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Context: Formal Verification

Critical systems

automatic transportation, robotic surgery, power plants management . . .

Concurrent systems

modern car ∼ 100 computing devices, and growing

A380 avionics = Ethernet network

highways with driverless cars . . .

How to ensure safety and reliability of such systems?

Tests and/or simulation

cannot be exhaustive

Formal methods give a guarantee (up to the modelling)

assisted mathematical proof
model-checking: exploration of all the possible behaviors
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Problem

Combinatorial Explosion

number of behaviors grows exponentially with the number of components

inherent to concurrent systems

severely hinders model-checking, that aims to explore behaviors

e.g. n clients, p servers: pn possible connexions
25 years of Model-Checking ⇒ Turing Award (2007)

How to counter the combinatorial explosion?

Handle [Bryant, 1986, Burch et al., 1992, Couvreur et al., 2002]

Decision Diagrams: use efficient compact data structures

Fight [Chiola et al., 1990, Clarke et al., 1996, Junttila, 2003]

Symmetry reduction: avoid exploring similar behaviors
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Outline

Two main contributions presented today:

1 improve decision diagrams manipulation for model-checking of
concurrent systems [CAV 2013]

2 combine symmetry reduction and decision diagrams, in order to stack
their respective gains [ACSD 2012]

My thesis features other contributions [ICATPN 2011, Monterey 2012]
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1 Context

2 New Efficient Operations for Decision Diagrams [CAV 2013]

3 Combine Symmetry Reduction and Decision Diagrams [ACSD 2012]
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Finite Transition Systems

Definition

Finite TS K = (S ,→)
→ binary relation over S : →⊆ S × S

Hypothesis

S ( Nk fixed-size vectors of integers

each position (address) denoted by a variable: x1, . . . xk

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 6 / 29



Shared Decision Diagrams and Finite Transition Systems

1

x

y y

z

 2

z

 3

1

 2
1

31

(2, 3, 1)
(1, 1, 1)
(1, 2, 3)

BDD [Bryant, 1986],
MDD [Srinivasan et al., 1990],
DDD [Couvreur et al., 2002]

a path = a state ∈ Nk

|DD| = # nodes ∼ log(|set|)
efficient manipulation operations

unique tables + caches
complexity of operations related to
|DD|, not to |set|
comparison in O(1)
union . . . in O(|DD1|+ |DD2|)
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Operations on DD: 2k-levels [Burch et al., 1992]

Encode symbolically a binary relation on states ∆ ( S × S = Nk ×Nk ?

2k-level

∆ = subset of N2k

encode it with a DD with 2k variables
∆(S) = {s ′|(s, s ′) ∈ ∆} ( Nk

Problem: pre-computation

requires a bound

all potential values

potential values ∼ exp(|support|)
support(x + y) = {x , y}
support(u ∗ v + w) = {u, v ,w}
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Operations on DD: homomorphisms [Couvreur et al., 2002]

Homomorphism

Recursive encoding
h : DD 7→ DD
h(d1 ∪ d2) = h(d1) ∪ h(d2)

z

x

y y

2

1

0

0

1
0

z := x+y

no pre-computation

no bound needed

dynamic support reduction

what if variables in wrong order?
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Towards New Operations on DD

Variables in “wrong” order

w := x + y

w

x

y y

2

1

0

0

1
0

w := x+y

equivalence classes w.r.t. the
value of x + y

O(|codomain|) instead of
O(|set|)
refine

merge

constant assignment on each
obtained subset

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 10 / 29
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EquivSplit for Complex Operations

Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

Easy case: φ is a constant address.
Use EquivSplit to evaluate ψ
On each subset, assign the value of ψ to the address φ

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 11 / 29



EquivSplit for Complex Operations

Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

� :=  
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EquivSplit for Complex Operations
Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

� :=  

� = t[2] � = t[3]� = t[0]
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EquivSplit for Complex Operations

Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions
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EquivSplit for Complex Operations
Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

t[0] := 1

t[0] := 2

t[2] := 1

t[2] := 2

t[3] := 1

t[3] := 2

t[x + y] := z ⇤ x + 1
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EquivSplit for Complex Operations
Evaluate high-level assignments

φ := ψ where φ and ψ are arbitrary expressions

General case: φ is not constant (pointer).
Idea: use EquivSplit twice, once for φ and ψ, then use constant
assignments on each subset
ex: t[x+y] := z*x+1

� :=  

�1 :=  1

�1 :=  2

�2 :=  1

�2 :=  2 �3 :=  2

�3 :=  1
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Experimental Validation

Benchmark

BEEM benchmark ∼ 400 instances

Comparison with

LTSmin [Blom et al., 2010] explicit/symbolic model-checker

state space generation
1 core, 10GB, 1hour

super prove [Berkeley LSV Group, 2012] SAT solver

winner of the HWMCC (FMCAD event) since 2010
reachability problems
4cores, 1Gb, 15min wall-clock-time
NB: super prove multi-thread, but we are not!

