
A fault-tolerant token-based mutual exclusion

algorithm using a dynamic tree

Julien Sopena1, Luciana Arantes1, Marin Bertier2 and Pierre Sens1

1 LIP6 - Université Paris 6, INRIA, CNRS
[Julien.Sopena,Luciana.Arantes,Pierre.Sens]@lip6.fr

2 LRI - Université Paris 11, CNRS
Marin.Bertier@lri.fr

Abstract. This article presents a fault tolerant extension for the Naimi-
Trehel token-based mutual exclusion algorithm. Contrary to the exten-
sion proposed by Naimi-Trehel, our approach minimizes the use of broad-
cast support by exploiting the distributed queue of token requests kept
by the original algorithm. It also provides good fairness since, during
failure recovery, it tries to preserve the order in which token requests
would have been satisfied had the failure not occurred.

1 Introduction

Mutual exclusion is a fundamental concept in distributed systems. Several algo-
rithms have been proposed to solve the problem of mutual exclusion, serializing
concurrent accesses to a shared resource. They can essentially be divided into
two groups: permission-based (e.g. Lamport [2], Ricart-Agrawala [8], Maekawa
[3]) and token-based (e.g. Suzuki-Kazami [9], Raymond [7], Naimi-Trehel [5]).
Algorithms of the first group are based on the principle that a node may enter
critical section only after having received permission from all the other nodes
(or a majority of them [3]). The drawback of these algorithms is the high com-
munication overhead. In the second group of algorithms, a system-wide unique
token is shared among all nodes, and its possession gives a node the exclusive
right to enter into the critical section, thus ensuring the safety property.

Some token-based algorithms, such as Raymond [7] and Naimi-Trehel [5],
consider that nodes are organized in a logical tree and that a node always sends
a token request to its father in the tree. Tree-based algorithms have an average
lower message cost, and many of them result in a logarithmic message complexity
O(logN) with regard to the number of nodes. Presenting better scalabilty, they
can be more easily adapted to large scale configurations like grid and peer-to-
peer environments [1]. Another advantage of these algorithms is the simplicity
of their local data structures. However, a tree-based algorithm is very sensitive
to node failure since it cannot tolerate even a single failure of one of the nodes
in a token request path.

In this paper we propose a fault tolerant extension for the Naimi-Trehel
token-based mutual exclusion algorithm. Naimi-Trehel’s algorithm maintains



two main data structures: a dynamic logical tree such that the root of the tree is
always the last node that will have the token among the current requesting ones
nodes, and a distributed queue that keeps token requests that have not been
satisfied yet. The dynamic property of the request tree is strongly exploited in
our solution. Let N be the number of nodes in the system. The new algorithm
can tolerate at most N − 1 node failures and the message overhead for failure
recovery is relatively low.

Naimi and Trehel have proposed a fault tolerant extension of their own al-
gorithm in [6]. In the absence of failure, the original algorithm is not modified.
However, recovery from failure is very expensive in terms of messages since it
requires multiple broadcasts, causing a high message overhead. Furthermore, the
distributed queue of token requests has to be completely rebuilt.

We have modified the original Naimi-Trehel algorithm, introducing one addi-
tional message per token request. This modification has minimal impact on the
original protocol in the absence of failures. On the other hand, our algorithm
presents a lower cost in terms of messages in the presence of failures since it
broadcasts at most one message when compared to the multiple broadcast mes-
sages of Naimi-Trehel’s algorithm [6]. In contrast to the latter, the basic idea of
our algorithm, in case of failure recovery, is to reconstruct the distributed queue
of token requests by assembling disconnected portions of the previous queue. In
addition to the low recovery cost, this approach exhibits the fairness property
since it preserves the order in which token requests were previously queued.

We should mention that Mueller also presents in [4] a fault-tolerant extension
of the Naimi-Trehel algorithm without broadcast support. However in his solu-
tion a ring communication structure, which includes all nodes of the system, is
used for detecting a node failure as a message circulates constantly on it. Even if
his solution does not use broadcast support, it also presents a lack of scalability,
since the ring exhibits a message overhead that grows linearly with the number
of nodes. Furthermore, his approach tolerates only one node failure.

