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Dynami
 FTSS in Asyn
hronous Systems: the Case of UnisonSwan Dubois∗ Maria Gradinariu Potop-Butu
aru† Sébastien Tixeuil‡Abstra
tDistributed fault-toleran
e 
an mask the e�e
t of a limited number of permanent faults,while self-stabilization provides forward re
overy after an arbitrary number of transient faulthit the system. FTSS proto
ols 
ombine the best of both worlds sin
e they are simultaneouslyfault-tolerant and self-stabilizing. To date, FTSS solutions either 
onsider stati
 (i.e. �xedpoint) tasks, or assume syn
hronous s
heduling of the system 
omponents.In this paper, we present the �rst study of dynami
 tasks in asyn
hronous systems, 
onsid-ering the unison problem as a ben
hmark. Unison 
an be seen as a lo
al 
lo
k syn
hronizationproblem as neighbors must maintain digital 
lo
ks at most one time unit away from ea
h other,and in
rement their own 
lo
k value in�nitely often. We present many impossibility results forthis di�
ult problem and propose a FTSS solution when the problem is solvable that exhibitsoptimal fault 
ontainment.
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1 Introdu
tionThe advent of ubiquitous large-s
ale distributed systems advo
ates that toleran
e to variouskinds of faults and hazards must be in
luded from the very early design of su
h systems. Self-stabilization [8, 10℄ is a versatile te
hnique that permits forward re
overy from any kind oftransient fault, while Fault-toleran
e [14℄ is traditionally used to mask the e�e
t of a limitednumber of permanent faults. Making distributed systems tolerant to both transient and per-manent faults is appealing yet proved di�
ult [15, 1, 2℄ as impossibility results are expe
ted inmany 
ases.The seminal works of [1, 15℄ de�ne FTSS proto
ols as proto
ols that are both fault tolerantand self-stabilizing, i.e. able to tolerate a few 
rash faults as well as arbitrary initial mem-ory 
orruption. In [1℄, impossibility results for size 
omputation and ele
tion in asyn
hronoussystems are presented, while unique naming is proved possible. In [15℄, a general transformeris presented for syn
hronous systems, as well as positive results with failure dete
tors. Thetransformer of [15℄ was proved impossible to transpose to asyn
hronous systems in [2℄ due tothe impossibility of tight syn
hronization in the FTSS 
ontext. For lo
al tasks (i.e. tasks whose
orre
tness 
an be 
he
ked lo
ally, su
h as vertex 
oloring), the notion of stri
t stabilization wasproposed [21, 19℄. Stri
t stabilization guarantees that there exists a 
ontainment radius outsidewhi
h the e�e
t of permanent faults is masked, provided that the problem spe
i�
ation makesit possible to break the 
ausality 
hain that is 
aused by the faults.It turns out that FTSS possibility results in fully asyn
hronous systems known to date arerestri
ted to stati
 tasks, i.e. tasks that require eventual 
onvergen
e to some global �xed point(tasks su
h as naming or vertex 
oloring fall in this 
ategory). In this paper, we 
onsider themore 
hallenging problem of dynami
 tasks, i.e. tasks that require both eventual safety andliveness properties (examples of su
h tasks are 
lo
k syn
hronization and token passing). Due tothe aforementioned impossibility of tight 
lo
k syn
hronization, we 
onsider the unison problem,that 
an bee seen as a lo
al 
lo
k syn
hronization problem. In the unison problem [20℄, ea
hnode is expe
ted to keep its digital 
lo
k value within one time unit of every of its neighbors'
lo
k values (weak syn
hronization), and in
rement its 
lo
k value in�nitely often. Note that insyn
hronous 
ompletely 
onne
ted systems where 
lo
ks have dis
rete time unit values, unisonindu
es tight 
lo
k syn
hronization. Several self-stabilizing solutions exist for this problem [17,6, 4, 5℄, both in syn
hronous and asyn
hronous systems, yet none of those 
an tolerate 
rashfaults.As a matter of fa
t, there exists a number of FTSS results for dynami
 tasks in syn
hronoussystems. In [12, 22℄ provide self-stabilizing 
lo
k syn
hronization that is also wait free, i.e thattolerate napping faults, in 
omplete networks. Also, [11℄ presents a FTSS 
lo
k syn
hronizationfor general networks. Still in syn
hronous systems, it was proved that even mali
ious (i.e.Byzantine) faults 
an be tolerated, to some extent. In [13, 3℄, probabilisti
 FTSS proto
ols wereproposed for up to one third of Byzantine pro
essors, while in [18, 9℄ deterministi
 solutiontolerate up to one fourth and one third of Byzantine pro
essors, respe
tively. Note that allsolutions presented in this paragraph are for fully syn
hronous systems.In this paper, we ta
kle the open issue of FTSS solutions to dynami
 tasks in asyn
hronoussystems, using the unison problem as a 
ase study. Our �rst negative results show that whenevertwo or more 
rash faults may o

ur, FTSS unison is impossible in any asyn
hronous setting.The remaining 
ase of one 
rash fault drives the most interesting results (see Se
tion 3). We�rst extra
t two key properties satis�ed by all previous self-stabilizing asyn
hronous unisonproto
ols: minimality and priority. Minimality means that nodes maintain no extra variablesbut the digital 
lo
k value. Priority means that whenever in
rementing the 
lo
k value does not2



Unfair Weakly fair Strongly fairMinimal Priority Neither Minimal Priority Neither
f = 1, Imp. Imp.
∆ ≥ 3 Imp. Imp. Imp. ?? (Prop.5) (Prop.6) ??
f = 1, (Prop.2) (Prop.3) (Prop.4) Pos.
∆ ≤ 2 (Prop.11)
f ≥ 2 Imp. (Prop.1)Table 1: Summary of resultsbreak the lo
al safety predi
ate between neighbors, the 
lo
k value is a
tually in
remented in a�nite number of a
tivations, even when no neighbor modi�es its 
lo
k value. Then, dependingon the fairness properties of the s
heduling of nodes, we provide various results with respe
t tothe possibility or impossibility of unison. When the s
heduling is unfair (only global progressis guaranteed), FTSS unison is impossible. When the s
heduling is weakly fair (a pro
essorthat is 
ontinuously enabled is eventually a
tivated), then it is impossible to solve FTSS unisonby a proto
ol that satis�es either minimality or priority. The 
ase of strongly fair s
heduling(a pro
essor that is a
tivated in�nitely often is eventually a
tivated) is similar whenever themaximum degree of the graph is at least three. Our negative results still apply when the 
lo
kvariable is unbounded and the s
heduling is 
entral (i.e. a single pro
essor is a
tivated at anytime).On the positive side (Se
tion 4), we present a FTSS proto
ol for 
onne
ted networks ofmaximum degree at most two (i.e. rings and 
hains), that satis�es both minimality and priorityproperties. This proto
ol makes minimal system hypotheses with respe
t to the aforementionedimpossibility results (maximum degree, s
heduling, et
.) and is optimal with respe
t to the
ontainment radius that is a
hieved (no 
orre
t pro
essor is ever prevented from in
rementingits 
lo
k). Table 1 provides a summary of the main results of the paper. Remaining openquestions (denoted by question marks in the above table) are dis
ussed in Se
tion 5.2 Model, de�nitions and notationsWe 
onsider a network as an undire
ted 
onne
ted graph G = (V, E) where V is a set ofpro
essors and E is a binary relation that denotes the ability for two pro
essors to 
ommuni
ate((p, q) ∈ E if and only if p and q are neighbors). Every pro
essor p 
an distinguish its neighborsand lo
ally label them, and we assume that p maintains Np, the set of its neighbors lo
al labels.In the following, n denotes the number of pro
essors, and ∆ the maximal degree. If p and qare two pro
essors of the network, we denote by d(p, q) the length of the shortest path between

p and q (i.e the distan
e from p to q). In this paper, we assume that the network 
an be hitby 
rash faults, i.e. some pro
essors 
an stop exe
uting their a
tions permanently and withoutany warning to their neighborhood. Sin
e the system is assumed to be fully asyn
hronous, nopro
essor 
an dete
t if one of its neighbors is 
rashed or slow.We 
onsider the 
lassi
al lo
al shared memory model of 
omputation (see [10℄) where 
om-muni
ations between neighbors are modeled by dire
t reading of variables instead of ex
hangeof messages. In this model, the program of every pro
essor 
onsists in a set of shared variables(hen
eforth, referred to as variables) and a �nite set of rules. A pro
essor 
an write to its ownvariables only, and read its own variables and those of its neighbors. Ea
h rule 
onsists of:3



<label>::<guard>−→<statement>. The label of a rule is simply a name to refer the a
tion inthe text. The guard of a rule in the program of p is a boolean predi
ate involving variables of pand its neighbors. The statement of a rule of p updates one or more variables of p. A statement
an be exe
uted only if the 
orresponding guard is satis�ed (the pro
essor rule is then enabled).The state of a pro
essor is de�ned by the value of its variables. The state of a system (a.k.a.the 
on�guration) is the produ
t of the states of all pro
essors. We also refer to the state of apro
essor and its neighborhood as a lo
al 
on�guration. We note Γ the set of all 
on�gurationsof the system.Pro
essor p is enabled in γ ∈ Γ if and only if at least one rule is enabled for p in γ. Let adistributed proto
ol P be a 
olle
tion of binary transition relations denoted by →, on Γ. Anexe
ution of a proto
ol P is a maximal sequen
e of 
on�gurations ǫ = γ0γ1 . . . γiγi+1 . . . su
hthat, ∀i ≥ 0, γi → γi+1 ((γi, γi+1) ∈→ is 
alled a step) if γi+1 exists (else γi is a terminal
on�guration). Maximality means that the sequen
e is either �nite (and no a
tion of P isenabled in the terminal 
on�guration) or in�nite. E is the set of all possible exe
utions of P . Apro
essor p is neutralized in step γi → γi+1 if p is enabled in γi and is not enabled in γi+1, yetdid not exe
ute any rule in step γi → γi+1.A s
heduler (also 
alled daemon) is a predi
ate over the exe
utions. In any exe
ution, ea
hstep γ −→ γ′ results from a non-empty subset of enabled pro
essors atomi
ally exe
uting a rule.This subset is 
hosen by the s
heduler. A s
heduler is 
entral if it 
hooses exa
tly one enabledpro
essor in any parti
ular step, it is distributed if it 
hooses at least one enabled pro
essor,and lo
ally 
entral if it 
hooses at least one enabled pro
essor yet ensures that no two neighborsare 
hosen 
on
urrently. A s
heduler is syn
hronous if it 
hooses every enabled pro
essor inevery step. A s
heduler is asyn
hronous if it is either 
entral, distributed or lo
ally 
entral. As
heduler may also have some fairness properties. A s
heduler is strongly fair (the strongestfairness assumption for asyn
hronous s
hedulers) if every pro
essor that is enabled in�nitelyoften is eventually 
hosen to exe
ute a rule. A s
heduler is weakly fair if every 
ontinuouslyenabled pro
essor is eventually 
hosen to exe
ute a rule. Finally, the unfair s
heduler has theweakest fairness assumption: it only guarantees that at least one enabled pro
essor is eventually
hosen to exe
ute a rule. As the strongly fair s
heduler is the strongest fairness assumption, anyproblem that 
annot be solved under this assumption 
annot be solved for all weaker fairnessassumptions. In 
ontrast, any algorithm performing under the unfair s
heduler also works forall stronger fairness assumptions.Fault-
ontainment and Stabilization In a parti
ular exe
ution ǫ, we distinguish theset of pro
essors V ∗ that never 
rash in ǫ (i.e. the set of 
orre
t pro
essors). By extension, C∗denotes the set of 
orre
t pro
essors in C ⊂ V . As 
rashed pro
essors 
annot be distinguishedfrom slow ones by their neighbors, we assume that variables of 
rashed pro
essors are alwaysreadable. We now re
all de�nitions about self-stabilization and fault-tolerant self-stabilization.De�nition 1 (self-stabilization [8℄) Let T be a task, and ST a spe
i�
ation of T . A proto
ol
P is self-stabilizing for ST if and only if for every 
on�guration γ0 ∈ Γ, for every exe
ution
ǫ = γ0γ1 . . ., there exists a �nite pre�x γ0γ1 . . . γl of ǫ su
h that all exe
utions starting from γlsatis�es ST .De�nition 2 ((f, r)−
ontainment [21℄) Let T be a task, and ST a spe
i�
ation of T . A
on�guration γ ∈ Γ is (f, r)−
ontained for spe
i�
ation ST if and only if, given at most f
rashed pro
essors, every exe
ution starting from γ, always satis�es ST on the sub-graph indu
edby pro
essors whi
h are at distan
e r or more from any 
rashed pro
essor.4



