
Thèse de Doctorat de l’Université Pierre et Marie Curie

présentée par

Maximilien Colange

Symmetry Reduction and Symbolic Data Structures
for Model Checking of Distributed Systems

soutenue le 10 décembre 2013
devant la commission composée de :

A. Bouajjani Rapporteur Université Paris Diderot
F. Vernadat Rapporteur INSA Toulouse
B. Bérard Examinatrice Université Pierre et Marie Curie
M. Heiner Examinatrice University of Technology Cottbus
T. Junttila Examinateur Aalto University
F. Kordon Directeur Université Pierre et Marie Curie
S. Baarir Co-Encadrant Université Paris Ouest
Y. Thierry-Mieg Co-Encadrant Université Pierre et Marie Curie

M. Colange 10 décembre 2013 1 / 29



Context: Formal Verification

Critical systems

automatic transportation, robotic surgery, power plants management . . .

Concurrent systems

modern car ∼ 100 computing devices, and growing

A380 avionics = Ethernet network

highways with driverless cars . . .

How to ensure safety and reliability of such systems?

Tests and/or simulation

cannot be exhaustive

Formal methods give a guarantee (up to the modelling)

assisted mathematical proof
model-checking: exploration of all the possible behaviors

M. Colange Context 10 décembre 2013 2 / 29



Context: Formal Verification

Critical systems

automatic transportation, robotic surgery, power plants management . . .

Concurrent systems

modern car ∼ 100 computing devices, and growing

A380 avionics = Ethernet network

highways with driverless cars . . .

How to ensure safety and reliability of such systems?

Tests and/or simulation

cannot be exhaustive

Formal methods give a guarantee (up to the modelling)

assisted mathematical proof
model-checking: exploration of all the possible behaviors

M. Colange Context 10 décembre 2013 2 / 29



Context: Formal Verification

Critical systems

automatic transportation, robotic surgery, power plants management . . .

Concurrent systems

modern car ∼ 100 computing devices, and growing

A380 avionics = Ethernet network

highways with driverless cars . . .

How to ensure safety and reliability of such systems?

Tests and/or simulation cannot be exhaustive

Formal methods give a guarantee (up to the modelling)

assisted mathematical proof
model-checking: exploration of all the possible behaviors

M. Colange Context 10 décembre 2013 2 / 29



Context: Formal Verification

Critical systems

automatic transportation, robotic surgery, power plants management . . .

Concurrent systems

modern car ∼ 100 computing devices, and growing

A380 avionics = Ethernet network

highways with driverless cars . . .

How to ensure safety and reliability of such systems?

Tests and/or simulation cannot be exhaustive

Formal methods give a guarantee (up to the modelling)

assisted mathematical proof
model-checking: exploration of all the possible behaviors

M. Colange Context 10 décembre 2013 2 / 29



Context: Formal Verification

Critical systems

automatic transportation, robotic surgery, power plants management . . .

Concurrent systems

modern car ∼ 100 computing devices, and growing

A380 avionics = Ethernet network

highways with driverless cars . . .

How to ensure safety and reliability of such systems?

Tests and/or simulation cannot be exhaustive

Formal methods give a guarantee (up to the modelling)

assisted mathematical proof

model-checking: exploration of all the possible behaviors

M. Colange Context 10 décembre 2013 2 / 29



Context: Formal Verification

Critical systems

automatic transportation, robotic surgery, power plants management . . .

Concurrent systems

modern car ∼ 100 computing devices, and growing

A380 avionics = Ethernet network

highways with driverless cars . . .

How to ensure safety and reliability of such systems?

Tests and/or simulation cannot be exhaustive

Formal methods give a guarantee (up to the modelling)

assisted mathematical proof
model-checking: exploration of all the possible behaviors

M. Colange Context 10 décembre 2013 2 / 29



Problem

Combinatorial Explosion

number of behaviors grows exponentially with the number of components

inherent to concurrent systems

severely hinders model-checking, that aims to explore behaviors

e.g. n clients, p servers: pn possible connexions
25 years of Model-Checking ⇒ Turing Award (2007)

How to counter the combinatorial explosion?

