
Exploring Inconsistencies between Modal
Transition Systems

Mathieu Sassolas
mathieu.sassolas@ens-cachan.fr

MPRI 2nd year internship with Sebastián Uchitel at the
Universidad de Buenos Aires

March - July 2008

Abstract
In this document I present the work done under the supervision of Se-
bastian Uchitel between March and July 2008, in the research team of the
Laboratorio de Fundamentos y Herramientas para la Ingenieriá de Software
(LaFHIS) at the Universidad de Buenos Aires (UBA).
In this work we define a formalism to represent inconsistencies between two
Modal Transition Systems that cannot be merged in an augmented model
we call a pseudo-merge. We present a way to build such a model that
encodes all shortest explanations of inconsistencies. These explanations
are in the form of a distinguishing µ-calculus property. We also show how
to represent graphically these formal explanations and how we intend the
user to guide the generation of feedback.

Aknowledgements

I would like to thank specially Sebastián Uchitel for welcoming me in his team in Buenos Aires, for his
time and advice all through the length of my internship. I would also like to thank Marsha Chechik
of the University of Toronto for her questions and advice. Finally, I would like to thank all the people
of the LaFHIS (Fernando Asteasuain, Victor Braberman, Guido de Caso, Hernán Czemerinski, Nicolás
D’Ippolito, Diego Garbervetsky, Hernán Melgratti, Esteban Pavese, Fernando Schapachnik, Marité Segui)
and more generally all the researchers of the department of computer science (departamento de com-
putación) of the Universidad de Buenos Aires for their warm welcome.

Contents

1 Introduction 3

2 Motivation 4

3 Background 6
3.1 Transitions systems . 6
3.2 The underlaying logic: µ-calculus . 6
3.3 Consistency, refinement, and merge . 7

4 Explaining Inconsistency Graphically 8

5 Characterization of Inconsistency 9
5.1 Pseudo-merge . 10
5.2 Correctness and Completeness . 12

6 User-guided Feedback Generation 14

7 Validation 18
7.1 The special case of LTSs . 18
7.2 The printer case study . 18
7.3 The safety injection system . 19

8 Conclusion and future work 21

A Proof of selected properties 22
A.1 Proof of completeness of the pseudo-merge . 22

A.1.1 Combining the proof-trees . 22
A.1.2 Reducing the combination . 24
A.1.3 Having a distinguishing DAG . 25
A.1.4 Extracting a formula . 26
A.1.5 Building new proof-trees . 26

List of Figures

1 Two systems, A and B, of the law-making process. 4
2 Graphical feedback on the law-making models . 5
3 Pseudo-merge of models A and B . 6
4 Rules for the +l operator. 8
5 Proof trees . 9
6 Rules for the pseudo-merge operator. 11
7 Definition of transitions for M +pm N . 12

1

8 Formalization of condition (6) of Definition 14. 12
9 A case when we cannot build a distinguishing DAG containing a given transition 18
10 Models of a printer . 19
11 The pseudo-merge of the printer models . 20
12 Models used to illustrate completeness of the pseudo-merge. 22
13 Original proof-trees used to illustrate completeness . 23
14 Combination of the proof-trees of Figure 13 and a reduction of it. 24
15 Pseudo-merge of the models of Figure 12 . 25
16 The proof-trees obtained from the reduced tree of Figure 14(b) 27

List of Algorithms

1 BuildDistinguishingDAG . 15
2 SubRoutine for BuildDistinguishingDAG . 16

2

1 Introduction

Modelling system behaviour is a common task in requirements engineering and software systems design.
Modeling and analyzing behaviour models helps gain confidence in the understanding of the requirements
of the system-to-be and the adequacy of the design with respect to these requirements.

It is commonplace to have multiple behavioural models describing the very same system, but produced
by different stakeholders, hence providing different views on the system’s behavior. Analysis of the
similarities and differences of these views supports behaviour model elaboration: confidence is gained on
behaviours that are common to the multiple views, comprehensiveness is furthered by merging behaviours
known to some stakeholders but not to others, common understanding is augmented by analyzing and
possibly resolving inconsistencies.