De�nition 3 (fault-tolerant self-stabilization (FTSS) [1, 15℄) Let T be a task, and ST aspe
i�
ation of T . A proto
ol P is fault-tolerant and self-stabilizing with radius r for f 
rashedpro
essors (and denoted by (f, r) − ftss) for spe
i�
ation ST if and only if, given at most f
rashed pro
essors, for every 
on�guration γ0 ∈ Γ, for every exe
ution ǫ = γ0γ1 . . ., there existsa �nite pre�x γ0γ1 . . . γl of ǫ su
h that γl is (f, r)−
ontained for spe
i�
ation ST .Problem and spe
i�
ations In the following, Hp is the variable of pro
essor p thatrepresents its 
lo
k value. Values are taken in the set of natural integers (that is, the numberof states is unbounded, and a total order 
an be de�ned on 
lo
k values). We now de�ne twonotions related to lo
al 
lo
k syn
hronization: the �rst one restri
ts the safety property to
orre
t pro
essors, while the se
ond one 
onsiders all pro
essors.De�nition 4 (weakly syn
hronized 
on�gurations Γ∗
1) Let be γ ∈ Γ. We say that γ isweakly syn
hronized (denoted by γ ∈ Γ∗

1) if and only if :
∀p ∈ V ∗, ∀q ∈ N∗

p , |Hp − Hq| ≤ 1De�nition 5 (uniform weakly syn
hronized 
on�gurations Γ1) Let be γ ∈ Γ. We saythat γ is uniformly weakly syn
hronized (denoted by γ ∈ Γ1) if and only if :
∀p ∈ V, ∀q ∈ Np, |Hp − Hq| ≤ 1Remark 1 If no pro
essor is 
rashed, we have: Γ1 = Γ∗

1, on the 
ontrary 
ase, we have:
Γ1 ( Γ∗

1For example, if G = (V, E) with V = {p0, p1, p2} and E = {{p0, p1}, {p1, p2}}, then 
on�g-uration γ de�ned by Hp0
= 0, Hp1

= Hp2
= 2, and where p0 is 
rashed satis�es γ ∈ Γ∗

1 and
γ /∈ Γ1.We now spe
ify the two variants of our problem (depending whether safety property isextended to 
rashed pro
essors):Spe
i�
ation 1 (asyn
hronous unison � AU)Let be γ0 ∈ Γ. An exe
ution ǫ = γ0γ1 . . . starting from γ0 is a legitimate exe
ution for AU ifand only if:

• Safety: ∀i ∈ N, γi ∈ Γ∗
1.

• Liveness: Ea
h pro
essor p ∈ V ∗ in
rements its 
lo
k in�nitely often in ǫ.Spe
i�
ation 2 (uniform asyn
hronous unison � UAU)Let be γ0 ∈ Γ. An exe
ution ǫ = γ0γ1 . . . starting from γ0 is a legitimate exe
ution for UAU ifand only if:
• Safety: ∀i ∈ N, γi ∈ Γ1.
• Liveness: Ea
h pro
essor p ∈ V ∗ in
rements its 
lo
k in�nitely often in ǫ.Remark 2 Note that:
• An algorithm whi
h 
omplies to the se
ond spe
i�
ation 
omplies to the �rst (the 
onverseis not true).
• These two spe
i�
ations do not forbid de
rementation of 
lo
ks.5



We now present two key properties satis�ed by all known self-stabilizing unison proto
ols.Those properties are used in the impossibility results presented in Se
tion 3.De�nition 6 (minimality) A unison is minimal if and only if the set of variables of ea
hpro
essor is redu
ed to its 
lo
k.Remark 3 As the exe
ution of a rule by a pro
essor always modi�es its state, every exe
utionof rule by a pro
essor by a minimal unison modi�es its 
lo
k value.De�nition 7 (priority) A unison is priority if and only if it satis�es the following property:if there exists a pro
essor p su
h that ∀q ∈ Np, (Hq = Hp or Hq = Hp + 1) in a 
on�guration
γi, then there exists a fragment of exe
ution ǫ = γi . . . γi+k su
h that:

• only p is 
hosen by the s
heduler during ǫ.
• Hp is not modi�ed during γi+j −→ γi+j+1, for j ∈ {0, . . . , k − 2}.
• Hp is in
remented during γi+k−1 −→ γi+k.Remark 4 If a priority unison is also minimal, then k = 1 sin
e every exe
ution of a rule bya pro
essor modi�es its 
lo
k value.3 Impossibility resultsIn this se
tion we present a broad 
lass of impossibility results related to the FTSS unison.For the sake of the generality we assume the most 
onstrained s
heduler (the 
entral one).Additionally we assume ea
h pro
essor has an in�nite memory.3.1 PreliminariesFirst, we introdu
e two preliminary results whi
h show that in any exe
ution of a (f, r)−ftssalgorithm for AU (under an asyn
hronous daemon) a pro
essor 
an not modify its 
lo
k valueif it has two neighbors q and q′ su
h that: Hq = Hp − 1 and Hq′ = Hp + 1.Lemma 1 Let A be a (f, r)−ftss algorithm for AU (under an asyn
hronous daemon). Let γbe a 
on�guration in whi
h a pro
essor p (su
h that Hp ≥ 1) has two neighbors q and q′ su
hthat: Hq = Hp − 1 and Hq′ = Hp + 1. If p exe
utes an a
tion of A during the step γ −→ γ′,then this a
tion does not modify the value of Hp.Proof. Let A be a (f, r)−ftss algorithm for AU (under an asyn
hronous daemon). Let Gbe a network and γ be a 
on�guration of G su
h that no pro
essor is 
rashed, γ ∈ Γ1 and thereexists a pro
essor p (su
h that Hp ≥ 1) whi
h has two neighbors q and q′ su
h that: Hq = Hp−1and Hq′ = Hp + 1.Assume p exe
utes an a
tion of A during the step γ −→ γ′ (and only p) su
h that this a
tionmodi�es the value of Hp. Note that Hq and Hq′ are identi
al in γ and γ′. Let α be the valueof Hp in γ and α′ be the value of Hp in γ′. alpha and alpha′ verify one of the two followingrelations:Case 1: α < α′.This implies that |α′ −Hq| = |α′ −α|+ |α−Hq| > 1 (sin
e |α′ −α| ≥ 1 by hypothesis and

|α − Hq| = 1). 6



Case 2: α′ < α.This implies that |α′ − Hq′ | = |α′ − α| + |α − Hq′ | > 1 (sin
e |α′ − α| ≥ 1 by hypothesisand |α − Hq′ | = 1).In the two above 
ases, γ′ /∈ Γ1, hen
e the safety property of A is not veri�ed. �Lemma 2 Let A be a (f, r)−ftss algorithm for minimal AU (under an asyn
hronous daemon).Let γ be a 
on�guration in whi
h a pro
essor p (su
h that Hp ≥ 1) has two neighbors q and q′su
h that: Hq = Hp − 1 and Hq′ = Hp + 1. Pro
essor p is not enabled for A in γ.Proof. This is a dire
t 
onsequen
e of Lemma 1. �3.2 With respe
t to the number of 
rashed pro
essorsProposition 1 For any natural number r, there exists no (f, r)−ftss algorithm for AU underan asyn
hronous daemon if f ≥ 2.Proof. Let r be a natural number. Let A be a (2, r)−ftss algorithm for AU (under anasyn
hronous daemon). Consider a network represented by the following graph: G = (V, E)with V = {p0, . . . , p2(r+1)} and E = {{pi, pi+1}|i ∈ {0, . . . , 2r + 1}}. Let γ be the following
on�guration of the network: p0 and p2(r+1) are 
rashed and ∀i ∈ {0, . . . , 2(r + 1)}, Hpi
= i (allthe other variables 
an have any value).By Lemma 1, no pro
essor between p2 and p2r+1 
an 
hange its 
lo
k value in every exe
utionstarting from γ. However, pr+1 must verify the spe
i�
ation of the problem sin
e the nearest
rashed pro
essor is at r hops away. This 
ontradi
ts the liveness property of A. �3.3 With respe
t to unfair daemonProposition 2 For any natural number r, there exists no (1, r)−ftss algorithm for AU underan unfair daemon.Proof. Let r be a natural number. Assume that there exists an (1, r)−ftss algorithm A forAU under an unfair daemon. Consider a network, G, of diameter greater than 2r + 2 1. Let pbe a pro
essor of G. Sin
e the daemon is unfair, it 
an 
hoose to never a
tivate p unless thispro
essor be
omes the only enabled pro
essor of G.Assume that there exists a 
on�guration γ su
h that no pro
essor is 
rashed and in whi
h