The organization of this paper is as follows. Section 2 presents our considered
system model. Section 3 briefly describes Naimi-Trehel’s algorithm and outlines
the problems for making it fault tolerant. Their fault tolerant version of this
algorithm is described in section 4. In Section 5, we describe our fault-tolerant
extension for the original Naimi-Trehel algorithm. A performance comparison of
both fault-tolerant algorithms is presented in section 6, whilst the last section
concludes our work.

2 General Model

We consider a distributed system consisting of a finite set of N sites Π =
{S1, S2, . . . , SN} that are spread throughout a network. Sites communicate only
by sending and receiving messages. Every pair of sites is assumed to be con-
nected by means of a reliable communication channel. However, messages may
be delivered in a different order than the one they were sent in. The words site
and node are interchangeable.



We consider a synchronous fully-connected network where process speeds
and message transmission times are bounded. Tmsg is the maximum latency for
sending a message between two sites. Contrary to Naimi-Trehel, which considers
that a critical section execution takes Tcs in average, our algorithm makes no
assumption on the time for executing critical sections.

Sites can fail by crashing only, and this crash is permanent. N − 1 node
failures are tolerated.

3 Naimi-Trehel’s algorithm

Naimi-Trehel’s algorithm [5] is a token-based algorithm. It keeps two data-
structures:

1. A logical dynamic tree structure such that the root of the tree is always the
last site that will get the token among the current requesting ones. Requesting
sites then form a logical tree pointing by probable token owners towards the
root. Initially, the root is the token holder, elected among all sites. We call this
tree the last tree, since each site keeps a local variable called last that points to
the probable owner of the token.

2. A distributed queue which keeps critical section (CS) requests that have
not yet been satisfied. We call this queue the next queue, since each site Si keeps
a local variable called next that points to the next site to whom the token will
be granted after Si leaves the critical section.

One invariant of Naimi-Trehel algorithm is that the root node of the
last tree is always the tail node of the next queue.

When a site Si wants to enter the critical section, it sends a request to its last.
Si then sets its last variable to itself and waits for the token. Site Si becomes
the new root of the tree.

Receiving Si’s token request message, site Sj can take one of the following
actions: (1) Sj is not the root of the tree. It forwards the request to its last

and then updates its last variable to Si. Notice that the last tree is modified
dynamically; (2) Sj is the root of the tree. If Sj is holding an idle token, it sends
it back to Si directly. On the other hand, if Sj holds the token but is in the
critical section or is waiting for the token, Sj sets its next variable to Si. At the
end of the execution of critical section, Sj sends the token to its next.

An example of Naimi-Trehel’s algorithm execution with four nodes is shown
in Figure 1. Initially (a), site A is the root which holds the token. The local last

variable of all nodes points to A. In (b), node B asks for the token by sending a
request to its last (lastB = A). B becomes the new root (lastB = B). Then, A

updates its next and last variables to point to B. In (c), C asks A for the token.
The request is forwarded to B which updates its next to C (nextB = C). Both
A and B update their last to C, since the latter is the last requester of the token
(C becomes the new root of the tree). When A releases the critical section, the
token will be sent to B as nextA = B.

The major challenges for making Naimi-Trehel algorithm fault-tolerant are :



AC

B

D

(c)

AC

B

D

(a)

AC

B

D

(b)

Fig. 1. Example of Naimi-Trehel’s algorithm execution

1. The faulty node is an intermediate node of the last tree. In this case, if the
faulty node were used for forwarding the token request before the failure, the
request should be resent. Furthermore, we must be sure that the state of last
tree is consistent before re-sending the request. However, in the Naimi-Trehel
algorithm, while a request message is in transit, the tree is temporarily broken
into several smaller rooted trees. Thus, finding a right path to the root may be
impossible if the failure has occurred when the tree was in an unstable state.

2. The faulty node belongs to the next queue. In this case, it is not possible
to known the path for token transmission anymore. Therefore, next queue must
either be rebuilt from the beginning or by gathering disconnected portions of
the queue which existed before the failure.

3. The faulty node had the token. In this case, the token must be regenerated
and the uniqueness of the token must be guaranteed.