Handle [Bryant, 1986, Burch et al., 1992, Couvreur et al., 2002]

Decision Diagrams: use efficient compact data structures

Fight [Chiola et al., 1990, Clarke et al., 1996, Junttila, 2003]

Symmetry reduction: avoid exploring similar behaviors

M. Colange Context 10 décembre 2013 3 / 29



Problem

Combinatorial Explosion

number of behaviors grows exponentially with the number of components

inherent to concurrent systems

severely hinders model-checking, that aims to explore behaviors

e.g. n clients, p servers: pn possible connexions
25 years of Model-Checking ⇒ Turing Award (2007)

How to counter the combinatorial explosion?

Handle [Bryant, 1986, Burch et al., 1992, Couvreur et al., 2002]

Decision Diagrams: use efficient compact data structures

Fight [Chiola et al., 1990, Clarke et al., 1996, Junttila, 2003]

Symmetry reduction: avoid exploring similar behaviors

M. Colange Context 10 décembre 2013 3 / 29



Problem

Combinatorial Explosion

number of behaviors grows exponentially with the number of components

inherent to concurrent systems

severely hinders model-checking, that aims to explore behaviors

e.g. n clients, p servers: pn possible connexions
25 years of Model-Checking ⇒ Turing Award (2007)

How to counter the combinatorial explosion?

Handle [Bryant, 1986, Burch et al., 1992, Couvreur et al., 2002]

Decision Diagrams: use efficient compact data structures

Fight [Chiola et al., 1990, Clarke et al., 1996, Junttila, 2003]

Symmetry reduction: avoid exploring similar behaviors

M. Colange Context 10 décembre 2013 3 / 29



Problem

Combinatorial Explosion

number of behaviors grows exponentially with the number of components

inherent to concurrent systems

severely hinders model-checking, that aims to explore behaviors

e.g. n clients, p servers: pn possible connexions
25 years of Model-Checking ⇒ Turing Award (2007)

How to counter the combinatorial explosion?

Handle [Bryant, 1986, Burch et al., 1992, Couvreur et al., 2002]

Decision Diagrams: use efficient compact data structures

Fight [Chiola et al., 1990, Clarke et al., 1996, Junttila, 2003]

Symmetry reduction: avoid exploring similar behaviors

M. Colange Context 10 décembre 2013 3 / 29



Outline

Two main contributions presented today:

1 improve decision diagrams manipulation for model-checking of
concurrent systems [CAV 2013]

2 combine symmetry reduction and decision diagrams, in order to stack
their respective gains [ACSD 2012]

My thesis features other contributions [ICATPN 2011, Monterey 2012]

M. Colange Context 10 décembre 2013 4 / 29



1 Context

2 New Efficient Operations for Decision Diagrams [CAV 2013]

3 Combine Symmetry Reduction and Decision Diagrams [ACSD 2012]

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 5 / 29



Finite Transition Systems

Definition

Finite TS K = (S ,→)
→ binary relation over S : →⊆ S × S

Hypothesis

S ( Nk fixed-size vectors of integers

each position (address) denoted by a variable: x1, . . . xk

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 6 / 29



Shared Decision Diagrams and Finite Transition Systems

1

x

y y

z

 2

z

 3

1

 2
1

31

(2, 3, 1)
(1, 1, 1)
(1, 2, 3)

BDD [Bryant, 1986],
MDD [Srinivasan et al., 1990],
DDD [Couvreur et al., 2002]

a path = a state ∈ Nk

|DD| = # nodes ∼ log(|set|)
efficient manipulation operations

unique tables + caches
complexity of operations related to
|DD|, not to |set|
comparison in O(1)
union . . . in O(|DD1|+ |DD2|)

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 7 / 29



Shared Decision Diagrams and Finite Transition Systems

1

x

y y

z

 2

z

 3

1

 2
1

31

(2, 3, 1)
(1, 1, 1)
(1, 2, 3)

BDD [Bryant, 1986],
MDD [Srinivasan et al., 1990],
DDD [Couvreur et al., 2002]

a path = a state ∈ Nk

|DD| = # nodes ∼ log(|set|)

efficient manipulation operations

unique tables + caches
complexity of operations related to
|DD|, not to |set|
comparison in O(1)
union . . . in O(|DD1|+ |DD2|)