p is the only enabled pro
essor of the network. The asyn
hronism assumption makes this 
on-�guration indistinguishable from γ′, the same 
on�guration in whi
h p is 
rashed. We assumedthat in γ no other pro
essor but p is enabled. Consequently, the network is starved in γ′. This
ontradi
ts the liveness property of A, hen
e no su
h 
on�guration γ exists.Sin
e there exists no 
on�guration in whi
h p is the unique enabled pro
essor (in everyexe
ution starting from an arbitrary 
on�guration), the unfair daemon 
an starve p in�nitely(if no 
rash o

urs). This 
ontradi
ts the liveness property of A. �1At least one pro
essor veri�es the spe
i�
ation of the AU problem
7
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on�gurations used in the proof of Lemma 3 (the numbers represent 
lo
kvalues and the double 
ir
les represent 
rashed pro
essors).3.4 With respe
t to weakly fair daemonIn this se
tion we prove there exists no (1, r)−ftss algorithm for minimal or priority AU undera weakly fair daemon for any r value. The �rst impossibility result uses the following property:if there exists an algorithm A whi
h is (1, r)−ftss for minimal AU under a weakly fair daemonfor a natural number r, then an arbitrary pro
essor p is not enabled for A if it has only oneneighbor p′ and if Hp = Hp′ (proved in Lemma 3 formally stated below). Then, we show that
A starves the network redu
ed to a two-
orre
t-pro
essor 
hain in whi
h all 
lo
k values areidenti
al (see Proposition 3).Lemma 3 If there exists an algorithm A whi
h is (1, r)−ftss for minimal AU under a weaklyfair daemon for a natural number r, then an arbitrary pro
essor p is not enabled for A if it hasonly one neighbor p′ and if Hp = Hp′ .Proof. Let r be a natural number. Let A be a (1, r)−ftss algorithm for the minimal AUunder a weakly fair daemon.Let G be the network redu
ed to a 
hain of length r + 2. Assume pro
essors in G labeled asfollows: p0, p1, . . . , pr+2. Consider the following 
on�gurations of G (see Figure 1):

• γ1 de�ned by ∀i ∈ {0, . . . , r + 1}, Hpi
= i and Hpr+2

= r + 1 and p0 
rashed.
• γ2 de�ned by ∀i ∈ {0, . . . , r + 1}, Hpi

= 2r + 2 − i and Hpr+2
= r + 1 and p0 
rashed.

• γ3 de�ned by ∀i ∈ {0, . . . , r + 2}, Hpi
= i and p0 
rashed.By Lemma 2, pro
essors from p1 to pr are not enabled in su
h 
on�gurations (and remainnot enabled until one of the pro
essors within p0 . . . pr+1 exe
ute a rule).Note that for the pro
essor pr+2, the 
on�gurations γ1 and γ2 are indistinguishable (otherwisethe unison would not be minimal). We are going to prove the result by absurd. Assume pr+2 isenabled in γ1 and γ2. The safety property of A implies that the enabled rule for pr+2 modi�esits 
lo
k either to r + 2 or to r. In the following we dis
uss these 
ases separately:8



Case 1: The enabled rule for pr+2 modi�es its 
lo
k to r + 2.Assume w.r.g. pr+2 is the only a
tivated pro
essor hen
e its 
lo
k takes the value r + 2.The following 
ases are possible in the new 
on�guration:Case 1.1: pr+2 is not enabled.If the exe
ution started from γ1, then no pro
essor is enabled, whi
h 
ontradi
ts theliveness property of AU.Case 1.2 : pr+2 is enabled and after exe
ution its 
lo
k modi�es to r + 1.Let ǫ be an exe
ution starting from γ1 in whi
h only pr+2 is a
tivated. Consequently,the 
lo
k of the pro
essor pr+2 takes in�nitely the following sequen
e of values: r +
1, r + 2. In this exe
ution, pr+2 exe
utes in�nitely often while pro
essors from p0 to
pr are never enabled. Note that pr+1 is not enabled when Hpr+2

= r + 2, hen
e thispro
essor is never in�nitely enabled. Overall, this exe
ution is allowed by the weaklyfair s
heduler, however it starves pr+1, whi
h 
ontradi
ts the liveness property of A.Case 1.3 : pr+2 is enabled and after exe
ution it modi�es its 
lo
k to r.The exe
ution of this rule leads to 
ase 2.Case 2 : The enabled rule for pr+2 modi�es its 
lo
k into r.Assume w.r.g. pr+2 is the only a
tivated pro
essor and after its exe
ution the new 
on�g-uration veri�es one of the the following 
ases:Case 2.1 : pr+2 is not enabled.If the exe
ution started from γ2, then no pro
essor is enabled, whi
h 
ontradi
ts theliveness property (the network is starved).Case 2.2 : pr+2 is enabled and its 
lo
k modi�es to r + 1.Let ǫ be an exe
ution starting from γ2 whi
h 
ontains only a
tions of pr+2 (its 
lo
ktakes in�nitely the following value sequen
e : r+1, r). In this exe
ution, pr+2 exe
utesa rule in�nitely often (by 
onstru
tion) and pro
essors from p0 to pr are never enabled.Note that pr+1 is not enabled when Hpr+2
= r, so this pro
essor is never in�nitelyenabled. In 
on
lusion, this exe
ution veri�es the weakly fair s
heduling.Note that this exe
ution starves pr+1, whi
h 
ontradi
ts the liveness property of A.Case 2.3 : pr+2 is enabled and the exe
ution of its enabled rule modi�es its 
lo
k to r+2.The exe
ution of these rule leads to 
ase 1.Overall, the only two possible 
ases (
ases 1.3 and 2.3) are the following:1. pr+2 is enabled for modifying its 
lo
k value to r when Hpr+2

= r + 2 and Hpr+1
= r + 1.2. pr+2 is enabled for modifying its 
lo
k value to r + 2 when Hpr+2

= r and Hpr+1
= r + 1.Let ǫ be an exe
ution starting from γ3 whi
h 
ontains only a
tions of pr+2 (its 
lo
k takesin�nitely the following sequen
e of values: r + 2, r). In this exe
ution, pr+2 exe
utes a rulein�nitely often (by 
onstru
tion) and pro
essors in p0 . . . pr are never enabled. Note that pr+1is not enabled when Hpr+2

= r + 2, so this pro
essor is never in�nitely enabled. In 
on
lusion,this exe
ution veri�es the weakly fair s
heduling.This exe
ution starves pr+1, whi
h 
ontradi
ts the liveness property of A and proves theresult. �Proposition 3 For any natural number r, there exists no (1, r)−ftss algorithm for minimalAU under a weakly fair daemon. 9
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γ0
0 0 1 2 r+1rr-1p0 p1 p2 pr−1 pr pr+1 pr+2r+2Figure 2: Initial 
on�gurations used in the proof of Proposition 4 (the numbers represent 
lo
kvalues and the double 
ir
les represent 
rashed pro
essors).Proof. Let r be a natural integer. Assume there exists a (1, r)−ftss algorithm A for theminimal AU under a weakly fair daemon. By Lemma 3, an arbitrary pro
essor p is not enabledfor A if it has only one neighbor p′ and if Hp = Hp′ .Let G be a network redu
ed to a 
hain of 2 pro
essors p and p′. Let γ be a 
on�guration of

G in whi
h Hp = Hp′ and no 
rashed pro
essor. Noti
e that no pro
essor is enabled in γ whi
h
ontradi
ts the liveness property of A and proves the result. �The se
ond main result of this se
tion is that there exists no (1, r)−ftss algorithm for priorityAU under a weakly fair daemon for any natural number r (see Proposition 4).To prove this result by 
ontradi
tion we 
onstru
t an exe
ution (allowed by a weakly fairs
heduler) starting from the 
on�guration γ0
0 shown in Figure 2. We prove that this exe
utionstarves pr+1 whi
h 
ontradi
ts the liveness property of the algorithm.Proposition 4 For any natural number r, there exists no (1, r)−ftss algorithm for priority AUunder a weakly fair daemon.Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm Afor priority AU under a weakly fair daemon. Let G be the network redu
ed to a 
hain oflength r + 2. Assume that pro
essors in G are labeled as follows: p0, p1, . . . , pr+2. Let γ0

0 be a
on�guration and p0 
rashed and ∀i ∈ {0, . . . , r + 2}, Hpi
= i (See Figure 2). Note that all theother variables 
an have any value.We 
onstru
t a fragment of exe
ution ǫ′0 = γ0

0γ0
1γ0

2 . . . γ0
r+1 starting from γ0

0 su
h that ∀i ∈
{0, 1, . . . , r}, the step γ0

i → γ0
i+1 
ontains only the a
tion of pi+1 if pi+1 is enabled. By Lemma1, this fragment does not modify the 
lo
k value of pro
essors in p0 . . . pr+1.We also 
onstru
t a fragment of exe
ution, ǫ′′0 , starting from γ0

r+1 using the following 
ases:Case 1: pr+2 is not enabled in γ0
r+1.Let ǫ′′0 be ǫ (empty word).Case 2: pr+2 is enabled in γ0

r+1.In the sequel we distinguish following 
ases:Case 2.1: The exe
ution of a rule by pr+2 in γ0
r+1 doesn't modify its 
lo
k value.Let ǫ′′0 be γ0

r+1γ
0
r+2 in whi
h the step γ0

r+1 → γ0
r+2 
ontains only the exe
ution of arule by pr+2.Case 2.2: The exe
ution of a rule by pr+2 in γ0

r+1 modi�es its 
lo
k value.The safety property of A implies that the 
lo
k of pr+2 takes the value r or r + 1.Case 2.2.1: The exe
ution of a rule by pr+2 in γ0
r+1 modi�es its 
lo
k value into

r + 1.Sin
e A is a priority unison, there exists by de�nition a fragment of exe
ution
ǫ′′0 = γ0

r+1γ
0
r+2 . . . γ0

r+k whi
h 
ontains only a
tions of pr+2 su
h that (i) in thesteps from γ0
r+2 to γ0

r+k−1 the 
lo
k value of pr+2 is not modi�ed while (ii) in thestep γ0
r+k−1 → γ0

r+k the 
lo
k value of pr+2 is in
remented.10



Case 2.2.2: The exe
ution of a rule by pr+2 in γ0
r+1 modi�es its 
lo
k value into r.Sin
e A is a priority unison, there exists by de�nition a fragment of exe
ution

ǫa = γ0
r+1γ

0
r+2 . . . γ0

r+k whi
h 
ontains only a
tions of pr+2 su
h that (i) in thesteps from γ0
r+2 to γ0

r+k−1 the 
lo
k value of pr+2 is not modi�ed and (ii) in thestep γ0
r+k−1 → γ0

r+k the 
lo
k of pr+2 takes the value r + 1.Sin
e A is a priority unison, there exists by de�nition a fragment of exe
ution
ǫb = γ0

r+kγ0
r+k+1 . . . γ0

r+j whi
h 
ontains only a
tions of pr+2 su
h that (i) in thesteps from γ0
r+k+1 to γ0

r+j−1 the 
lo
k value of pr+2 is not modi�ed and (ii) inthe step γ0
r+j−1 → γ0

r+j the 
lo
k value of pr+2 is in
remented.Let ǫ′′0 be ǫaǫb.In all 
ases, we 
onstru
t a fragment of exe
ution ǫ0 = ǫ′0ǫ
′′
0 su
h that its last 
on�guration(let us denote it by γ1

0) veri�es: the values of the network 
lo
ks are identi
al to those in γ0
0 (theothers variables may have 
hanged). Then, we 
an reiterate the reasoning and obtain a fragmentof exe
ution ǫ1, ǫ2 . . . (respe
tively starting from γ1

0 , γ2
0 , . . .) that veri�es the same property.We �nally obtain an exe
ution ǫ = ǫ0ǫ1 . . . whi
h veri�es:

• No pro
essor is in�nitely enabled without exe
uting a rule (sin
e all enabled pro
essors in
γi
0 exe
ute a rule or are neutralized during ǫi). Consequently ǫ is an exe
ution that veri�esthe weakly fair s
heduling.