M. Colange New Efficient Operations for Decision Diagrams 10 décembre 2013 12 / 29



Comparison with LTSmin

state space generation: 1 core, 1 hour, 10 Gb

below the diagonal = its is better
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Comparison with super prove

reachability properties: 4 cores, 900s wall-clock, 1Gb

there are difficult instances for both tools

UNSAT
SAT

instances 456
its solves 376 192 184
sup solves 282 170 112

solved by both 258 165 93
solved by none 56

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

it
s

sup

Comparison in time (s)
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Abstract the Symbolic Engine from the User

Guarded-Action Language

GAL {
   int a = 0;
   int t[5] = (0,0,0,0,0);

   transition incr [a < 5] {
      a = a + 1;
   }

   transition set [a < 5 && a > 0] {
      t[a] = t[a-1]+1;
   }
}

Automated 
translation

DD engine

saturation
EquivSplit

...

Colored 
Petri Nets

Time Petri 
Nets

DVE Timed 
Automata

My work is integrated in the symbolic model-checker used by the team.
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1 Context

2 New Efficient Operations for Decision Diagrams [CAV 2013]

3 Combine Symmetry Reduction and Decision Diagrams [ACSD 2012]
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Finite Transition Systems and Symmetries

finite TS K = (S ,→⊆ S × S)

g : S 7→ S bijective is a symmetry iff:
∀s, s ′ ∈ S , s → s ′ ⇐⇒ g .s → g .s ′

s1 ≡G s2 iff ∃g , g .s1 = s2

≡G equivalence relation
equivalence classes = orbits

Quotient graph = orbit graph
K/G = (S/G ,→G⊆ S/G × S/G )

s

s'
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Finite Transition and Symmetries

Benefits of the quotient graph:

K/G can be exponentially smaller than K
K/G preserves CTL∗ properties with symmetric atomic propositions
[Haddad et al., 1995, Clarke et al., 1996]

Hypothesis

Without loss of generality

S ( Nk

states = integer vectors of size k

G ⊆ S(k)
symmetries permute positions in the vectors

e.g. τ1,2(6, 7, 8) = (7, 6, 8)
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Orbit representation problem
Two ways to represent an orbit

use a dedicated representation [Chiola et al., 1990]

requires to adapt the transition relation

choose one or several representative states in the orbit
[Clarke et al., 1996]

the transition relation can be used as is

orbit of s
s

CANONIZATION

FIRING

FIRING

...

finding representatives = canonization

less representatives
=

harder canonization
=

smaller graph
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How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3
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How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

⇒ choose a representative state per orbit

for instance, given a total order on S ,
choose the minimum

lexicographic order
e.g. s1 > s2 > s3 > s4 > s5
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How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g4

Current problems on canonization

GRAPH ISOMORPHISM

repeated for each new encountered
state (state-by-state algorithms)

[Junttila, 2003]
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How to represent an orbit symbolically?

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

[Clarke et al., 1996]

orbit relation maps every potential state to
its representative

∆orbit = {(s, repr(s))|s ∈ S}
exponential size
→quotient=→ ◦∆orbit

still a state-by-state algorithm
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Our symbolic algorithm for canonization

s1

s3

s2

s4

s5

g1

g2

g3
g4

g3

g4

g2

g2

g1

g3

But the red paths all lead to this minimum

Canonization can be done iteratively only
through g1 and g2: represent only a subset
of G

∆g1 = {(s, s)|g1.s ≥ s}∪{(s, g1.s)|g1.s < s}
∆g2 = {(s, s)|g2.s ≥ s}∪{(s, g2.s)|g2.s < s}
. . .
∆H = ∆g1 ◦∆g2 ◦ · · · ◦∆gn

canonization algo based on ∆∗H
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A Note on Complexity

Any H is correct!

Whatever the chosen H, our algo ∆∗H approximates ∆orbit and chooses
(possibly several) representatives per orbit.

if H = {id}, ∆H = id , no canonization

if H = G , ∆∗H = ∆H = ∆orbit but |H| ∼ k!

larger H ⇒ faster fixpoint but harder ∆H

number of representatives depends on H
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Choice of H

∆∗H = ∆orbit (Guarantees a unique representative)

H ⊆ G is monotonic< w.r.t. G iff:
∀s ∈ S , (∃g ∈ G |g .s < s ⇒ ∃h ∈ H|h.s < s)

Whenever a state s is not the minimum of its orbit, there is a permutation
in H that reduces s.

H = G is always monotonic<, but inefficient

|H| not polynomially (in k) bounded in general

H of linear (in k) size exist for commonly encountered groups

if G = S(k), then H = {τi,i+1|1 ≤ i < k} monotonic<
if G is cyclic, H = G is the only monotonic<
if G = 〈H1,H2〉, H1 ∪ H2 not monotonic<, but still good
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Benchmarks

Tools symmetry DD

LoLA X
its X

its-sym X X

its-sym extends its → same DD implementation

Parameterized Symmetric Colored Petri Nets

state space generation

confinement 1 hour and 10 GB
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Conclusion

Operations on DD

original fully symbolic algorithm for evaluating arbitrary expressions

based on partitionning and successive refine-merge steps
practical efficiency demonstrated experimentally
expressive, wide scope of applications

Symmetries + DD

first effective fully symbolic algorithm for canonization on DD

based on a subset of the group of symmetries
monotonic< criterion to guarantee unique representative
don’t care monotonic<, it always works!

Implemented! http://ddd.lip6.fr/
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Perspectives

Symmetry side

symmetry detection

temporal logic + symmetry

DD side

generalize EquivSplit to hierarchical DD

find new applications: infinite systems?

provide a DD-free abstraction layer to the user

compete with SAT/SMT-solvers
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