4 Naimi-Trehel fault tolerant extension

In [6], Naimi and Trehel propose a fault-tolerant version of their algorithm.
The original algorithm is not modified but some extensions are included in the
algorithm to detect site failures, recover from failures, and regenerate the token.

To detect a site failure, site Si, which requests the critical section, arms a
timer Twait. This timer depends on latency communication time (Tmsg) and
the average time (Tcs) for executing the critical section. If Si does not receive
the token after the expiration of Twait, it suspects that a failure has occurred.
Therefore, Si broadcasts a CONSULT message to ask for the state of the other
sites and arms a new timer, Telec. When a site Sj receives this message, it
answers to Si only if the latter is its next. At the expiration of Telec, if Si does
not receive any response, it is sure that a failure has occurred. Si then broadcasts
a FAILURE message to detect the presence of the token in one of the sites. A
site replies to Si if it owns the token.

If after a new Telec delay, Si has not received any answer to its failure message,
it considers that the token is lost and it becomes a candidate to regenerate
the token. It then broadcasts an ELECTION message. In case of concurrent
election messages, the site with the smallest identifier is chosen. At the end, an
ELECTED message is broadcasted to inform all sites of the new token owner.
Finally, the identification of the last of each site is set to the new token owner.
Notice that each node having requested the token before the failure has to re-
send its token request.



5 Our fault-tolerant algorithm

Contrary to the fault tolerant extension proposed by Naimi and Trehel, we have
modified the original algorithm in order to provide the same guarantees in terms
of fault tolerance and to optimise efficiency and complexity in the occurence of
failures.

5.1 Principle of the algorithm

The guiding principle of our algorithm is to reconstruct the next queue by gath-
ering intact portions of the previous next queue which existed just before the
failure. The aim of this reconstruction is to preserve the initial order of token
requests as much as possible and to avoid request retransmitions, as is the case in
Naimi-Trehel’s solution. On the other hand, if the reconstruction is not possible,
a new next queue will be created as well as a new last tree. The latter needs to
be consistent with the former guaranteeing the invariant mentioned in section 3.

Considering the original algorithm, a site always knows, through its next
variable, which site will receive the token after it, i.e. its successor in next queue.
However, it is not aware of which site will grant the token to it, neither which
sites will get the token before it. In other words, it is not aware of its predecessors
in next queue. Thus, in order to inform a node of its predecessor in next queue,
we have added a confirmation mechanism to the original algorithm for each
token request. Whenever a site Sj updates its next variable, i.e. Sj is in the last
element of the next queue and received a token request, it sends a COMMIT
message to the requester in order to confirm the reception of the request and to
communicate the identification of its predecessors. The next queue then keeps a
ordering where the smallest position corresponds to the site which has the token.
A site loses its position when it leaves the queue. Initially the token holder has
position zero. A COMMIT message sent to the requester Si, by site Sj , contains
the two following informations:

- The k predecessors of Si: k is a configurable parameter, indicating how many
failures the algorithm can recover by using mechanism M1, described below.

- Si’s position in the queue: equals to Si’s closest predecessor’s position + 1.
The cost of having a predecessor information mechanism is low in terms of

messages. We have added just one message per token request. Thus, the message
complexity of the algorithm only grows from log(N) to log(N) + 1 and thus
remains O(log(N))O(log(N))O(log(N)). However, this mechanism enables the detection of failures
more effectively than Naimi-Trehel’s fault tolerant extension. In their approach,
the reception of the token is controlled by a timer Twait, which depends both
on latency (Tmsg) and the time (Tcs) for executing the critical section. In our
approach, the same timer depends only on latency (Tmsg). After receiving a
COMMIT message, Si periodically checks the liveness of its closest predecessor.

After detecting a failure, site Si will start a failure recovery by executing a
different mecanism for each of the three following cases :

- Mechanism 1 (M1). Site Si has received a COMMIT message and there
are less than k consecutive faulty sites in next queue.



- Mechanism 2 (M2). Site Si received a COMMIT message, but there are
more than k consecutive faulty sites in the next queue.

- Mechanism 3 (M3). The site did not receive any COMMIT message.

We now detail how to recover from failures in the three cases.