Comparison and composition of behaviour models has been studied extensively. Various notions
of equivalence [5, 10] provide a framework for comparison that abstracts away syntactic differences
in behaviour descriptions. Refinement notions such as those based on simulation [11] support checking
whether one model has been further elaborated than another. In addition, merging [13] allows combining
two partial consistent descriptions into a comprehensive description that is a refinement of the models
being merged.

Notions of equivalence, refinement and merge are crucial for behaviour model elaboration, and tools
that support behaviour modelling with variants of these analyses have been developed, e.g., [1]. Yet little
support is provided by existing approaches and tools to understand why two models are inconsistent and
hence cannot be merged, or why one model is not a refinement of another.

Model-checkers provide useful feedback in the form of traces representing “executions” of the mod-
els. Such feedback can be computed for violations of behavioural properties. Yet the causes for non-
equivalence, non-refinement or inconsistency in behavioural models, especially non-deterministic ones,
are defined in terms of simulation relations which are not easily visualized. Such explanations can be
given in terms of branching structures [3], which are hard to understand.

Our aim is to automatically provide graphical feedback explaining causes for non-equivalence, non-
refinement or inconsistency. Recognizing that there may be many different explanations for these negative
results, we also aim to provide support for the user to select among alternative explanations, choosing
the one to explore in more detail.

This paper is set in the specific context of Modal Transition Systems (MTSs). The MTS formalism is
an extension of traditional Labelled Transition Systems (LTSs) that supports operational descriptions of
system behaviour for which certain aspects of behaviour are explicitly represented as unknowns. MTSs
naturally support conjunction of partial knowledge of system behaviour through the notion of merge [13].
That is, an MTS which composes the information of two consistent partial models can be constructed
through a merge operation. However, if the MTSs to be merged are inconsistent, we would like to help
users understand sources of such inconsistencies and potentially fix them.

In this paper, we present an approach that provides feedback explaining why two MTSs with identical
alphabets are inconsistent. The soundness of the feedback is based on computing a propositional modal
µ-calculus formula which distinguishes between the two MTSs: it evaluates to true in one and to false
in the other. We then show how to provide graphical feedback based on such formula on the original
MTSs as a branching structure, representing an explanation of why the property fails on one MTS and
why it holds on the other MTS. Recognizing that multiple explanations for inconsistency can be given,
we propose an extension to MTSs which can encode all such explanations, allowing the user to guide the
generation of inconsistency feedback. We call this extension pseudo-merge.

A special case of the results presented in this paper is the exploration of inconsistencies in traditional
modelling techniques such as LTS as opposed to the more general setting of partial behaviour modelling
in which we present our results. For example, given that bisimulation of LTSs is a special case of
refinement of MTSs, it is possible to use the approach to provide feedback on the differences between
two non-equivalence of LTS models.

The rest of this paper is organized as follows: We give an example motivating our work in Section 2.
In Section 3, we provide background on LTSs, MTSs, and the merging process in general. In Section 4

3

A: 0

1

2

3

4

5

propose?

propose

debate

accept
reject

applyAct

reject

reject?

debate

amend

accept

applyLaw

(a)

B: 0′

1′

2′

3′

4′

5′

propose?

propose

debate

reject?
accept

reject

applyLaw

reject

debate

amend

accept

applyAct

(b)

Figure 1: Two systems, A and B, of the law-making process.

we present how to graphically give the feedback to the user to facilitate comprehension of a human
modeller. In Section 5, we show how to produce a pseudo-merge of inconsistent MTSs and use it to
compute feedback on the cause of inconsistency in the form of a µ-calculus formula. In Section 6, we
present a method for the user to guide the generation of this feedback. We present applications of this
technique to help reason about bisimulation failure between LTSs and other case studies in Section 7 .
Finally, Section 8 presents conclusions and discusses future work.

2 Motivation

In this section, we discuss two different behaviour models that describe the process for passing laws in
a fictitious assembly. More specifically, we discuss the feedback that can be provided to explain their
differences.