• The 
lo
k of the pro
essor pr+1 never 
hanges (whereas d(p0, pr+1) = r + 1).This exe
ution 
ontradi
ts the liveness property of A whi
h is a (1, r)−ftss algorithm forpriority AU under a weakly fair daemon by hypothesis. �3.5 With respe
t to strongly fair daemonIn this se
tion we prove that there exists no (1, r)−ftss algorithm for minimal or priority AUunder a strongly fair daemon if the degree of the network is greater or equal to 3. In order toprove the �rst impossibility result, we use the following property: if a pro
essor p has only oneneighbor q su
h that Hq = r + 1 and if |Hp − Hq| ≤ 1, then p is enabled in any (1, r)−ftssalgorithm for minimal AU (see Lemma 4). Then we 
onstru
t a strongly fair in�nite exe
utionwhi
h starves a pro
essor more than r hops away from a 
rashed pro
essor. This exe
ution
ontradi
ts the liveness property of the AU problem (see Proposition 5).Lemma 4 Let A a (1, r)−ftss algorithm for minimal AU. If a pro
essor p has only one neighbor
q su
h that Hq = r + 1 and if |Hp − Hq| ≤ 1, then p is enabled in A.Proof. Assume that there exists an algorithm A whi
h is (1, r)−ftss for minimal AU. Let Gbe a network that exe
utes A and whi
h 
ontains at least one pro
essor p whi
h has only oneneighbor q. Assume Hq = r + 1 and |Hp − Hq| ≤ 1. Then, we have:1. If Hp = r, then p is enabled for at least one rule of A. Otherwise, the network redu
ed tothe 
hain p0, . . . , pr, q, p in the 
on�guration γ1 de�ned by ∀i ∈ {0, . . . , r}, Hpi

= 2r+2− i,
Hq = r +1, Hp = r where p0 is 
rashed (see Figure 3) is starved sin
e no 
orre
t pro
essoris enabled (by Lemma 2).2. If Hp = r +1, then p is enabled for at least one rule of A. Otherwise, the network redu
edto the 
hain q, p in the 
on�guration γ2 de�ned by Hq = Hp = r + 1 and in whi
h nopro
essor is 
rashed (see Figure 3) is starved sin
e no 
orre
t pro
essor is enabled.11
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Figure 3: The three 
on�gurations used in the proof of Lemma 4 (the numbers represent 
lo
kvalues and the double 
ir
les represent 
rashed pro
essors).3. If Hp = r+2, then p is enabled for at least one rule of A. Otherwise, the network redu
ed tothe 
hain p0, . . . , pr, q, p in the 
on�guration γ3 de�ned by ∀i ∈ {0, . . . , r}, Hpi
i, Hq = r+1,

Hp = r + 2 and p0 
rashed (see Figure 3) is starved sin
e no 
orre
t pro
essor is enabled(by Lemma 2).
�Proposition 5 For any natural number r, there exists no (1, r)−ftss algorithm for minimalAU under a strongly fair daemon if the graph modeling the network has a degree greater orequal to 3.Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm Afor the minimal AU under a strongly fair daemon in a network with a degree greater or equalto 3. Let G be the network de�ned by: V = {p0, . . . , pr+1, q, q

′} and E = {{pi, pi+1}, i ∈
{0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q

′}}.As A is deterministi
, q and q′ must behave identi
ally if they have the same 
lo
k value (inthis 
ase, their lo
al 
on�gurations are identi
al). If Hpr+1
= r + 1 and |Hpr+1

− Hq| ≤ 1, thereexists three lo
al 
on�gurations for q: (1) Hq = r, (2) Hq = r + 1 or (3) Hq = r + 2 (the sameproperty holds for q′).By Lemma 4, Pro
essor q (respe
tively q′) is enabled in any 
on�guration in whi
h Hpr+1
=

r +1 and |Hpr+1
−Hq| ≤ 1 (respe
tively |Hpr+1

−Hq′ | ≤ 1). Moreover, in this 
ase, the enabledrule for q (respe
tively q′) modi�es its 
lo
k into a value in {r, r + 1, r + 2} \ Hq (respe
tively
{r, r + 1, r + 2} \ Hq′) by the safety property of A.For ea
h of the three possible lo
al 
on�gurations for q or q′ (studied in the proof of Lemma4), A 
an only allow 2 moves. Hen
e, there exists 8 possible moves for A. Let denote ea
h ofthese possibilities by a triplet (a, b, c) where a, b and c are the 
lo
k value of q after the allowedmove when Hq = r, Hq = r+1, and Hq = r+2 respe
tively. Note that, due to the determinismof A, moves allowed for q′ and q are identi
al. There exists the following 
ases:Case 1: (r + 1, r, r)Let γ1 be the 
on�guration of G de�ned by: ∀i ∈ {0, . . . , r+1}, Hpi

= 2r+2−i, Hq = r+112
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0 1 2 r-1 r r+1γ3

r+2r+1Figure 4: The three 
on�gurations used in the proof of Proposition 5 (the numbers represent 
lo
kvalues and the double 
ir
les represent 
rashed pro
essors).and Hq′ = r and p0 
rashed (see Figure 4). Note that only q and q′ are enabled (by Lemma2). Assume q exe
utes. Hen
e, its 
lo
k takes the value r. By Lemma 2, only q and q′ areenabled. Assume now that q′ exe
utes. Its 
lo
k takes the value r + 1. This 
on�gurationis identi
al to γ1 (sin
e pro
essors are anonymous), we 
an repeat the above reasoning inorder to obtain an in�nite exe
ution in whi
h pro
essors p1, . . . , pr+1 are never enabled(see Figure 5 for an illustration when r = 1).Case 2: (r + 1, r + 2, r)Let γ2 be the 
on�guration of G de�ned by: ∀i ∈ {0, . . . , r + 1}, Hpi
i, Hq = r and

Hq′ = r+2 and p0 
rashed (see Figure 4). Note that only q and q′ are enabled (by Lemma2). Assume q exe
utes. Its 
lo
k takes the value r + 1. By Lemma 2, only q and q′ areenabled. Assume q exe
utes its rule again. Its 
lo
k takes the value r + 2. By Lemma 2,only q and q′ are enabled. Assume now that q′ exe
utes its rule. Its 
lo
k takes the value
r. This 
on�guration is identi
al to γ2 (sin
e pro
essors are anonymous). We 
an repeatthe reasoning in order to obtain an in�nite exe
ution in whi
h pro
essors in p1, . . . , pr+1are never enabled.Case 3: (r + 1, r, r + 1)Similar to the reasoning of 
ase 1.Case 4: (r + 1, r + 2, r + 1)Let γ3 be the 
on�guration of G de�ned by: ∀i ∈ {0, . . . , r + 1}, Hpi

= i, Hq = r + 2 and
Hq′ = r + 1 and in whi
h p0 is 
rashed (see Figure 4). Note that only q and q′ are enabled(by Lemma 2). Assume q′ exe
utes its rule. Its 
lo
k takes the value r + 2. By Lemma2, only q and q′ are enabled. Assume now that q exe
utes its rule. Its 
lo
k takes the13
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��	γ1Figure 5: Example of the exe
ution 
onstru
ted in 
ase 1 of Proposition 5 when r = 1 (the numbersrepresent 
lo
k values and the double 
ir
les represent 
rashed pro
essors).value r + 1. This 
on�guration is identi
al to γ3 (sin
e pro
essors are anonymous). We
an repeat the reasoning in order to obtain an in�nite exe
ution in whi
h pro
essors in
p1, . . . , pr+1 are never enabled.Case 5: (r + 2, r, r)Let γ2 be the 
on�guration of G as de�ned in the 
ase 2 above. Note that only q and q′are enabled (by Lemma 2). Assume q exe
utes its rule. Its 
lo
k takes the value r + 2.By Lemma 2, only q and q′ are enabled. Assume now that q′ exe
utes its rule. Its 
lo
ktakes the value r. This 
on�guration is identi
al to γ2 (sin
e pro
essors are anonymous).We 
an repeat the reasoning in order to obtain an in�nite exe
ution in whi
h pro
essors
p1, . . . , pr+1 are never enabled.Case 6: (r + 2, r + 2, r)The reasoning is similar to the 
ase 5.Case 7: (r + 2, r, r + 1)Let γ2 be the 
on�guration of G as de�ned in the 
ase 2 above. Note that only q and q′are enabled (by Lemma 2). Assume q exe
utes its rule. Its 
lo
k takes the value r + 2.By Lemma 2, only q and q′ are enabled. Assume q′ exe
utes its rule. Its 
lo
k takesthe value r + 1. By Lemma 2, only q and q′ are enabled. Assume q′ exe
utes again itsrule. Its 
lo
k takes the value r. This 
on�guration is identi
al to γ2 (sin
e pro
essors areanonymous). We 
an repeat the above s
enario in order to obtain an in�nite exe
ution inwhi
h pro
essors p1, . . . , pr+1 are never enabled.Case 8: (r + 2, r + 2, r + 1)The proof is similar to the 
ase 4. 14
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γ0
0 r+2Figure 6: The initial 
on�guration for the proof of Proposition 6 (the numbers represent 
lo
k valuesand the double 
ir
les represent 
rashed pro
essors).Overall, we 
an 
onstru
t an in�nite exe
ution in whi
h pro
essor p0 is 
rashed, pro
essorsfrom p1 to pr+1 are never enabled and pro
essors q and q′ exe
ute a rule in�nitely often. Thisexe
ution veri�es the strongly fair s
heduling. Noti
e that in this exe
ution pr+1 is never enabled,hen
e it is starved. This 
ontradi
ts the liveness property of A and proves the result. �The se
ond main result of this se
tion is that there exists no (1, r)−ftss algorithm for priorityAU under a strongly fair daemon for any natural number r if the degree of the graph modelingthe network is greater or equal to 3. (see Proposition 6).To prove this result we assume the 
ontrary and we 
onstru
t an exe
ution starting fromthe 
on�guration γ0

