST produit de bons résultats pour les
services REST populaires ainsi que pour les services sélectionnés au hasard. Nous four-
nissons également un répertoire public des spécifications OpenAPI pour les services REST.
Notre contribution présente un moyen d’obtenir la spécification standard à partir de la
documentation existante. Bien que notre approche soit conçue pour le service REST, elle
peut être appliquée à d’autres composants tiers. Étant donné que les composants tiers
fournissent généralement des documentations API et que les configurations d’extraction
peuvent être définies pour extraire les informations cibles.

Notre troisième contribution, présentée au chapitre 5, vise à s’adapter aux change-
ments de données des services REST. Comme nous l’avons vu plus haut, les développeurs
d’applications Web sont impatients de disposer d’une plate-forme qui transforme un ser-
vice en mode pull en un service en mode push. La plate-forme effectue des requêtes
périodiques à l’API et génère ensuite des correctifs qui expriment les modifications ap-
portées aux nouvelles versions reçues des données. Générer un correctif pour un doc-
ument JSON est évidemment la partie difficile et les approches existantes le gèrent mal.
Nous présentons un nouvel algorithme de patch JSON, appelé JDR, qui améliore consid-
érablement l’efficacité de la conversion pull vers push. Nous utilisons des données in-
dustrielles réelles pour évaluer notre algorithme par rapport aux bibliothèques JavaScript
existantes qui prennent en charge le patch JSON RFC. Cela montre clairement que notre
bibliothèque est plus performante que les autres bibliothèques. Il génère le plus petit patch
dans la plupart des cas et assez rapidement. Enfin, nous fournissons un prototype de cadre
qui peut être utilisé pour convertir un service pull en service push.

91

Enfin, le chapitre 6 conclut cette thèse en résumant nos contributions, et en présentant
plusieurs perspectives possibles pour élargir notre travail.

Bibliography

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In Proc.
20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499. Cited page 14.

Al-Ekram, R., Adma, A., and Baysal, O. (2005). diffX: An Algorithm to detect Changes in
Multi Version XML Documents. In In processing of the CASCON ’05, pages 1–11. Cited
page 31.

Alarcón, R. and Wilde, E. (2010). Restler: crawling restful services. In Proceedings of the
19th international conference on World wide web, pages 1051–1052. ACM. Cited pages
21 and 88.

Baldassarre, M. T., Bianchi, A., Caivano, D., and Visaggio, G. (2005). An Industrial Case
Study on Reuse Oriented Development. In Proceedings of the 21st IEEE ICSM, ICSM ’05,
pages 283–292, Washington, DC, USA. IEEE Computer Society. Cited pages 2 and 6.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., and Slaughter, S. (2003). Is Internet-
Speed Software Development Different? IEEE Software, 20(6):70–77. Cited page 6.

Bauer, V., Heinemann, L., and Deissenboeck, F. (2012). A structured approach to assess
third-party library usage. In 28th IEEE ICSM 2012, Trento, Italy, September 23-28, 2012,
pages 483–492. Cited page 34.

Beverloo, P., Sullivan, B., Fullea, E., Thomson, M., and van Ouwerkerk, M. (2017). Push
API. W3C working draft, W3C. https://www.w3.org/TR/2017/WD-push-api-20171215/.
Cited page 25.

Bibeault, B. and Katz, Y. (2008). Jquery in Action. Manning Publications Co., Greenwich,
CT, USA. Cited page 34.

93

94 BIBLIOGRAPHY

Bille, P. (2005). A survey on tree edit distance and related problems. Theor. Comput. Sci.,
337(1-3):217–239. Cited page 30.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022. Cited page 14.

Bryan, P. and Nottingham, M. (2013). JavaScript Object Notation (JSON) Patch. Technical
report, RFC 6902, April. Cited pages 10, 29, and 66.

Buttler, D. (2004). A short survey of document structure similarity algorithms. In Interna-
tional conference on internet computing, pages 3–9. Cited pages 8 and 66.

Cao, H., Falleri, J.-R., and Blanc, X. (2017a). Automated generation of rest api specifica-
tion from plain html documentation. In International Conference on Service-Oriented
Computing, pages 453–461. Springer. Cited pages 51, 54, 55, and 84.