M1. When site Si detects a failure of its closest predecessor, it sends an
ARE YOU ALIVE message to each of its predecessors from the closest to the
farthest, so as to check if they are still alive. It stops querying when it obtains an
I AM ALIVE message from one of its predecessors. The latter then takes Si as
its new successor, i.e. it sets its next variable to Si. The next queue is then recon-
structed and the order is preserved. Furthermore, the last tree remains consistent
with the next queue and the invariant mentioned in section 3 is asserted.

M2. If no predecessor responded to the ARE YOU ALIVE message, Si will
try to reconnect itself to next queue by diffusing a SEARCH PREV message
which contains Si’s position. Si then arms a timer (2 ∗ Tmsg), waiting for the
answer messages. All sites having a smaller position then Si’s will answer to it.
After waiting 2 ∗ Tmsg, Si will choose among these sites, the one which has the
greatest position to become its closest predecessor. Then, Si reconnects itself
to this chosen site by sending a CONNECTION message to it. If Si does not
receive any answer at all after 2 ∗ Tmsg, it concludes that it has no predecessors
and consequently the token has been lost. Si should then regenerate the token,
initializing its position to zero.

Observe that in both mechanisms M1 and M2, due to our predecessor in-
formation approach, the order of next queue is preserved.

M3. We must consider now the case where the site which detects the failure
has not received the COMMIT message yet, and therefore has no position in next
queue. Moreover, in the absence of such information, several sites can detect the
same failure simultaneously.

M3.a We initially consider the situation when just one site Si detects the
failure. In order to reconnect itself to next queue, Si will search for the site
which has the greatest position. This search is initiated by the diffusion of a
SEARCH QUEUE message. Si then arms a timer (2 ∗ Tmsg), waiting for the
answer messages. A site that has a position in next queue answers to Si with an
ACK SEARCH QUEUE message which contains its position in the next queue,
as well as whether or not it has a next. Among all the received answers within
2 ∗ Tmsg , Si will select the site Sj with the greatest position. Si then considers
three possibilities:

(i): Sj has informed that it has no next. Si then resends a token request
to Sj . Notice that, since this request is sent directly to a node at the tail of
next queue, Si does not use last tree to send a token request. Thus, we avoid
the problem mentioned in section 3 concerning the instability of last tree when
token requests are in transit.

(ii): Sj has informed that it has a next. Si can conclude that Sj ’s next has
failed. Si then sends a CONNECTION message to Sj in order to force Sj to
reconnect itself to Si; i.e. Sj will set its next to Si.



(iii): If site Si has not received any answer, it concludes that it has no more
predecessors and that the token has been lost. Si can then regenerate the token,
initializing its position to 0. It is sure to be the only site to regenerate the token.

M3.b We now discuss the situation when several sites detect the node failure
concurrently. They will start tracking the next queue, and will even generate a
new token, which may bring next queue to an inconsistent state or the loss of
the token uniqueness property. An election mechanism then is necessary. We
consider that a site is elected if it is always candidate after a time of 2 ∗ Tmsg.

Having sent a SEARCH QUEUE message to the other sites as described
above, site Si is a candidate to reconnect to next queue. However, if Si receives
a SEARCH QUEUE message from node Sj , it knows that another site Sj is also
a candidate for reconnection. Thus, if Sj has made fewer accesses to the critical
section than Si (this information is included in the SEARCH QUEUE message)
or Si’s access number is equal to Sj ’s but Sj has a greater identifier than Si,
the latter loses the election, sending a token request to Sj . In turn, Sj will be
responsible for reconnecting itself to next queue. If Sj later loses the election, it
will behave like Si. However, if it wins the election, it finds itself in the situation
of mechanism M3.a. Next queue is thus repaired.3

Contrary to the first two mechanisms, the order of previous token requests
is not preserved in mechanism M3. Thus, last tree must be reconstructed to be
consistent with the new next queue. However, this reconstruction is done dynam-
ically, without any additional overhead in terms of message and latency, since all
the information a site needs has been transmitted to it in the SEARCH QUEUE
message. Considering that Si is the single site that suspected the fault (M3.a),
or the one that wins the election (M3.b), last tree is reconstructed as follows:
I: all sites which do not wait for the token set their last variable to Si.
II: all sites that have a position in next queue set their last variable to Si.
III: all sites without a position, but in wait for the token, set their next variable
to the same value as their last variable.