0 of Figure 6 verifying the strongly fair s
heduling whi
h starves pr+1, that
ontradi
ts the liveness of the algorithm.Proposition 6 For any natural number r, there exists no (1, r)−ftss algorithm for priority AUunder a strongly fair daemon if the graph modeling the network has a degree greater or equal to3.Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm Afor priority AU under a strongly fair daemon even if the graph modeling the network has adegree greater or equal to 3. Let G be the network de�ned by: V = {p0, . . . , pr+1, q, q
′} and

E = {{pi, pi+1}, i ∈ {0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q
′}}. Note that G has a degree equal to 3.Let γ0

0 be the following 
on�guration: ∀i ∈ {0, . . . , r + 1}, Hpi
= i, Hq = Hq′ = r + 2 and

p0 
rashed (see Figure 6). Note that, for all exe
ution ǫ starting from γ0
0 , the pro
essors q and

q′ are allowed to modify their 
lo
ks in a �nite time (otherwise the network would be starvedfollowing Lemma 1).Let ǫ0a = γ0
0γ0

1 . . . γ0
k be a fragment of exe
ution with the following properties:1. k ≥ 1 if there exists i ∈ {0, . . . , r + 1} su
h that pi is enabled in γ0

0 ; k = 0 otherwise2. it 
ontains no modi�
ation of 
lo
k values3. γ0
k is the �rst 
on�guration in whi
h q or q′ are enabled for the modi�
ation of their 
lo
kvalue.We 
onsider the following s
heduling s
enario: in ea
h step in ǫ0a is exe
uted the least re
entlyexe
uted pro
essor in the set of enabled pro
essors. Note that this s
enario is 
ompatible witha strongly fair s
heduling. Let us study the following 
ases:Case 1: q is enabled in γ0

k for a modi�
ation of its 
lo
k value. The safety property of A impliesthat the value of Hq should be modi�ed to either r or r + 1.Case 1.1: The value of Hq is modi�ed to r.Sin
e A is a priority unison, there exists by de�nition a fragment of exe
ution ǫ0b1 =
γ0

kγ0
k+1 . . . γ0

k+r whi
h 
ontains only a
tions of q su
h that (i) in the steps from γ0
k to15



γ0
k+r−1 the 
lo
k value of q is not modi�ed and (ii) in the step γ0

k+r−1 → γ0
k+r the
lo
k value of q is in
remented.Sin
e A is a priority unison, there exists by de�nition a fragment of exe
ution ǫ0b2 =

γ0
k+rγ

0
k+r+1 . . . γ0

k+j whi
h 
ontains only exe
utions of a rule by q su
h that (i) in thesteps from γ0
k+r to γ0

k+j−1 the 
lo
k value of q is not modi�ed and (ii) in the step
γ0

k+j−1 → γ0
k+j the 
lo
k value of q is in
remented.Let ǫ0b be ǫ0b1ǫ

0
b2.Case 1.2: The value of Hq is modi�ed to r + 1.Sin
e A is a priority unison, there exists by de�nition a fragment of exe
ution ǫ0b =

γ0
kγ0

k+1 . . . γ0
k+r whi
h 
ontains only a
tions of q su
h that (i) in the steps from γ0

k to
γ0

k+r−1 the 
lo
k value of q is not modi�ed and (ii) in the step γ0
k+r−1 → γ0

k+r the
lo
k value of q in
rements.If q′ is enabled in the last 
on�guration of ǫ0b
2, we 
an 
onstru
t ǫ0c similarly to ǫ0b usingpro
essor q′. Otherwise, let ǫ0c be ǫ (the empty word).Case 2: q′ is enabled in γ0

k for a modi�
ation of its 
lo
k value.We 
an 
onstru
t ǫ0b and ǫ0c similar to the 
ase 1 by reversing the roles of q and q′.Let us de�ne ǫ0 = ǫ0aǫ
0
bǫ

0
c . Noti
e that the 
lo
k values are identi
al in the �rst and the last
on�guration of ǫ0. This implies that we 
an in�nitely repeat the previous reasoning in orderto obtain an in�nite exe
ution ǫ = ǫ0ǫ1 . . . whi
h satis�es:

• No 
orre
t pro
essor is in�nitely often enabled without exe
uting a rule (sin
e q and q′exe
ute a rule in�nitely often and others pro
essors are 
hosen in fun
tion of their lastexe
ution of a rule, that implies that an in�nitely often enabled pro
essor exe
utes a rulein a �nite time). This exe
ution veri�es a strongly fair s
heduling.
• The 
lo
k value of pr+1 is never modi�ed (whereas d(p0, pr+1) = r + 1).This exe
ution 
ontradi
ts the liveness property of A, whi
h implies the result. �4 A proto
ol for 
hains and ringsIn the following we 
onsider some possibility results related to the asyn
hronous unison on 
hainsand rings (networks with a degree inferior to 3).In this se
tion, we propose an (1, 0)−ftss algorithm for AU under a lo
ally 
entral stronglyfair daemon for 
hains and rings. The proposed algorithm is both minimal and priority.4.1 Algorithm des
riptionEa
h pro
essor 
he
ks if it is "lo
ally syn
hronized", i.e. if the drift between its 
lo
k value andthe 
lo
k values of its neighbors does not ex
eed 1.If a pro
essor is "lo
ally syn
hronized", it modi�es its 
lo
k value in a �nite time in orderto preserve this property. If a pro
essor is not syn
hronized with at least one of its neighbors,it makes a 
orre
tion in a �nite time in order to 
orre
t its 
lo
k value. More pre
isely, ea
hpro
essor p has only one variable: its 
lo
k denoted by Hp. At ea
h step, every pro
essor p
omputes a set of possible 
lo
k values, i.e. the set of 
lo
k values whi
h have a drift of at most2In this 
ase, q

′ was already enabled in the last 
on�guration of ǫ
0

a16
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(N)(N)Figure 7: An example of exe
ution of UFT SS on a 
hain with no 
rash (the numbers represent
lo
k values and squared pro
essors in γi exe
uted the indi
ated rule during the step γi −→ γi+1).1 with respe
t to all neighbors of p (note that 
omputing this set relies only on the 
lo
k valuesof p's neighbors, but not on the one of p). This set is denoted by Inter(Np).Then, the following 
ases may appear:
• |Inter(Np)| = 0: p has two neighbors and the drift between their 
lo
k values is stri
tlygreater than 2. In this 
ase, p is enabled to take the average value between these two 
lo
kvalues if its 
lo
k does not have yet this value.
• |Inter(Np)| = 1: p has two neighbors and the drift between their 
lo
k values is exa
tly2. In this 
ase, p is enabled to take the average value between these two 
lo
k values if its
lo
k does not have yet this value.
• |Inter(Np)| ≥ 2: p has one neighbor or the drift between the 
lo
k values of its twoneighbors is stri
tly less than 2. In this 
ase, p is enabled to modify its 
lo
k value asfollows: if Hp + 1 ∈ Inter(Np), then Hp is modi�ed to Hp + 1, otherwise Hp is modi�edto min{Inter(Np)}.Note that our 
orre
tion rules use the average instead of maximum or minimum (whi
h arefrequently used in the literature, see e.g. [9, 11, 12, 22℄) in order to not favors the 
lo
k valueof a parti
ular neighbor. That is, the 
hosen neighbor may be 
rashed and prevent the systemto rea
h the syn
hronization.The detailed des
ription of our solution is proposed in Algorithm 1. In order to betterunderstand our algorithm Figures from 7 to 10 propose some toy examples.4.2 Corre
tion Proof roadmapIn this se
tion, we present the key ideas in order to prove the 
orre
tness of our algorithm.First, we introdu
e some useful notations:Notation 1 Let p be a pro
essor. If q denotes one of its neighbors, we denote the other neighborby q̄ (if this neighbor exists). 17
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essors in γi exe
uted theindi
ated rule during the step γi −→ γi+1).
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Figure 10: An example of exe
ution of UFT SS on a ring with a 
rash (the numbers represent 
lo
kvalues, the double 
ir
les represent 
rashed pro
essors and squared pro
essors in γi exe
uted theindi
ated rule during the step γi −→ γi+1).Algorithm 1 (UFT SS): AU (minimal and priority) (1, 0)-ftss.Data:- Np: set of neighbors of p.Variable:- Hp: natural integer representing the 
lo
k of the pro
essor.Ma
ros:- For A ⊆ N and a ∈ N, next(A, a) =

{

a + 1 if a + 1 ∈ A

min{A} otherwise
.- For q ∈ Np, poss(q) =

{

{Hq − 1,Hq,Hq + 1} if Hq 6= 0

{Hq,Hq + 1} otherwise
.- Inter(Np) =

⋂

q∈Np

poss(q).Rules:/* Normal rule */
(N) :: |Inter(Np)| ≥ 2 −→ Hp := next (Inter(Np),Hp)/* Corre
tion rules */
(C1) :: (|Inter(Np)| = 0) ∧

(

Hp 6=

⌈

P

q∈Np

Hq

|Np|

⌉)

∧

(

Hp 6=

⌊

P

q∈Np

Hq

|Np|

⌋)

−→ Hp :=

⌊

P

q∈Np

Hq

|Np|

⌋

(C2) :: (Inter(Np) = {h}) ∧ (Hp 6= h) −→ Hp := h19



Notation 2 We denote the value of Hp for a pro
essor p in a 
on�guration γi by (Hp)
γi .We denote the value of Inter(Np) for a pro
essor p in a 
on�guration γi by (Inter(Np))
γi .In order to prove that UFT SS is a (1, 0)-ftss algorithm for AU under a lo
ally 
entralstrongly fair daemon on a 
hain and on a ring (see Proposition 11), we prove in the sequel thefollowing properties:1. UFT SS is a self-stabilizing algorithm for AU under a lo
ally 
entral strongly fair daemonon a 
hain (Proposition 7).2. UFT SS is a self-stabilizing algorithm for AU under a lo
ally 
entral strongly fair daemonon a 
hain even if one pro
essor is 
rashed in the initial 
on�guration (Proposition 8).3. UFT SS is a self-stabilizing algorithm for AU under a lo
ally 
entral strongly fair daemonon a ring (Proposition 9).4. UFT SS is a self-stabilizing algorithm for AU under a lo
ally 
entral strongly fair daemonon a ring even if one pro
essor is 
rashed in the initial 
on�guration (Proposition 10).The proof of ea
h of these 4 propositions is dedu
ed from 3 lemmas as follows:1. Firstly, we prove that UFT SS veri�es the 
losure of the safety of UAU under the 
on-sidered hypothesis (i.e. if there exists a 
on�guration γ su
h that γ ∈ Γ1, then every
on�guration γ′ rea
hable from γ verify: γ′ ∈ Γ1, see respe
tively Lemma 5, 11, 14, and20).The idea of the proof is as follows: we �rst prove that only the normal rule is enabled in asu
h 
on�guration and then, we show that this rule respe
ts the "lo
ally syn
hronization"property.2. Se
ondly, we prove that UFT SS veri�es liveness of UAU under the 
onsidered hypothesisin every exe
ution starting from a legitimate 
on�guration (i.e. every (
orre
t) pro
essorin
rements in�nitely often its 
lo
k, see respe
tively Lemma 7, 12, 16, and 21).This proof is done in the following way: we �rst show that every (
orre
t) pro
essorexe
utes in�nitely often the normal rule in every exe
ution starting from a 
on�guration