Cao, H., Falleri, J.-R., Blanc, X., and Zhang, L. (2016). Json patch for turning a pull rest api
into a push. In International Conference on Service-Oriented Computing, pages 435–449.
Springer. Cited page 85.

Cao, H., Peng, Y., Jiang, J., Falleri, J.-R., and Blanc, X. (2017b). Automatic identification of
client-side javascript libraries in web applications. In Proceedings of the Symposium on
Applied Computing, pages 670–677. ACM. Cited page 84.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996). Change Detection
in Hierarchically Structured Information. In Jagadish, H. V. and Mumick, I. S., editors,
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, Canada, June 4-6, 1996, pages 493–504. ACM Press. Cited page 30.

Chen, C., Gao, S., and Xing, Z. (2016). Mining analogical libraries in q&a discussions–
incorporating relational and categorical knowledge into word embedding. In Software
Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Confer-
ence on, volume 1, pages 338–348. IEEE. Cited pages 12, 13, and 14.

Chen, C. and Xing, Z. (2016). Similartech: automatically recommend analogical libraries
across different programming languages. In Automated Software Engineering (ASE),
2016 31st IEEE/ACM International Conference on, pages 834–839. IEEE. Cited pages 13
and 14.

Chinnici, R., Moreau, J.-J., Ryman, A., and Weerawarana, S. (2007). Web services descrip-
tion language (wsdl) version 2.0 part 1: Core language. W3C recommendation, 26:19.
Cited pages 7 and 50.

BIBLIOGRAPHY 95

Cobena, G., Abiteboul, S., and Marian, A. (2002). Detecting Changes in XML Documents. In
Agrawal, R. and Dittrich, K. R., editors, Proceedings of the 18th International Conference
on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002, pages 41–52. IEEE
Computer Society. Cited page 31.

Conallen, J. (1999). Modeling web application architectures with uml. Communications of
the ACM, 42(10):63–70. Cited page 2.

Cooley, R., Mobasher, B., and Srivastava, J. (1997). Web mining: Information and pattern
discovery on the world wide web. In Tools with Artificial Intelligence, 1997. Proceedings.,
Ninth IEEE International Conference on, pages 558–567. IEEE. Cited page 50.

Crockford, D. (2006). RFC4627: JavaScript Object Notation. Cited page 66.

Danielsen, P. J. and Jeffrey, A. (2013). Validation and interactivity of web api documenta-
tion. In Web Services (ICWS), 2013 IEEE 20th International Conference on, pages 523–530.
IEEE. Cited pages 7, 17, and 50.

Davidson, J. D. and Coward, D. (1999). Java servlet specification ("specification") version:
2.2 final release. Technical report. Cited page 2.

Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecol-
ogy, 26(3):297–302. Cited page 37.

Dig, D., Negara, S., Mohindra, V., and Johnson, R. (2008). Reba: re factoring-aware b inary
a daptation of evolving libraries. In Proceedings of the 30th international conference on
Software engineering, pages 441–450. ACM. Cited page 5.

Dolby, J. T., Wittern, J. E., Yang, J., and Ying, A. T. (2018). Generating web api specification
from online documentation. US Patent App. 15/403,150. Cited pages 21, 86, and 88.

Ed-douibi, H., Izquierdo, J. L. C., and Cabot, J. (2017). Example-driven web api specifi-
cation discovery. In European Conference on Modelling Foundations and Applications,
pages 267–284. Springer. Cited pages 16, 21, and 88.

Ellis, C. A. and Gibbs, S. J. (1989). Concurrency control in groupware systems. In Acm
Sigmod Record, volume 18, pages 399–407. ACM. Cited page 71.

Espinha, T., Zaidman, A., and Gross, H.-G. (2014). Web api growing pains: Stories from
client developers and their code. In Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on, pages
84–93. IEEE. Cited page 5.

Fielding, R. T. and Taylor, R. N. (2002). Principled design of the modern Web architecture.
ACM Transactions on Internet Technology (TOIT), 2(2):115–150. Cited pages 4, 15, 50, 66,
and 87.