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 7 / 29



Shared Decision Diagrams and Finite Transition Systems

1

x

y y

z

 2

z

 3

1

 2
1

31

(2, 3, 1)
(1, 1, 1)
(1, 2, 3)

BDD [Bryant, 1986],
MDD [Srinivasan et al., 1990],
DDD [Couvreur et al., 2002]

a path = a state ∈ Nk

|DD| = # nodes ∼ log(|set|)
efficient manipulation operations

unique tables + caches
complexity of operations related to
|DD|, not to |set|
comparison in O(1)
union . . . in O(|DD1|+ |DD2|)

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 7 / 29



Operations on DD: 2k-levels [Burch et al., 1992]

Encode symbolically a binary relation on states ∆ ( S × S = Nk ×Nk ?

2k-level

∆ = subset of N2k

encode it with a DD with 2k variables
∆(S) = {s ′|(s, s ′) ∈ ∆} ( Nk

Problem: pre-computation

requires a bound

all potential values

potential values ∼ exp(|support|)
support(x + y) = {x , y}
support(u ∗ v + w) = {u, v ,w}

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 8 / 29



Operations on DD: 2k-levels [Burch et al., 1992]

Encode symbolically a binary relation on states ∆ ( S × S = Nk ×Nk ?

2k-level

∆ = subset of N2k

encode it with a DD with 2k variables
∆(S) = {s ′|(s, s ′) ∈ ∆} ( Nk

Problem: pre-computation

requires a bound

all potential values

potential values ∼ exp(|support|)
support(x + y) = {x , y}
support(u ∗ v + w) = {u, v ,w}

e.g. z := x + y

1

0 1 2 3 4

x
0 1 2

x' x' x'

yy y

0 1 2

z'

z

0 1 2

z'

z

0 1 2

z'

z

0 1 2

z'

z

0 1 2

z'

z

0 1 2

y'y' y'y' y' y' y' y' y'

0 0 01 1 12 2 2

0 1 20 1 2 0 1 2

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 8 / 29



Operations on DD: homomorphisms [Couvreur et al., 2002]

Homomorphism

Recursive encoding
h : DD 7→ DD
h(d1 ∪ d2) = h(d1) ∪ h(d2)

z

x

y y

2

1

0

0

1
0

z := x+y

no pre-computation

no bound needed

dynamic support reduction

what if variables in wrong order?

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 9 / 29



Operations on DD: homomorphisms [Couvreur et al., 2002]

Homomorphism

Recursive encoding
h : DD 7→ DD
h(d1 ∪ d2) = h(d1) ∪ h(d2)

z

x

y y

2

1

0

0

1
0

z := 0+y z := 1+y

no pre-computation

no bound needed

dynamic support reduction

what if variables in wrong order?

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 9 / 29



Operations on DD: homomorphisms [Couvreur et al., 2002]

Homomorphism

Recursive encoding
h : DD 7→ DD
h(d1 ∪ d2) = h(d1) ∪ h(d2)

z

x

y y

2

1

0

0

10

z := 1z := 0 z := 1

no pre-computation

no bound needed

dynamic support reduction

what if variables in wrong order?

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 9 / 29



Operations on DD: homomorphisms [Couvreur et al., 2002]

Homomorphism

Recursive encoding
h : DD 7→ DD
h(d1 ∪ d2) = h(d1) ∪ h(d2)

z

x

y y

2

1

0

0

10

z := 1z := 0

no pre-computation

no bound needed

dynamic support reduction

what if variables in wrong order?

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 9 / 29



Operations on DD: homomorphisms [Couvreur et al., 2002]

Homomorphism

Recursive encoding
h : DD 7→ DD
h(d1 ∪ d2) = h(d1) ∪ h(d2)

z

x

y y

0

1

0

0

1
0

z

1

no pre-computation

no bound needed

dynamic support reduction

what if variables in wrong order?