γ ∈ Γ1 and then, we show that if a pro
essor exe
utes in�nitely often the normal rule, itin
rements its 
lo
k in a �nite time.3. Finally, we prove that UFT SS 
onverges to a legitimate 
on�guration of UAU under the
onsidered hypothesis in every exe
ution (i.e. there exists a 
on�guration γ ∈ Γ1 in everyexe
ution, see respe
tively Lemma 10, 13, 19, and 22).In order to 
omplete the proof we studying a potential fun
tion.4.3 Proof on a 
hainIn this se
tion, we assume that our algorithm is exe
uted on a 
hain under a strongly fair lo
ally
entral daemon. In the following we prove that UFT SS is a FTSS UAU (that implies that itis a FTSS AU) under these assumptions.. The proof 
ontains two major steps:- First, we prove that our algorithm is self-stabilizing.- Se
ond, we prove that our algorithm is self-stabilizing even if the initial 
on�guration
ontains a 
rashed pro
essor.
20



4.3.1 Proof of self-stabilizationIn this se
tion, ǫ = γ0, γ1 . . . denotes an exe
ution of UFT SS in whi
h there is no 
rash.Firstly, we are going to prove the 
losure of our algorithm.Lemma 5 If there exists i ≥ 0 su
h that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. Assume that there exists i ≥ 0 su
h that γi ∈ Γ1. This implies that ∀p ∈ V,
(Inter(Np))

γi 6= ∅ and then the rule (C1) is not enabled in γi. Assume rule (C2) is enabled in
γi. This implies that (Inter(Np))

γi = {h} and that (Hp)
γi 6= h. Then, we have γi /∈ Γ1 (sin
eif (Hp)

γi 6= h, then the following holds: ∃q ∈ Np, | (Hp)
γi − (Hq)

γi | ≥ 2). This 
ontradi
tionallows us to 
on
lude that the enabled pro
essors in γi are only enabled for rule (N).Let p be a pro
essor whi
h exe
utes a rule during the step γi → γi+1. Sin
e the dae-mon is lo
ally 
entral, neighbors of p do not exe
ute a rule during this step (their 
lo
kvalues remain identi
al). Assume the following holds: ∃q ∈ Np, | (Hp)
γi+1 − (Hq)

γi+1 | ≥ 2.By 
onstru
tion of rule (N), (Hp)
γi+1 ∈ (Inter(Np))

γi . By 
onstru
tion, (Inter(Np))
γi ⊆

{(Hq)
γi − 1, (Hq)

γi , (Hq)
γi + 1}. It follows that ∀q ∈ Np, | (Hp)

γi+1 − (Hq)
γi+1 | < 2 for ea
hpro
essor p whi
h exe
utes a rule (sin
e ∀q ∈ Np, (Hq)

γi = (Hq)
γi+1). Overall, γi+1 ∈ Γ1. �Se
ondly, we prove the liveness of our algorithm.Lemma 6 ∀γ0 ∈ Γ1, ∀p ∈ V, p exe
utes the rule (N) in a �nite time in any exe
ution startingfrom γ0.Proof. Let γ ∈ Γ1. Following Lemma 5, the only enabled rule is (N). We prove this propertyby indu
tion. To this end, we de�ne the following property (where p denotes a pro
essor):

(Pd) : If d is the distan
e between p and the nearest end of the 
hain, then p exe
utes the rule
(N) in a �nite time in any exe
ution starting from γ0.Initialization (d = 0): For all γ′, 
on�gurations 
ontained in an exe
ution starting from γ0, pis enabled for rule (N) sin
e (Inter(Np))

γ′

⊇ {(Hq)
γ′

, (Hq)
γ′

+ 1} where q denotes theonly neighbor of p. Sin
e the daemon is strongly fair, p exe
utes a rule in a �nite time.Indu
tion (d > 0): Assume (Pd−1) is true. Denote q the neighbor of p whi
h is on the half-
hain starting with p whi
h realize d. Assume by absurd that p is never enabled for rule
(N) in an exe
ution ǫ starting from γ0 ∈ Γ1. This implies that, for ea
h 
on�guration γ′whi
h is 
ontained in ǫ, we have | (Inter(Np))

γ′

| = 1 (sin
e if | (Inter(Np))
γ′

| = 0, then
γ′ /∈ Γ1). Let us study the following 
ases:Case 1: q̄ never exe
utes a rule in ǫ.It follows that: ∀γ′ ∈ ǫ, (Hq)

γ′

= (Hq̄)
γ′

+ 2 or (Hq)
γ′

= (Hq̄)
γ′

− 2. By 
onstru
tionof (Inter(Nq))
γ′ and of rule (N), the 
lo
k of q 
an not move from a value to theother in a step (re
all that only rule (N) 
an be enabled for q sin
e γ′ ∈ Γ1 by lemma5), this implies that q never exe
utes the rule (N), whi
h 
ontradi
ts (Pd−1).Case 2: q̄ exe
utes a rule in a �nite time in ǫ.Let γ → γ′ be the �rst step in whi
h q̄ exe
utes the rule (N). It is known that, forany γ ∈ Γ1:

| (Inter(Np))
γ | = 1 ⇒











(Hq̄)
γ

= ((Hp)
γ − 1) ∧ (Hq)

γ
= ((Hp)

γ
+ 1) (A)

or

(Hq̄)
γ

= ((Hp)
γ

+ 1) ∧ (Hq)
γ

= ((Hp)
γ − 1) (B)21



Let us study the following 
ases:Case 2.1: (A) is true in γ and (B) is true in γ′. The 
lo
k move of q̄ is in 
ontra-di
tion with the 
onstru
tion of ma
ro next.Case 2.2: (B) is true in γ and (A) is true in γ′. The 
lo
k move of q is in 
ontra-di
tion with the 
onstru
tion of ma
ro next.This proves that 
ase 2 is absurd.Sin
e the two 
ases are absurd, we 
an 
on
lude that p is enabled for rule (N) in a �nitetime in every exe
ution starting from a 
on�guration γ ∈ Γ1. Sin
e the daemon is stronglyfair, we 
an say that p exe
utes rule (N) in a �nite time in every exe
ution starting from
γ0. Consequently (Pd) is true.

�The above property implies that ∀γ0 ∈ Γ1, ∀p ∈ V, p exe
utes the rule (N) in�nitely oftenin every exe
ution starting from γ0.Lemma 7 If γ ∈ Γ1, then any pro
essor in
rements its 
lo
k in a �nite time in any exe
utionstarting from γ.Proof. Assume by 
ontradi
tion that there exists a pro
essor p and an exe
ution ǫ startingfrom γ0 ∈ Γ1 su
h that p never in
rements its 
lo
k in ǫ.Let be α = (Hp)
γ0 . By Lemma 6, p exe
utes in�nitely often (N). But, it never in
re-ments, that implies that next((Inter(Np))

γ
, (Hp)

γ
) = min{(Inter(Np)

γ
)} at ea
h exe
utionof a rule by p (in a 
on�guration γ). Sin
e ∀γ ∈ Γ1, ∀q ∈ Np, | (Hp)

γ − (Hq)
γ | < 2 and

∀q ∈ Np, (Inter(Np))
γ ⊆ {(Hq)

γ − 1, (Hq)
γ , (Hq)

γ + 1}, we have: min{(Inter(Np))
γ} ≤ (Hp)

γ .Assume that there exists γ ∈ Γ1 su
h that min{(Inter(Np))
γ} = (Hp)

γ . This implies thatthere exists q ∈ Np su
h that (Hq)
γ

= (Hp)
γ

+ 1.If q̄ does not exist or if (Hq̄)
γ ∈ {(Hp)

γ
, (Hp)

γ
+ 1}, then (Hp)

γ
+ 1 ∈ (Inter(Np))

γ . This
ontradi
ts next((Inter(Np))
γ

, (Hp)
γ
) = min{(Inter(Np)

γ
)}. We dedu
e that q̄ exists and that

(Hq̄)
γ = (Hp)

γ − 1. This implies that (N) is not enabled for p.We 
an dedu
e that, if rule (N) is exe
uted by a pro
essor p in a 
on�guration γ, then
min{(Inter(Np))

γ} < (Hp)
γ . We 
an now state that, in at most α exe
utions of p, Hp = 0.The next exe
ution of p in
rements its 
lo
k value, whi
h 
ontradi
ts the assumption on of pand the 
onstru
tion of ǫ. Then, we obtain the announ
ed result. �In the following we prove the 
onvergen
e of our algorithm.Let γ ∈ Γ, we de�ne the following notations:

∀e = {p, q} ∈ E, ω(e, γ) = | (Hp)
γ − (Hq)

γ |
∀p ∈ V, ̟(p, γ) = max

e∈E/p∈e
{ω(e, γ)}

∀i ∈ N, p(i, γ) = |{e ∈ E/ω(e, γ) = i}|Consider the following potential fun
tion:
P :

{

Γ −→ N∞

γ 7−→ (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(2, γ)) with k = max
e∈E

{ω(e, γ)}We 
ompare two values of P by lexi
ographi
 order. The following properties are veri�ed:
∀γ ∈ Γ, P (γ) ≥ (. . . 0, 0)

∀γ ∈ Γ, γ ∈ Γ1 ⇔ P (γ) = (. . . , 0, 0)
∀γ ∈ Γ, γ ∈ Γ \ Γ1 ⇔ P (γ) > (. . . , 0, 0)22



Lemma 8 If γ ∈ Γ \ Γ1, then every step γ → γ′ whi
h 
ontains the exe
ution of a rule by apro
essor p su
h that ̟(p) ≥ 2 veri�es P (γ′) < P (γ).Proof. Let γ ∈ Γ \ Γ1. Let γ → γ′ be a step whi
h 
ontains the exe
ution of a rule by apro
essor p su
h that ̟(p) ≥ 2 and γ ∈ Γ \ Γ1. Sin
e the daemon is lo
ally 
entral, neighborsof p do not modify their 
lo
ks during this step. Consider the following 
ases:Case 1: p's degree equals 1.Let q be its only neighbor and j = ω({p, q}, γ) = | (Hp)
γ − (Hq)