96 BIBLIOGRAPHY

Fokaefs, M. and Stroulia, E. (2015). Using wadl specifications to develop and maintain
rest client applications. In Web Services (ICWS), 2015 IEEE International Conference on,
pages 81–88. IEEE. Cited pages 7 and 50.

Gellersen, H.-W. and Gaedke, M. (1999). Object-oriented web application development.
IEEE Internet Computing, 3(1):60–68. Cited page 2.

Hadley, M. (2009). Web application description language: W3c member submission 31
august 2009. Technical report, World Wide Web Consortium. Cited page 16.

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical
journal, 29(2):147–160. Cited page 37.

Hersak, D. (2017). Donald trump tweet statistics | kaggle. Cited page 24.

Higuchi, S., Kan, T., Yamamoto, Y., and Hirata, K. (2012). An A* algorithm for computing
edit distance between rooted labeled unordered trees. In New Frontiers in Artificial In-
telligence, pages 186–196. Springer. Cited page 30.

Hirschberg, D. S. (1977). Algorithms for the longest common subsequence problem. Jour-
nal of the ACM (JACM), 24(4):664–675. Cited page 71.

Ho, T. K. (1995). Random decision forests. In Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on, volume 1, pages 278–282. IEEE.
Cited page 54.

Hogue, A. and Karger, D. (2005). Thresher: automating the unwrapping of semantic con-
tent from the world wide web. In Proceedings of the 14th international conference on
World Wide Web, pages 86–95. ACM. Cited pages 51 and 55.

Ishio, T., Kula, R. G., Kanda, T., German, D. M., and Inoue, K. (2016). Software ingredients:
Detection of third-party component reuse in java software release. In Proceedings of
the 13th International Conference on Mining Software Repositories, pages 339–350. ACM.
Cited pages 12 and 13.

Jiménez, P. and Corchuelo, R. (2016). On learning web information extraction rules with
tango. Information Systems, 62:74–103. Cited pages 51 and 55.

Katsuragawa, D., Ihara, A., Kula, R. G., and Matsumoto, K. (2018). Maintaining third-party
libraries through domain-specific category recommendations. In 2018 IEEE/ACM 1st
International Workshop on Software Health (SoHeal), pages 2–9. IEEE. Cited pages 12,
13, and 14.

Klyne, G. and Carroll, J. (2004). Resource description framework (RDF): Concepts and
abstract syntax. W3C recommendation, W3C. http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/. Cited page 17.

BIBLIOGRAPHY 97

Kopeckỳ, J., Gomadam, K., and Vitvar, T. (2008). hrests: An html microformat for de-
scribing restful web services. In Web Intelligence and Intelligent Agent Technology, 2008.
WI-IAT’08. IEEE/WIC/ACM International Conference on, volume 1, pages 619–625. IEEE.
Cited pages 16 and 17.

Koprinska, I., Poon, J., Clark, J., and Chan, J. (2007). Learning to classify e-mail. Information
Sciences, 177(10):2167–2187. Cited page 54.

Kula, R., German, D., Ishio, T., and Inoue, K. (2015). Trusting a library: A study of the latency
to adopt the latest Maven release. In Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on, pages 520–524. Cited page 34.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558–565. Cited page 71.

Lee, B. (2012). A temporal analysis of posting behavior in social media streams. In Interna-
tional AAAI conference on weblogs and social media. Cited pages 24 and 25.

Li, J., Xiong, Y., Liu, X., and Zhang, L. (2013). How does web service api evolution affect
clients? In 2013 IEEE 20th International Conference on Web Services, pages 300–307.
IEEE. Cited page 5.

Lindholm, T., Kangasharju, J., and Tarkoma, S. (2006). Fast and Simple XML Tree Differenc-
ing by Sequence Alignment. In Proceedings of the 2006 ACM Symposium on Document
Engineering, DocEng ’06, pages 75–84, New York, NY, USA. ACM. Cited page 31.

Liu, B. (2007). Web data mining: exploring hyperlinks, contents, and usage data. Springer
Science & Business Media. Cited page 50.

López, M., Ferreiro, H., Francisco, M. A., and Castro, L. M. (2013). Automatic generation of
test models for web services using wsdl and ocl. In International Conference on Service-
Oriented Computing, pages 483–490. Springer. Cited pages 7 and 50.