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 9 / 29



Operations on DD: homomorphisms [Couvreur et al., 2002]

Homomorphism

Recursive encoding
h : DD 7→ DD
h(d1 ∪ d2) = h(d1) ∪ h(d2)

z

x

y y

0

1

0

0

1
0

z

1

no pre-computation

no bound needed

dynamic support reduction

what if variables in wrong order?

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 9 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

1

0

0

1
0

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

1

0

0

1
0

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)

refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

1

0

0

1
0

x+y = ??

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)

refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

1

0

0

1
0

x+y = ??

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)

refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

1

0

0

1
0

x+y = 1+yx+y = 0+y

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

1

0

0

1
0

x+y = 1x+y = 0x+y = 1

y

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y

2

10

10

x+y = 1x+y = 1x+y = 0

y

x x

0

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

10

10

x+y = 1x+y = 0

x

0

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

x

y y

10

10

x+y = 1x+y = 0

x

0

w

2

w

2

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

x

y y

10

10

w := 1w := 0

x

0

w

2

w

2

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



Towards New Operations on DD

Variables in “wrong” order

w := x + y

x

y y

10

10

x

0

w

10

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29



EquivSplit for Complex Operations

Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

Easy case: φ is a constant address.
Use EquivSplit to evaluate ψ
On each subset, assign the value of ψ to the address φ

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 11 / 29



EquivSplit for Complex Operations

Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

� :=  

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 11 / 29



EquivSplit for Complex Operations
Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

� :=  

� = t[2] � = t[3]� = t[0]

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 11 / 29



EquivSplit for Complex Operations

Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

� :=  

 = 1

 = 2

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 11 / 29



EquivSplit for Complex Operations
Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

t[0] := 1

t[0] := 2

t[2] := 1

t[2] := 2

t[3] := 1

t[3] := 2

t[x + y] := z ⇤ x + 1

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 11 / 29



EquivSplit for Complex Operations
Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

� :=  

�1 :=  1

�1 :=  2

�2 :=  1

�2 :=  2 �3 :=  2

�3 :=  1

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 11 / 29



Experimental Validation

Benchmark

BEEM benchmark ∼ 400 instances

Comparison with

LTSmin [Blom et al., 2010] explicit/symbolic model-checker

state space generation
1 core, 10GB, 1hour

super prove [Berkeley LSV Group, 2012] SAT solver

winner of the HWMCC (FMCAD event) since 2010
reachability problems
4cores, 1Gb, 15min wall-clock-time
NB: super prove multi-thread, but we are not!

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 12 / 29



Comparison with LTSmin

state space generation: 1 core, 1 hour, 10 Gb

below the diagonal = its is better

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01  0.1  1  10  100  1000  10000

it
s

LTSmin

 10000

 100000

 1e+06

 1e+07

 10000  100000  1e+06  1e+07
it
s

LTSmin

Comparison in time (s) Comparison in memory (kb)

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 13 / 29



Comparison with super prove

reachability properties: 4 cores, 900s wall-clock, 1Gb

there are difficult instances for both tools

UNSAT
SAT

instances 456
its solves 376 192 184
sup solves 282 170 112

solved by both 258 165 93
solved by none 56

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

it
s

sup

Comparison in time (s)

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 14 / 29



Abstract the Symbolic Engine from the User

Guarded-Action Language

GAL {
   int a = 0;
   int t[5] = (0,0,0,0,0);

   transition incr [a < 5] {
      a = a + 1;
   }

   transition set [a < 5 && a > 0] {
      t[a] = t[a-1]+1;
   }
}

Automated 
translation

DD engine

saturation
EquivSplit

...

Colored 
Petri Nets

Time Petri 
Nets

DVE Timed 
Automata

My work is integrated in the symbolic model-checker used by the team.