γ |. (Inter(Np))
γ

=

{(Hq)
γ −1, (Hq)

γ
, (Hq)

γ
+1}. It follows that p exe
uted rule (N). So, we have | (Hp)

γ′

−

(Hq)
γ′

| ≤ 1. Then: ̟({p, q}, γ′) ≤ 1 and :
P (γ) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(j, γ), . . . , p(2, γ))

P (γ′) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(j, γ) − 1, . . . , p(2, γ))And then: P (γ′) < P (γ).Case 2: p's degree equals 2.Let q be the neighbor of p su
h that ω({p, q}, γ) = ̟(p, γ) ≥ 2 and denote j = ω({p, q̄}, γ) ≤
̟(p, γ), e = {p, q} and ē = {p, q̄}. Consider the following 
ases:Case 2.1: p exe
uted the rule (N) during the step γ → γ′.By 
onstru
tion of (Inter(Np))

γ , we have ω(e, γ′) ≤ 1 and ω(ē, γ′) ≤ 1. Then:
P (γ) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(̟(p, γ), γ), . . . , p(j, γ), . . . , p(2, γ))

P (γ′) = (. . . , 0, p(k, γ), . . . , p(̟(p, γ), γ) − 1, . . . , p(j, γ) − 1, . . . , p(2, γ))And then: P (γ′) < P (γ).Case 2.2: p exe
uted the rule (C2) during the step γ → γ′.This 
ase is similar to the 
ase 2.1.Case 2.3: p exe
uted the rule (C1) during the step γ → γ′.Let us study the following 
ases:Case 2.3.1: We have: (Hq)
γ

< (Hq̄)
γ .By hypothesis, we know that ω(e, γ) ≥ ω(ē, γ) and then:

(Hp)
γ ≥

(Hq)
γ + (Hq̄)

γ

21) Assume that (Hp)
γ > (Hq̄)

γ +
(Hq)γ+(Hq̄)γ

2 .We 
an say that:
ω(e, γ) > (Hq̄)

γ − (Hq)
γ

+
(Hq)γ+(Hq̄)γ

2

ω(e, γ′) =
⌊

(Hq)γ+(Hq̄)γ

2

⌋Then: ω(e, γ′) < ω(e, γ).On the other hand,
ω(ē, γ) >

(Hq)γ+(Hq̄)γ

2

ω(ē, γ′) = (Hq̄)
γ −

⌊

(Hq)γ+(Hq̄)γ

2

⌋23



Then: ω(ē, γ′) ≤ ω(ē, γ).In 
on
lusion, we have: P (γ′) < P (γ).2) Assume that (Hp)
γ ≤ (Hq̄)

γ
+

(Hq)γ+(Hq̄)γ

2 .We have then:
ω(e, γ) >

(Hq)γ+(Hq̄)γ

2

ω(e, γ′) =
⌊

(Hq)γ+(Hq̄)γ

2

⌋Then: ω(e, γ′) < ω(e, γ).In 
ontrast, we have that: ω(ē, γ′) ≥ ω(ē, γ). But we 
an say that ω(ē, γ′) <

ω(e, γ) (obvious if (Hp)
γ > (Hq̄)

γ , due to the fa
t that (Hp)
γ >

⌈

(Hq)γ+(Hq̄)γ

2

⌉ inthe 
ontrary 
ase).In 
on
lusion, we have: P (γ′) < P (γ).Case 2.3.2: We have (Hq)
γ

> (Hq̄)
γ .This 
ase is similar to the 
ase 2.3.1 when we permute q and q̄.That proves the result. �Lemma 9 If γ0 ∈ Γ\Γ1, then every exe
ution starting from γ0 
ontains the exe
ution of a ruleby a pro
essor p su
h that ̟(p, γ0) ≥ 2.Proof. Let γ0 ∈ Γ \ Γ1. We reason by absurd. Assume that there exists an exe
ution

ǫ = γ0γ1 . . . starting from γ0 whi
h 
ontains no exe
ution of a rule by pro
essors p verifying
̟(p, γ0) ≥ 2.In a �rst time, assume that one of the end p of the 
hain verify: ̟(p, γ0) ≥ 2. Denote qthe only neighbor of p. If q is a
tivated during ǫ, we obtain a 
ontradi
tion (sin
e ̟(q, γ0) ≥
̟(p, γ0) ≥ 2). If q is not a
tivated during ǫ, we obtain that ∀i ∈ N, (Inter(Np))

γi = {(Hq)
γ0 −

1, (Hq)
γ0 , (Hq)

γ0 + 1}, p is so always enabled for rule (N). Sin
e the daemon is strongly fair, pexe
utes a rule in a �nite time, that is 
ontradi
tory. We 
an dedu
e that the two ends of the
hain veri�es: ̟(p, γ0) < 2.Under a strongly fair daemon, the only way for a pro
essor to never exe
ute a rule is tobe never enabled from a given 
on�guration. Here, we assume that all pro
essors p verifying
̟(p, γ0) ≥ 2 never exe
ute a rule, that implies that the network verify:

∃k ∈ N, ∀j ≥ k, ∀p ∈ V/̟(p, γ0) ≥ 2,















(Inter(Np))
γj = ∅

and

(Hp)
γj ∈

{⌈

(Hq)γj +(Hq̄)γj

2

⌉

,
⌊

(Hq)γj +(Hq̄)γj

2

⌋}Number pro
essors of the 
hain from p1 to pn. Let i be the smallest integer su
h that
̟(pi, γk) ≥ 2 (remark that, by hypothesis, pi+1 never exe
ute a rule, that implies that its 
lo
kvalue never 
hanges). All these 
onstraints allows us to say:











(

Hpi−1

)γk = (Hpi
)
γk + 1 ∧

(

Hpi+1

)γk = (Hpi
)
γk − 2 (A)

or
(

Hpi−1

)γk = (Hpi
)γk − 1 ∧

(

Hpi+1

)γk = (Hpi
)γk + 2 (B)By a reasoning similar to these of the proof of Lemma 7, we 
an prove that all pro
essorsbetween p0 and pi−1 exe
utes in�nitely often the rule (N) in every exe
ution starting from γk24



even if pi never exe
ute a rule (this is the 
ase by hypothesis). By a reasoning similar to theseof the proof of Lemma 7, we 
an state that Hpi−1
not remains 
onstant. The 
onstru
tion of

Inter(Npi−1
) implies that (Inter(Npi−1

)
)γj ⊆ {(Hpi

)
γk −1, (Hpi

)
γk , (Hpi

)
γk +1} for ea
h j ≥ k(sin
e Hpi

does not 
hange by hypothesis).If we are in the 
ase (A), we 
an dedu
e that Hpi−1
takes in�nitely often the value (Hpi

)γk−1or (Hpi
)
γk . We 
an see that pi is enabled by (N) and (C1) respe
tively. This 
ontradi
ts the
onstru
tion of k (re
all that pi is never enabled in ǫ from γk).If we are in the 
ase (B), we 
an dedu
e that Hpi−1

takes in�nitely often the value (Hpi
)
γk +1or (Hpi

)
γk . We 
an see that pi is enabled by (N) and (C1) respe
tively. This 
ontradi
ts the
onstru
tion of k (re
all that pi is never enabled in ǫ from γk).This �nishes the proof. �Lemma 10 There exists i ≥ 0 su
h that γi ∈ Γ1.Proof. The result follows dire
tly from Lemmas 8 and 9. �Finally, we 
an 
on
lude:Proposition 7 UFT SS is a self-stabilizing AU under a lo
ally 
entral strongly fair daemon.Proof. Lemmas 5, 7, and 10 allows us to say that UFT SS is a self-stabilizing UAU undera lo
ally 
entral strongly fair daemon. Then, we 
an dedu
e the result. �4.3.2 Proof of self-stabilization in spite of a 
rashIn this se
tion, ǫ = γ0, γ1 . . . denotes an exe
ution of UFT SS su
h that a pro
essor c is 
rashedin γ0.Firstly, we are going to prove the 
losure of our algorithm under these assumptions.Lemma 11 If there exists i ≥ 0 su
h that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. We 
an repeat the reasoning of Lemma 5 sin
e the fa
t that a pro
essor is 
rashed ornot does not modify the proof. �Se
ondly, we are going to prove the liveness of our algorithm under these assumptions.Lemma 12 If γ0 ∈ Γ1, then every pro
essor p 6= c in
rements its 
lo
k in a �nite time in ǫ.Proof. We repeat the reasoning of Lemma 7 taking in a

ount a pro
essor p ∈ V ∗.In order to prove the property of Lemma 6, we take d as the distan
e between p and the end

e of the 
hain whi
h veri�es: no pro
essor between p and e is 
rashed. This implies that thepro
essor q is not 
rashed. The 
ase in whi
h q̄ is 
rashed appear in the 
ase 1 of the indu
tion.We 
an repeat the reasoning of the proof of Lemma 7 sin
e the fa
t that a pro
essor is
rashed or not does not modify the proof. �Now, we are going to prove the 
onvergen
e of our algorithm under these assumptions.Lemma 13 There exists i ≥ 0 su
h that γi ∈ Γ1.Proof. We repeat the reasoning of Lemma 10 taking in a

ount a pro
essor p ∈ V ∗.We 
an repeat the reasoning of the proof of the property of Lemma 8 sin
e the fa
t that apro
essor is 
rashed or not does not modify the proof.25



In order to prove the property of Lemma 9, we take a numbering of pro
essors whi
h ensurethe following property: no pro
essor between p0 and pi (in
luding) is 
rashed. It is alwayspossible to 
hoose su
h numbering sin
e there exists at least one edge e su
h that ω(e, γk) ≥ 2by hypothesis, that implies that there exists at least two pro
essors p su
h that ̟(p, γk) ≥ 2,that allows us to 
hoose one whi
h is not 
rashed. The 
ase in whi
h pi+1 is 
rashed does notmodify the proof sin
e we assumed that this pro
essor never exe
ute a rule. �Finally, we 
an 
on
lude:Proposition 8 UFT SS is a self-stabilizing AU under a lo
ally 
entral strongly fair daemoneven if a pro
essor is 
rashed in the initial 
on�guration.Proof. Lemmas 11, 12, and 13 allows us to say that UFT SS is a self-stabilizing UAU undera lo
ally 
entral strongly fair daemon even if a pro
essor is 
rashed in the initial 
on�guration.Then, we 
an dedu
e the result. �4.4 Proof on a ringIn this se
tion, we assume that our algorithm is exe
uted on a ring under a strongly fair lo
ally
entral daemon. In fa
t, we are going to show that UFT SS is a FTSS UAU (that implies thatit is a FTSS AU) under these assumptions.. The proof 
ontains two major steps:- Firstly, we show that our algorithm is self-stabilizing under these assumptions.- Se
ondly, we show that our algorithm is self-stabilizing even if the initial 
on�guration
ontains a 
rashed pro
essor under these assumptions.4.4.1 Proof of self-stabilizationIn this se
tion, ǫ = γ0, γ1 . . . denotes an exe
ution of UFT SS in whi
h there is no 
rash.Firstly, we are going to prove the 
losure of our algorithm under these assumptions.Lemma 14 If there exists i ≥ 0 su
h that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. We 
an repeat the reasoning of the proof of Lemma 5 sin
e the topology of thenetwork has no impa
t on the proof. �Se
ondly, we are going to prove the liveness of our algorithm under these assumptions.Lemma 15 ∀γ0 ∈ Γ1, ∀p ∈ V, p exe
utes rule (N) in a �nite time in every exe
ution startingfrom γ0.Proof. Let be γ0 ∈ Γ1 (we have seen in the proof of Lemma 5 that implies that only rule
(N) 
an be enabled). Assume that there exists a pro
essorp and an exe
ution ǫ = γ0, γ1 . . .starting from γ0 su
h that p never exe
ute a rule in ǫ. Sin
e the daemon is strongly fair, thatimplies that ∃k ∈ N, ∀j ≥ k, p is not enabled in γjSin
e Pro
essor p is not enabled, it verify: ∃q ∈ Np, (Hp)