Mardan, A. (2014). Practical Node.Js: Building Real-World Scalable Web Apps. Apress,
Berkely, CA, USA, 1st edition. Cited page 34.

Melanson, D. (2008). iphone push notification service for devs announced. Cited page 25.

Meng, S., Wang, X., Zhang, L., and Mei, H. (2012). A history-based matching approach to
identification of framework evolution. In Proceedings of the 34th International Confer-
ence on Software Engineering, pages 353–363. IEEE Press. Cited page 5.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed rep-
resentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119. Cited page 14.

98 BIBLIOGRAPHY

Onan, A. (2016). Classifier and feature set ensembles for web page classification. Journal
of Information Science, 42(2):150–165. Cited page 51.

Ouni, A., Kula, R. G., Kessentini, M., Ishio, T., German, D. M., and Inoue, K. (2017). Search-
based software library recommendation using multi-objective optimization. Informa-
tion and Software Technology, 83:55–75. Cited pages 12, 13, and 14.

Pawlik, M. and Augsten, N. (2011). RTED: A Robust Algorithm for the Tree Edit Distance.
PVLDB, 5(4):334–345. Cited page 30.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in
python. Journal of Machine Learning Research, 12(Oct):2825–2830. Cited page 54.

Per, C. (2014). Web application definition. TechTerms. Sharpened Productions. Cited page
3.

pushtechnology (2018). Json delta streaming. Cited page 28.

Qi, X. and Davison, B. D. (2009). Web page classification: Features and algorithms. ACM
computing surveys (CSUR), 41(2):12. Cited pages 51 and 54.

Renzel, D., Schlebusch, P., and Klamma, R. (2012). Today’s top “restful” services and why
they are not restful. Web Information Systems Engineering-WISE 2012, pages 354–367.
Cited pages 7 and 50.

Rich, E. (1979). User modeling via stereotypes. Cognitive science, 3(4):329–354. Cited page
85.

Sadowski, C. and Levin, G. (2007). Simhash: Hash-based similarity detection. Cited page
37.

Shi, S., Liu, C., Shen, Y., Yuan, C., and Huang, Y. (2015). Autorm: An effective approach for
automatic web data record mining. Knowledge-Based Systems, 89:314–331. Cited pages
51 and 55.

Sia, K. C., Cho, J., and Cho, H.-K. (2007). Efficient monitoring algorithm for fast news alerts.
IEEE Transactions on Knowledge & Data Engineering, (7):950–961. Cited page 24.

Sleiman, H. A. and Corchuelo, R. (2014). A class of neural-network-based transducers for
web information extraction. Neurocomputing, 135:61–68. Cited pages 51 and 55.

Sohan, S., Anslow, C., and Maurer, F. (2015). Spyrest: Automated restful api documenta-
tion using an http proxy server (n). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 271–276. IEEE. Cited pages 18 and 88.

BIBLIOGRAPHY 99

Sohan, S., Anslow, C., and Maurer, F. (2017). Automated example oriented rest api doc-
umentation at cisco. In Proceedings of the 39th International Conference on Software
Engineering: Software Engineering in Practice Track, pages 213–222. IEEE Press. Cited
pages 18, 20, and 88.

streamdata.io (2016). How streamdata.io turn any api into a streaming api. Cited page 27.

Tam, T. (2017). Mulesoft joins the openapi initiative: The end of the api spec wars. Cited
page 17.

Terveen, L. and Hill, W. (2001). Beyond recommender systems: Helping people help each
other. HCI in the New Millennium, 1(2001):487–509. Cited page 14.

Teyton, C., Falleri, J.-R., and Blanc, X. (2012). Mining Library Migration Graphs. In IEEE,
editor, 19th WCRE Conference, 2012, pages 289–298, Kingston, Ontario, Canada. Cited
pages 6 and 34.

Teyton, C., Falleri, J.-R., and Blanc, X. (2013). Automatic Discovery of Function Mappings
between Similar Libraries. In 20th WCRE Conference 2013, pages 192–201. IEEE. Cited
page 34.