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 15 / 29



1 Context

2 New Efficient Operations for Decision Diagrams [CAV 2013]

3 Combine Symmetry Reduction and Decision Diagrams [ACSD 2012]

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 16 / 29



Finite Transition Systems and Symmetries

finite TS K = (S ,→⊆ S × S)

g : S 7→ S bijective is a symmetry iff:
∀s, s ′ ∈ S , s → s ′ ⇐⇒ g .s → g .s ′

s1 ≡G s2 iff ∃g , g .s1 = s2

≡G equivalence relation
equivalence classes = orbits

Quotient graph = orbit graph
K/G = (S/G ,→G⊆ S/G × S/G )

s

s'

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 17 / 29



Finite Transition Systems and Symmetries

finite TS K = (S ,→⊆ S × S)

g : S 7→ S bijective is a symmetry iff:
∀s, s ′ ∈ S , s → s ′ ⇐⇒ g .s → g .s ′

s1 ≡G s2 iff ∃g , g .s1 = s2

≡G equivalence relation
equivalence classes = orbits

Quotient graph = orbit graph
K/G = (S/G ,→G⊆ S/G × S/G )

g.ss

g.s's'

g

g

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 17 / 29



Finite Transition Systems and Symmetries

finite TS K = (S ,→⊆ S × S)

g : S 7→ S bijective is a symmetry iff:
∀s, s ′ ∈ S , s → s ′ ⇐⇒ g .s → g .s ′

s1 ≡G s2 iff ∃g , g .s1 = s2

≡G equivalence relation
equivalence classes = orbits

Quotient graph = orbit graph
K/G = (S/G ,→G⊆ S/G × S/G )

g.ss

g.s's'

g

g

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 17 / 29



Finite Transition Systems and Symmetries

finite TS K = (S ,→⊆ S × S)

g : S 7→ S bijective is a symmetry iff:
∀s, s ′ ∈ S , s → s ′ ⇐⇒ g .s → g .s ′

s1 ≡G s2 iff ∃g , g .s1 = s2

≡G equivalence relation
equivalence classes = orbits

Quotient graph = orbit graph
K/G = (S/G ,→G⊆ S/G × S/G )

[s]

[s']

g.ss

g.s's'

g

g

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 17 / 29



Finite Transition Systems and Symmetries

finite TS K = (S ,→⊆ S × S)

g : S 7→ S bijective is a symmetry iff:
∀s, s ′ ∈ S , s → s ′ ⇐⇒ g .s → g .s ′

s1 ≡G s2 iff ∃g , g .s1 = s2

≡G equivalence relation
equivalence classes = orbits

Quotient graph = orbit graph
K/G = (S/G ,→G⊆ S/G × S/G )

[s]

[s']

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 17 / 29



Finite Transition and Symmetries

Benefits of the quotient graph:

K/G can be exponentially smaller than K
K/G preserves CTL∗ properties with symmetric atomic propositions
[Haddad et al., 1995, Clarke et al., 1996]

Hypothesis

Without loss of generality

S ( Nk

states = integer vectors of size k

G ⊆ S(k)
symmetries permute positions in the vectors

e.g. τ1,2(6, 7, 8) = (7, 6, 8)

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 18 / 29



Orbit representation problem
Two ways to represent an orbit

use a dedicated representation [Chiola et al., 1990]

requires to adapt the transition relation

choose one or several representative states in the orbit
[Clarke et al., 1996]

the transition relation can be used as is

orbit of s
s

CANONIZATION

FIRING

FIRING

...

finding representatives = canonization

less representatives
=

harder canonization
=

smaller graph

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 19 / 29



How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

⇒ choose a representative state per orbit

for instance, given a total order on S ,
choose the minimum

lexicographic order
e.g. s1 > s2 > s3 > s4 > s5

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

⇒ choose a representative state per orbit

for instance, given a total order on S ,
choose the minimum

lexicographic order
e.g. s1 > s2 > s3 > s4 > s5

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g4

Current problems on canonization

GRAPH ISOMORPHISM

repeated for each new encountered
state (state-by-state algorithms)

[Junttila, 2003]

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

[Clarke et al., 1996]

orbit relation maps every potential state to
its representative

∆orbit = {(s, repr(s))|s ∈ S}
exponential size
→quotient=→ ◦∆orbit

still a state-by-state algorithm

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



Our symbolic algorithm for canonization

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

But the red paths all lead to this minimum

Canonization can be done iteratively only
through g1 and g2: represent only a subset
of G