Consider models in Figure 1 (for the purpose of this section, ignore the “?” symbols that appear
on some labels). They describe a process in which texts are produced and, after some debate, are
either rejected or accepted as laws or acts. The decision of whether a text should pass as an act or a
law depends on complex technical aspects that have been abstracted away using non-determinism (see
propose transitions from states 0 and 0′). Since laws and acts are to be applied differently, the protocol
for passing them differs well. The models in Figure 1 differ in which kinds of texts can be amended and
consequently re-proposed.

We now discuss the feedback that would be appropriate to explain the difference between these models
and thus might be automatically computed by a tool. A common approach to providing feedback on
behaviour models is to show traces, or executions of the model, that highlight the problem at hand [2].
In this case, to show the user the cause for inconsistency, it would be appropriate to produce a trace that
is possible in one of the models but is forbidden in the other. However, traces may not be sufficient: for
example, the above models disagree on when amendments can occur but have the same traces! Consider
the trace propose, amend, propose, accept, applyLaw, . . . which can be exhibited by both models. We
know that in the first model, the original proposal must have corresponded to a Law that was later
amended, while in the second model, the original proposal must have been an Act. In one of the models,
the state reached after propose has the potential for accepting an applyLaw without amendments, while
the second has a similar potential for Acts. As this example shows, the problem of using traces on their
own as feedback is that they lack information on the (branching) structure of the two models.

An alternative, more appropriate form of feedback is to provide a tree structure to distinguish between
the two models. For instance, consider the tree in Figure 2(a). It conveys that the potential behaviour
after propose is to amend, or to accept and applyLaw. This tree is computed using states and transitions
of the first model and is shown graphically by overlaying the tree over the structure of the model (see the
dashed transitions in Figure 2(b)). However, a corresponding tree cannot be produced using the second
model (see Figure 2(c) where dotted transitions are an explicit representation of what cannot be done):
if the propose transition to state 4′ is taken, then amend is possible but accept, applyLaw is not; on the
other hand, if the propose transition to 1′ is taken, then accept, applyLaw is possible but amend is not.
In this paper (see Section 6), we show how to produce such graphical feedback automatically.

Formally, the tree in Figure 2(a) characterizes a modal µ-calculus (Lµ) formula that distinguishes

4

propose

accept amend

applyLaw

(a)

0

1

2

3

4

5

propose?

propose

debate

accept
reject

applyAct

reject

reject?

debate

amend

accept

applyLaw

(b)

0′

1′

2′

3′

4′

5′

propose?

propose

debate

reject?
accept

reject

applyLaw

reject

debate

amend

accept

applyAct

amend
X

applyLaw
X

(c)

propose

accept amend

applyActX

(d)

Figure 2: Graphical feedback for a formula ψ. (a) A simplified proof-tree;(b) and (c) Projections of (a)
onto models A and B;(d) Another simplified proof-tree.

between the two models; in other words, that evaluates to true in the first model and to false in the
second. For the law-making example, such a formula can be

ψ = 〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t),

which states that there is a propose transition leading to a state that can both display the accept,
applyLaw, and the amend behaviours. Furthermore, the projection of this tree onto one of the models
(Figure 2(b)) represents a proof that the property holds, while the projection onto the other (Figure 2(c)),
represents a counterexample to the formula. We give a more formal and complete definition of these trees
in Section 4. We show the soundness of the graphical feedback produced by our approach in Section 5.

The tree depicted in Figure 2(a) can be interpreted intuitively as stating that the models disagree as
to whether texts with the potential to be passed as laws can be amended. However, this is not the only
way in which the difference between these two models can be explained. An explanation based on the
potential to amend acts is also plausible and corresponds to the tree of Figure 2(d), yielding a different
cause of inconsistency between the models being compared.

Thus, while individual trees suffice to explain the difference between two models, there are a number
of them that can be proposed, each with a different relevance to the modellers. In our trivial example,
the first tree may prompt a discussion on whether laws-to-be can be amended or not, leading to the
removal of the transition 4 to 0 or the addition of an amend transition from 1′ to 0′, while the second
tree can prompt a discussion on whether acts-to-be may be amended leading to removal of a transition
from 4′ to 0′ or addition of an amend transition from 1 to 0.