Teyton, C., Falleri, J.-R., Palyart, M., and Blanc, X. (2014). A study of library migrations in
Java. Journal of Software: Evolution and Process, 26(11):1030–1052. Cited pages 12, 13,
14, 34, and 85.

Thung, F., Lo, D., and Lawall, J. (2013). Automated library recommendation. In 20th WCRE
Conference, 2013, pages 182–191. Cited pages 12, 14, and 34.

Velloso, R. P. and Dorneles, C. F. (2017). Extracting records from the web using a signal
processing approach. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 197–206. ACM. Cited pages 51 and 55.

Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., and Vallés, J. G.
(2013). Capturing the functionality of web services with functional descriptions. Multi-
media tools and applications, 64(2):365–387. Cited page 17.

W.A, A. and S.M, E. (2011). Machine learning methods for e-mail classification. Interna-
tional Journal of Computer Science & Information Technology (IJCSIT), 16. Cited page
54.

Wagner, F., Klöpper, B., Ishikawa, F., and Honiden, S. (2012). Towards robust service com-
positions in the context of functionally diverse services. In Proceedings of the 21st inter-
national conference on World Wide Web, pages 969–978. ACM. Cited pages 7 and 50.

100 BIBLIOGRAPHY

Wang, H., Kessentini, M., and Ouni, A. (2016). Prediction of web services evolution. In
International Conference on Service-Oriented Computing, pages 282–297. Springer. Cited
page 5.

Wu, H. C., Luk, R. W. P., Wong, K. F., and Kwok, K. L. (2008). Interpreting tf-idf term weights
as making relevance decisions. ACM Trans. Inf. Syst., 26(3):13:1–13:37. Cited page 54.

Wu, Q., Wu, L., Liang, G., Wang, Q., Xie, T., and Mei, H. (2013). Inferring dependency
constraints on parameters for web services. In Proceedings of the 22nd international
conference on World Wide Web, pages 1421–1432. ACM. Cited pages 7 and 50.

Yang, J., Wittern, E., Ying, A. T., Dolby, J., and Tan, L. (2018). Towards extracting web api
specifications from documentation. Cited pages 21, 86, and 88.

Yu, H., Xia, X., Zhao, X., and Qiu, W. (2017). Combining collaborative filtering and topic
modeling for more accurate android mobile app library recommendation. In Proceed-
ings of the 9th Asia-Pacific Symposium on Internetware, page 17. ACM. Cited pages 12,
13, and 14.

Zeleny, J., Burget, R., and Zendulka, J. (2017). Box clustering segmentation: A new
method for vision-based web page preprocessing. Information Processing & Manage-
ment, 53(3):735–750. Cited pages 51 and 55.

Zhang, K. and Shasha, D. (1989). Simple Fast Algorithms for the Editing Distance Between
Trees and Related Problems. SIAM J. Comput., 18(6):1245–1262. Cited pages 8 and 66.

Zhang, K., Statman, R., and Shasha, D. (1992). On the editing distance between unordered
labeled trees. Information processing letters, 42(3):133–139. Cited page 30.

Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining version histories
to guide software changes. Software Engineering, IEEE Transactions on, 31(6):429–445.
Cited page 34.

List of Figures

1.1 Context of web application development. 3

2.2 Two screenshots in Instagram REST API HTML documentation 17
2.3 Extract of an OpenAPI specification (generated by our approach) for Instagram 19
2.4 A screenshot of SpyREST. It shows a part of auto-generated API documenta-

tion and examples for Github service. 20
2.7 Two modes for requesting the Twitter REST services 26
2.10 A source (left) JSON document with several properties. A target (right) JSON

document that has been transformed from the source JSON document. 29
2.11 A RFC JSON Patch that, if applied to source JSON document of the Figure 2.10,

would get the target JSON document. 30

3.1 The header of a Modernizr JS library file. 36
3.2 The regular expression used to extract library names and version from com-

ments. 36
3.3 Venn diagram for 3 strategies . 43
3.4 Comparison of ‘?’ and accurate version for each strategies 43
3.5 Statistics for Top 100 web applications on Oct. 20, 2015 44
3.6 jQuery Version Distribution on Oct. 20, 2015 . 46
3.7 Modernizr Version Distribution on Oct. 20, 2015 47
3.8 Evolution of top 10 JS libraries for three years . 47