γj = (Hq)
γj + 1 and (Hp)

γj =
(Hq̄)

γj − 1. Let i be the smallest integer greater than k su
h that the step γi → γi+1 
ontainsthe exe
ution of rule by at least one neighbor of p. Let us study the following 
ases:Case 1: q and q̄ simultaneously exe
ute a rule during the step γi → γi+1.Sin
e p is not enabled in γi+1 (by hypothesis) and that the exe
ution of rule (N) always26



modi�es the 
lo
k values (
f. proof of Lemma 7),we have:










(Hp)
γi = (Hq)

γi + 1 and (Hp)
γi = (Hq̄)

γi − 1

and

(Hp)
γi+1 = (Hq)

γi+1 − 1 and (Hp)
γi+1 = (Hq̄)

γi+1 + 1The 
lo
k move of q̄ 
ontradi
ts the 
onstru
tion of rule (N) and (Inter(Np))
γi . Therefore,this 
ase is impossible.Case 2: Only q exe
utes a rule during the step γi → γi+1.By 
onstru
tion of rule (N), (Inter(Nq))

γi , and the fa
t that the exe
ution of this rulemust 
hange the 
lo
k value, we have: (Hq)
γi+1 ∈ {(Hp)

γi , (Hp)
γi − 1}. Pro
essor p isthen enabled for rule (N) (sin
e the 
lo
ks of p and q̄ have not 
hanged by hypothesis).This 
ontradi
ts the 
onstru
tion of k. Therefore, this 
ase is impossible.Case 3: Only q̄ exe
utes a rule during the step γi → γi+1.This 
ase is similar to 
ase 2.Case 4: Neither q nor q̄ exe
utes a rule during the step γi → γi+1.By the three previous 
ontradi
tion, it is the only possible 
ase.We 
an dedu
e that ∀j ≥ k, q and q̄ do not exe
ute a rule in γj , that implies that their
lo
k values remains 
onstant from γk. If we repeat the previous reasoning, we obtain that it ispossible only if the se
ond neighbor of q has a 
lo
k value equal to (Hp)
γk + 2 and if the se
ondneighbor of q̄ have a 
lo
k value equals to (Hp)

γk − 2, et
..Sin
e the ring has a �nite length n, we obtain (following the same reasoning) there exists twoneighboring pro
essors p1, p2 su
h that (Hp1
)
γk = (Hp)

γk + α and (Hp2
)
γk = (Hp)

γk − β (with
α and β integers greater or equal to 1 depending on the parity of n). Therefore, | (Hp1

)γk −
(Hp2

)
γk | = α + β ≥ 2. Then, we obtain that γk /∈ Γ1, whi
h 
ontradi
ts Lemma 14 and provesthe lemma. �Lemma 16 If γ0 ∈ Γ1, then every pro
essor in
rements its 
lo
k in a �nite time in ǫ.Proof. The proof is similar to these of Lemma 7 using Lemma 15 (instead of Lemma 6) sin
ethe topology of the network has no impa
t on the proof. �Now, we are going to prove the 
onvergen
e of our algorithm under these assumptions.In the following, we 
onsider the potential fun
tion P previously de�ned and use similararguments as for the proof of Lemma 10.Lemma 17 If γ ∈ Γ \ Γ1, then every step γ → γ′ whi
h 
ontains the exe
ution of a rule of apro
essor p su
h that ̟(p) ≥ 2 veri�es P (γ′) < P (γ).Proof. The proof is similar to the proof of Lemma 8 sin
e the topology of the network hasno impa
t on the proof (note that the 
ase 1 is impossible on a ring). �Lemma 18 If γ0 ∈ Γ \ Γ1, then every exe
ution starting from γ0 
ontains the exe
ution of arule of a pro
essor p su
h that ̟(p, γ0) ≥ 2.Proof. Let γ0 ∈ Γ \ Γ1. Assume, by 
ontradi
tion, that there exists an exe
ution ǫ =

γ0γ1 . . . starting from γ0 whi
h 
ontains no exe
ution of a rule by any pro
essor p whi
h veri�es
̟(p, γ0) ≥ 2. Sin
e the daemon is strongly fair, this implies that ∃k ∈ N, ∀j ≥ k, p is notenabled in γj 27



Let q be the neighbor of p verifying ω({p, q}, γk) = ̟(p, γk). By hypothesis, q never exe
utesa rule. Therefore, its 
lo
k value remains 
onstant. Let us study the following 
ases:Case 1: | (Hq)
γj − (Hq̄)

γj | ≤ 1It follows that p is enabled for the rule (N) sin
e | (Inter(Np))
γj | ≥ 2. This 
ontradi
tsthe 
onstru
tion of k.Case 2: | (Hq)

γj − (Hq̄)
γj | = 2It follows that p is enabled for the rule (C1) sin
e (Inter(Np))

γj = {h} and (Hp)
γj 6= h(be
ause ̟(p, γj) = ̟(p, γk) ≥ 2). This 
ontradi
ts the 
onstru
tion of k.Case 3: | (Hq)

γj − (Hq̄)
γj | ≥ 3By the two previous 
ontradi
tions, it is the only possible 
ase. Sin
e p is not enabled (byhypothesis), we obtain that:

∀j ≥ k,















(Inter(Np))
γj = ∅

and

(Hp)
γj ∈

{⌈

(Hq)γj +(Hq̄)γj

2

⌉

,
⌊

(Hq)γj +(Hq̄)γj

2

⌋}Sin
e the 
lo
k values of p and q are 
onstants by hypothesis, we 
an dedu
e that the one of
q̄ remains also 
onstant (be
ause, in the 
ontrary 
ase, p be
omes enabled, that 
ontradi
tsthe hypothesis). It follows: (Hq)

γj < (Hp)
γj < (Hq̄)

γj or (Hq)
γj > (Hp)

γj > (Hq̄)
γj .Sin
e this reasoning holds for every pro
essor on the ring, we 
an always label the nodes ofany ring by p0, p1,. . . ,pn su
h that the following property is satis�ed : Hp0

< Hp1
< . . . < Hpn

.But, the previous reasoning for Pro
essor Hp0
implies that we have: Hpn

< Hp0
< Hp1

. Itis impossible to satisfy simultaneously these two inequalities, that proves the result �Lemma 19 There exists i ≥ 0 su
h that γi ∈ Γ1.Proof. The result follows dire
tly from Lemmas 17 and 18. �Finally, we 
an 
on
lude:Proposition 9 UFT SS is a self-stabilizing AU under a lo
ally 
entral strongly fair daemon.Proof. Lemmas 14, 16, and 19 lead to the 
on
lusion that UFT SS is a self-stabilizing UAUunder a lo
ally 
entral strongly fair daemon.
�4.4.2 Proof of self-stabilization in spite of a 
rashIn this se
tion, ǫ = γ0, γ1 . . . denotes an exe
ution of UFT SS su
h that a pro
essor c is 
rashedin γ0.Firs, we prove the 
losure of our algorithm, then we prove the 
onvergen
e property.Lemma 20 If there exists i ≥ 0 su
h that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. This proof is similar to the proof of Lemma 14 sin
e the fa
t that a pro
essor is
rashed or not does not modify the proof. �Se
ondly, we are going to prove the liveness of our algorithm under these assumptions.28



Lemma 21 If γ0 ∈ Γ1, then every pro
essor p 6= c in
rements its 
lo
k in a �nite time in ǫ.Proof. This proof is similar to the proof of Lemma 16. Note that the 
rash of a pro
essor ispossible only for the 
ase 4. �In the following we prove the 
onvergen
e of our algorithm.Lemma 22 There exists i ≥ 0 su
h that γi ∈ Γ1.Proof. This proof is similar to the proof of Lemma 19 sin
e the fa
t that a pro
essor is
rashed or not does not modify the proof. �Finally, we 
an 
on
lude:Proposition 10 UFT SS is a self-stabilizing AU under a lo
ally 
entral strongly fair daemoneven if a pro
essor is 
rashed in the initial 
on�guration.Proof. Lemmas 20, 21, and 22 allows us to say that UFT SS is a self-stabilizing UAU undera lo
ally 
entral strongly fair daemon even if a pro
essor is 
rashed in the initial 
on�guration.Then, we 
an dedu
e the result. �4.5 Con
lusionWe are now in position to state our �nal result:Proposition 11 UFT SS is a (0, 1)-ftss AU on a 
hain or a ring under a lo
ally 
entralstrongly fair daemon.Proof. This a dire
t 
onsequen
e of Propositions 7, 8, 9, and 10. �5 Con
lusionWe presented the �rst study of FTSS proto
ols for dynami
 tasks in asyn
hronous systems, andshowed the intrinsi
 problems that are indu
ed by the wide range of faults that we address. The
ombination of asyn
hrony and maintenan
e of liveness properties implies many impossibilityresults, and the deterministi
 proto
ol that we provided for one of the few remaining 
ases isoptimal with respe
t to all impossibility results and 
ontainment measures.There remains the open 
ase of proto
ols that neither satisfy the minimality or the priorityproperties (see Table 1). We 
onje
ture that at least one of those properties is ne
essary for thepurpose of deterministi
 self-stabilization, yet none of those 
ould be required for deterministi
weak stabilization [16℄ (weak stabilization is a weaker property than self-stabilization sin
eexisten
e of exe
ution rea
hing a legitimate 
on�guration is guaranteed). As re
ent results [7℄hint that weak-stabilizing solutions 
ould indu
e probabilisti
 self-stabilizing ones, this raisesthe open question of the possibility of probabilisti
 FTSS for dynami
 tasks in asyn
hronoussystems.
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