An example of failure recovery based on mechanism M3 is shown in figure
2. We consider that there are two faulty sites, as shown in figure 2.a. The next
queue is broken into two portions (G,H and A,B,C). Sites G and H have already
obtained a position in next queue, but sites A, B and C have not. The token is
held by site G, first site of the next queue. We also consider that site D had sent
a token request to one of the two faulty sites and while waiting for the COMMIT
message, it accepted a token request from E. Thus, there is a second queue of
sites waiting for the token, but it is not connected to next queue yet. Notice that
in such configuration last tree is also broken (the last variable values of sites F ,
G, H and D have become useless).

Suppose that sites A and D detect a node failure concurrently. Both of them
broadcast a SEARCH QUEUE message. We then say that A wins the election,
i.e. A is the elected node. In figure 2.b, we can see how some of the last variables
are updated. Having a position, sites G and H update their last to A (see II), as

3 To ensure that two sites do not get the same position, message ordering is controlled
by using Lamport’s timestamp.



E

D

E

D

Ipos
=

position
identificatuer

(a)

F

BA

(c)(b)

A

C

F

B A

C

F

B

last

next

token holder

faulty site

=

=

=

=

G1

E

D

G1
G1 H

2H 2H 2

4

C 5

3

Fig. 2. Example of our fault-tolerant algorithm execution

well as site F , which was not waiting for the token (see I). However, A, B and
E, which are waiting for the token but do not have a position, update their last
variables to the same value as their respective next variables (see III).

When receiving the ACK SEARCH QUEUE message from H , site A can
conclude that the next of H is a faulty site (see ii). A then sends a CONNEC-
TION message to H . When the latter receives such a message, it sets its next
variable to A. On the other hand, since site D lost the election, it sends a token
request to the elected node (A). When receiving D’s request, A forwards this
request to its last (lastA = B). The request travels along last tree, arriving at C,
the root of the tree. All sites belonging to last path which received the request
update their last variable to D. Site C sets its next variable to D, sending a
COMMIT message to it. Figure 2.c shows the final configuration, considering
that sites D et E have not received a COMMIT message yet.

5.2 Sketch of proof

We are just going to give the outline of the correctness proof of our algorithm.
For this purpose, we should prove its safety and liveness properties:

- Safety : there is always at most one token in the system, which guarantees
that at most one site can execute the critical section at any time.

- Liveness : A site requesting entry to the critical section will eventually
succeed within a bounded time.

Proof of liveness: This proof comprises two parts. Firstly, we should prove
the liveness for a site which has a position, and then that a site eventually obtains
a position within a bounded time.

In the absence of failures, we can identify the following four invariants, which
are easily proven by induction: I1 - the site with the smallest position has the
token; I2 - the position ordering respects the order of next queue; I3 - after Si

got its position, no site can get a new position which is smaller than Si’s; I4 -
two sites cannot have the same position.

In the absence of failures, these invariants ensure that a site Si holding a
position will receive the token within a finite time. Indeed, I1 and I2 ensure
site Si that the owner of the token is one of its predecessors while I2 and I3



guarantee that a site is never inserted before Si’s predecessors. On the other
hand, when a failure occurs, invariant I1 is not true anymore if the token is lost.
Thus, to ensure liveness, it is just enough to prove that mechanism M2 is able
to make invariant I1 true again within a bounded time, i.e. that the site with
the smallest position eventually detects the loss of the token and regenerates
it within a bounded time. It is not necessary to prove that the three recovery
mechanisms need to reconstruct the next queue. However, we must prove that
they do not change the other invariants.

To prove the second part, i.e. that a site obtains a position within a bounded
time, we must prove that:

- A site whose token request is lost retransmits it within a bounded time
using a set of data structures which is consistent with the original algorithm.
The failure detection of mechanism M3 takes place within at most N ∗ Tmsg.
Moreover, it is also possible to show a scenario in the absence of failure which
is similar to the one resulting from the execution M3 that rebuilt the last tree
and the next queue.

- A request can be lost a finite number of times. This is ensured by our model,
i.e. there can be at most N−1 permanent crashes. However, if there is an infinite
number of failures, this property keeps true if and only if the system has periods
of stability of at least N ∗ Tmsg .