4.1 Code snippets of Instagram Media Endpoint in HTML documentation 52
4.2 Global workflow of ExtrateREST . 53
4.3 The information extractor to build specification. 56

101

102 List of Figures

4.4 Feature model for the extraction configuration (partial). 57
4.5 Two screenshots for ExtrateREST front-end . 59
4.6 Results on the most popular REST Services . 62
4.7 Results on randomly selected REST Services . 62

5.1 The two versions of our example as a tree with object and label node pre-
sented with circles and array nodes with square. The central part represents
the common sub-tree. The left part presents nodes direct children of the com-
mon tree and that belong to the ol d version. The right part presents nodes
direct children of the common tree and that belong to the new version. 67

5.2 A RFC JSON Patch generated by our approach that, if applied to source JSON
document of the Figure 2.10, would get the target JSON document. 75

5.3 Timeline modification type analysis for Xignite (top), Stackoverflow (middle)
and Twitter (bottom), which represent object server, array server and shift
server respectively. 77

5.4 Results for the Xignite dataset . 78
5.5 Results for the StackOverflow dataset . 78
5.6 Results for the Twitter dataset . 78

List of Tables

1.1 Research problems about leveraging third-party components in web applica-
tion development. 6

2.1 Summary table of different approaches dealing with the problem of third-
party library recommendation. 12

2.2 Comparison of existing automated/semi-automated approaches to build the
REST API specification. 23

2.3 Comparison of existing approaches to generate the JSON Patch. 31

3.1 Library usage matrix. 35
3.2 Key URLs and objects for several libraries. 38
3.3 Comparison of three recognition strategies. 39
3.4 Hamming distance and Dice similarity thresholds, with the associated true

and false positives. 41
3.5 Precision of the strategies. 42
3.6 JS library usage frequency for Alexa global top 100 web applications on Oct.

20, 2015 . 45
3.7 JS.ORG rank on Oct. 20, 2015 . 46

4.1 Quantitative Comparison for topmost popular and random REST service . . . 60

5.1 Xignite performance of the 5 existing JavaScript libraries. 79
5.2 Stackoverflow performance of the 5 existing JavaScript libraries. 79
5.3 Twitter performance of the 5 existing JavaScript libraries. 80

103

List of Tables 105

	Introduction
	Context: Web application development
	Problem Statement
	What are the best JavaScript libraries to use?
	How to get the standard specifications of REST services?
	How to adapt to the data changes of REST services?

	Contributions
	What are the best JavaScript libraries to use?
	How to get the standard specifications of REST services?
	How to adapt to the data changes of REST services?

	Thesis Outline

	Background
	What are the best JavaScript libraries to use?
	How to get the standard specifications of REST services?
	REST concepts
	Automated or semi-automated approaches
	Crowd-sourcing approach

	How to adapt to the data changes of REST services?
	Pull mode and Push mode
	Transformation platforms
	JSON document and JSON patch
	JSON Patch Algorithms

	Summary

	What are the best JavaScript libraries to use?
	Introduction
	Methodology
	Definitions
	Recognition Strategies
	ARJL Combined Strategy

	Implementation
	Evaluation
	Thresholds of the File Matching Strategy
	Precision of the Strategies
	Comparison of the Strategies
	Efficiency

	Observations and Suggestions
	Statistics
	Analysis of the October 2015 Snapshot
	Analysis of a Three Years Period

	Conclusion

	How to get the standard specifications of REST services?
	Introduction
	Background
	Main challenges

	ExtrateREST: an automated extractor for the generation of REST API specification
	Global architecture
	Step 1: gather relevant HTML documentation pages
	Step 2: extract information from relevant pages

	Evaluation
	Conclusion

	How to adapt to the data changes of REST services?
	Introduction
	JDR: a JSON patch algorithm
	Efficiency evaluation
	Conclusion

	Conclusion
	Summary of contributions
	Perspectives
	What are the best JavaScript libraries to use?
	How to get the standard specifications of REST services?
	How to adapt to the data changes of REST services?

	Résumé en Français
	List of Figures
	List of Tables