∆g1 = {(s, s)|g1.s ≥ s}∪{(s, g1.s)|g1.s < s}
∆g2 = {(s, s)|g2.s ≥ s}∪{(s, g2.s)|g2.s < s}
. . .
∆H = ∆g1 ◦∆g2 ◦ · · · ◦∆gn

canonization algo based on ∆∗H

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



Our symbolic algorithm for canonization

s1

s3

s2

s4

s5

g1

g2

g2

g2

g1

But the red paths all lead to this minimum

Canonization can be done iteratively only
through g1 and g2: represent only a subset
of G

∆g1 = {(s, s)|g1.s ≥ s}∪{(s, g1.s)|g1.s < s}
∆g2 = {(s, s)|g2.s ≥ s}∪{(s, g2.s)|g2.s < s}
. . .
∆H = ∆g1 ◦∆g2 ◦ · · · ◦∆gn

canonization algo based on ∆∗H

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



Our symbolic algorithm for canonization

s1

s3

s2

s4

s5

g1

g2

g2

g2

g1

But the red paths all lead to this minimum

Canonization can be done iteratively only
through g1 and g2: represent only a subset
of G

∆g1 = {(s, s)|g1.s ≥ s}∪{(s, g1.s)|g1.s < s}
∆g2 = {(s, s)|g2.s ≥ s}∪{(s, g2.s)|g2.s < s}
. . .

∆H = ∆g1 ◦∆g2 ◦ · · · ◦∆gn

canonization algo based on ∆∗H

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



Our symbolic algorithm for canonization

s1

s3

s2

s4

s5

g1

g2

g2

g2

g1

But the red paths all lead to this minimum

Canonization can be done iteratively only
through g1 and g2: represent only a subset
of G

∆g1 = {(s, s)|g1.s ≥ s}∪{(s, g1.s)|g1.s < s}
∆g2 = {(s, s)|g2.s ≥ s}∪{(s, g2.s)|g2.s < s}
. . .
∆H = ∆g1 ◦∆g2 ◦ · · · ◦∆gn

canonization algo based on ∆∗H

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 20 / 29



A Note on Complexity

Any H is correct!

Whatever the chosen H, our algo ∆∗H approximates ∆orbit and chooses
(possibly several) representatives per orbit.

if H = {id}, ∆H = id , no canonization

if H = G , ∆∗H = ∆H = ∆orbit but |H| ∼ k!

larger H ⇒ faster fixpoint but harder ∆H

number of representatives depends on H

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 21 / 29



Choice of H

∆∗H = ∆orbit (Guarantees a unique representative)

H ⊆ G is monotonic< w.r.t. G iff:
∀s ∈ S , (∃g ∈ G |g .s < s ⇒ ∃h ∈ H|h.s < s)

Whenever a state s is not the minimum of its orbit, there is a permutation
in H that reduces s.

H = G is always monotonic<, but inefficient

|H| not polynomially (in k) bounded in general

H of linear (in k) size exist for commonly encountered groups

if G = S(k), then H = {τi,i+1|1 ≤ i < k} monotonic<
if G is cyclic, H = G is the only monotonic<
if G = 〈H1,H2〉, H1 ∪ H2 not monotonic<, but still good

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 22 / 29



Benchmarks

Tools symmetry DD

LoLA X
its X

its-sym X X

its-sym extends its → same DD implementation

Parameterized Symmetric Colored Petri Nets

state space generation

confinement 1 hour and 10 GB

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 23 / 29



Benchmarks

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5  6  7  8  9  10  11  12

T
im

e
 (

s
)

Scale parameter

Tools
LoLa
its
its−sym

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5  6  7  8  9  10  11  12

M
e
m

o
ry

 (
K

B
)

Scale parameter

Tools
LoLa
its
its−sym

Clients servers model

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 24 / 29



Benchmarks

 0

 100

 200

 300

 400

 500

 600

 700

 5  10  15  20  25  30  35  40

T
im

e
 (

s
)

Scale parameter

Tools
LoLa
its
its−sym

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5  10  15  20  25  30  35  40

M
e
m

o
ry

 (
K

B
)

Scale parameter

Tools
LoLa
its
its−sym

SaleStore model

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 24 / 29



Conclusion

Operations on DD

original fully symbolic algorithm for evaluating arbitrary expressions

based on partitionning and successive refine-merge steps
practical efficiency demonstrated experimentally
expressive, wide scope of applications

Symmetries + DD

first effective fully symbolic algorithm for canonization on DD

based on a subset of the group of symmetries
monotonic< criterion to guarantee unique representative
don’t care monotonic<, it always works!