Proof of Safety: in the original Naimi-Trehel algorithm there is always only
one token. However, in our approach, M2 and M3 may regenerate a token. Thus
we need to prove that in these mechanisms:

- A site regenerates a token only when the latter has been lost : in mechanism
M2 (resp. M3), a site regenerates a token, if and only if, it did not receive an
answer ACK SEARCH PREV (resp. ACK SEARCH QUEUE). To prove that
“no answer implies no more token”, its contrapositive can easily be proven. This
can be done by using invariant I1, which implies that if there is at least one
token, then the site with the smallest position has one of these tokens.

- Only one site regenerates the token : we can prove by contradiction that
M2 and M3 are not compatible. In the same way, we can prove that two sites
cannot regenerate the token by using both mechanism M2 (resp. M3).

6 Performance issues

Considering failure detection and recovery, we can compare our algorithm to
Naimi-Trehel’s fault-tolerant one (see section 4).

- Message complexity: in the worst case of failure recovery, Naimi-Trehel’s
fault tolerant algorithm broadcasts four messages. Our solution sends one COM-
MIT message per token request in order to keep control of next queue and a
broadcast SEARCH PREV message, if necessary. It is also worth mentioning
that in the former all the successors of the faulty node must resend their token
request, while in our algorithm only lost requests are resent.

- Time: so as to detect faulty sites, Naimi-Trehel’s algorithm controls the
reception of the token. In the worst case, it waits (N − 1) ∗ (Tmsg + Tcs). Our



algorithm controls the arrival of the token request at the tail node of next queue
as well as the reception of the COMMIT message by the requester. It then
waits at most ((N − 1) + 1) ∗ Tmsg for suspecting a faulty node, which does not
depend on Tcs. Another important point is that our algorithm has fewer phases
than Naimi-Trehel’s during failure recovery, reducing recovery time. Moreover, it
may happen that such a recovery is done while the algorithm goes on executing
normally as if no failure had occurred; i.e it does not need to wait for a stable last
tree as in the Naimi-Trehel approach. The failure recovery time is then covered
up by the time that a site waits for a token.

- Fairness: in Naimi-Trehel’s approach, next queue is rebuilt from the begin-
ning at each failure recovery and the original ordering is not preserved. In our
approach, after receiving the COMMIT message, a site has its position p in next
queue which ensures that it will access the critical section after at most p − 1
other critical section accesses.

7 Conclusion

We presented in this paper a new fault-tolerant algorithm for mutual exclusion.
This algorithm is an extension of the Naimi-Trehel token-based algorithm. Com-
pared to the solution proposed in [6], our algorithm has two main properties:
a short recovery delay and a resilient fairness of requests. In case of failure, we
reconstruct the distributed request queue by assembling portions of the previous
queue. Our algorithm requires at most one broadcast and the order of critical
section requests is preserved as much as possible despite failures.

References

1. M. Bertier, L. Arantes, and P. Sens. Hierarchical token based mutual exclusion
algorithms. In 4th IEEE/ACM CCGrid04, 10 April 2004.

2. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–564, July 1978.

3. M. Maekawa. A
√

N algorithm for mutual exclusion in decentralized systems. ACM
Transactions on Computer Systems, 3(2):145–159, May 1985.

4. Frank Mueller. Fault tolerance for token-based synchronization protocols. Workshop
on Fault-Tolerant Parallel and Distributed Systems, IEEE, april 2001.

5. M. Naimi, M. Trehel, and A. Arnold. A log (N) distributed mutual exclusion al-
gorithm based on path reversal. Journal of Parallel and Distributed Computing,
34(1):1–13, 10 April 1996.

6. Mohamed Naimi and Michel Trehel. How to detect a failure and regenerate the
token in the log(n) distributed algorithm for mutual exclusion. Lecture Notes In
Computer Science LNCS, 312:155–166, 1987.

7. K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans-
actions on Computer Systems (TOCS), 7(1):61–77, 1989.

8. G. Ricart and A. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. CACM: Communications of the ACM, 24, 1981.

9. I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM Trans-
actions on Computer Systems (TOCS), 3(4):344–349, 1985.