Implemented! http://ddd.lip6.fr/

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 25 / 29

http://ddd.lip6.fr/


Perspectives

Symmetry side

symmetry detection

temporal logic + symmetry

DD side

generalize EquivSplit to hierarchical DD

find new applications: infinite systems?

provide a DD-free abstraction layer to the user

compete with SAT/SMT-solvers

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 26 / 29



Bibliography I

Berkeley LSV Group (2012).
Abc: A System for Sequential Synthesis and Verification, release 12/10/06.
http://www.eecs.berkeley.edu/~alanmi/abc/.

Blom, S., van de Pol, J., and Weber, M. (2010).
Ltsmin: Distributed and symbolic reachability.
In Computer Aided Verification, pages 354–359. Springer.

Bryant, R. E. (1986).
Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, 100(8):677–691.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. (1992).

Symbolic model checking: 1020 States and beyond.
Information and computation, 98(2):142–170.

Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S. (1990).
On well-formed coloured nets and their symbolic reachability graph.
In 11th International Conference on Application and Theory of Petri Nets.

Clarke, E. M., Enders, R., Filkorn, T., and Jha, S. (1996).
Exploiting symmetry in temporal logic model checking.
Formal Methods in System Design, 9(1):77–104.

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 27 / 29

http://www.eecs.berkeley.edu/~alanmi/abc/


Bibliography II

Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., and Wacrenier, P. (2002).
Data decision diagrams for petri net analysis.
Application and Theory of Petri Nets 2002, pages 129–158.

Haddad, S., Ilié, J. M., Taghelit, M., and Zouari, B. (1995).
Symbolic reachability graph and partial symmetries.
In Application and Theory of Petri Nets 1995, pages 238–257. Springer.

Junttila, T. (2003).
On the symmetry reduction method for Petri Nets and similar formalisms.
PhD thesis, Helsinki University of Technology, Espoo, Finland.

Srinivasan, A., Ham, T., Malik, S., and Brayton, R. K. (1990).
Algorithms for discrete function manipulation.
In Computer-Aided Design, 1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE
International Conference on, pages 92–95. IEEE.

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 28 / 29



My Papers

Colange, M., Baarir, S., Kordon, F., and Thierry-Mieg, Y. (2011).
Crocodile: a symbolic/symbolic tool for the analysis of symmetric nets with bag.
Applications and Theory of Petri Nets, pages 338–347.

Colange, M., Baarir, S., Kordon, F., and Thierry-Mieg, Y. (2013).
Towards Distributed Software Model-Checking using Decision Diagrams.
In 25th International Conference on Computer Aided Verification (CAV), volume 8044 of
Lecture Notes in Computer Science, pages 830–845. Springer Verlag.

Colange, M., Hillah, L. M., Kordon, F., and Parutto, P. (2012a).
Extreme Symmetries in Complex Distributed Systems: the Bag-Oriented Approach.
In Development, Operation and Management of Large-Scale Complex IT Systems, 17th
Monterey Workshop, Revised Selected Papers, volume 7539 of LNCS, pages 330–352.
Springer.

Colange, M., Kordon, F., Thierry-Mieg, Y., and Baarir, S. (2012b).
State Space Analysis using Symmetries on Decision Diagrams.
In 12th International Conference on Application of Concurrency to System Design
(ACSD’2012), pages 164–172, Hamburg, Germany. IEEE Computer Society.

M. Colange Combine Symmetry Reduction and Decision Diagrams 10 décembre 2013 29 / 29


	Context
	New Efficient Operations for Decision Diagrams [CAV 2013]
	Combine Symmetry Reduction and Decision Diagrams [ACSD 2012]