Although some explanation for inconsistency can be generated automatically, we support user guided
generation of explanations by encoding all sources of inconsistency compactly and allowing exploration of
this encoding. Figure 3 depicts a composition of the two law-passing models, A and B, where highlighted
states are the inconsistency points. This composition, which can be constructed automatically (see
Section 5), encodes all of the shortest explanations of why two models are inconsistent. A modeller can
generate an explanation of inconsistency by clicking on any transition that leads to an inconsistency point
(see Section 6). Selecting transition from (5, 5′) to (5, ∗′) generates the explanation shown in Figures 2(a)
and 2(b)–(c), while selecting (5, 5′) to (∗, 5′) yields the explanation in Figure 2(d).

5

0, 0′ 4, 1′

4, 4′

1, 4′

5, 3′

3, 2′ 3, 2′

5, 5′

2, 5′

0, ∗′

1, ∗′

4, ∗′

5, ∗′

2, ∗′

3, ∗′∗, 0′

∗, 1′

∗, 4′

∗, 5′

∗, 3′

∗, 2′
propose

propose

propose

debate

accept

reject?

amend

debate
reject

accept

debate

reject

accept

applyLaw

reject reject

applyAct

amend

propose?

propose

applyLaw

debate

accept

reject

amend

debate

accept

reject?

applyLaw

applyAct

reject
amend

applyAct

propose?

propose

applyAct

debate

accept

reject?

amend

accept

debate
reject

applyLaw

reject

Figure 3: Pseudo-merge the law-making systems of Figure 1. State 3, 2′ appears twice for clarity.

3 Background

In this section we present some notions and definitions we need in the rest of this report.

3.1 Transitions systems

The models we are going to reason on are Modal Transition Systems [8], a generalization of the well
known Labelled Transition Systems [7].

Definition 1 (Labelled Transition System). A labelled transition system (LTS) is a tuple 〈S,Act,∆, s〉
where S the set of states, Act is the set of actions (or alphabet),∆ ⊆ S×Act×S is the set of transitions,
and s ∈ S the initial state.

Definition 2 (Modal Transition System). A modal transition system (MTS) is a tuple 〈S,Act,∆r,∆p, s〉
where S is the set of states, Act is the set of actions (or alphabet), ∆p ⊆ S×Act×S is the set of possible
transitions, ∆r ⊆ ∆p is the set of required transitions, and s ∈ S is the initial state.

We shall write m `−→p m
′ when (m, `,m′) ∈ ∆p, m `−→r m

′ when (m, `,m′) ∈ ∆r, m `−→m m′ when

(m, `,m′) ∈ ∆p \∆r, and m
`
6−→ when ∀m′ ∈ S, (m, `,m′) /∈ ∆p. Remark that an MTS in which ∆r = ∆p

is an LTS. For any state of an MTS, we can define a new MTS by just changing the initial state (and
maybe removing some unreachable states). Hence we will often mix up a state of the MTS with this new
MTS. We can also define another MTS by removing states.

Definition 3 (SubMTS). For an MTS M = 〈SM , Act,∆r
M ,∆

p
M , s〉, a subMTS w.r.t. a set of states

SN ⊆ SM is an MTS N = 〈SN , Act,∆r
N ,∆

p
Ns〉 where ∆p

N = {∀s, t ∈ SN , (s, l, t) ∈ ∆p
M} and ∆r

N =
∆p
N ∩∆r

M .

3.2 The underlaying logic: µ-calculus

In order to reason over finite behaviors of MTSs, we use a subset of the modal 3-valued µ-calculus of [6]
that does not include fixpoints. It is 3-valued to express the lack of knowledge over some transitions.

Definition 4 (Propositional µ-calculus). A formula of the propositional µ-calculus (Lpµ) has the grammar

ϕ = t | f | ¬φ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | [`]ϕ

It is possible to remove all occurences of the negation according to the following rules:

6

(i) ¬t = f

(ii) ¬f = t

(iii) ¬〈`〉ϕ = [`]¬ϕ

(iv) ¬[`]ϕ = 〈`〉¬ϕ

(v) ¬(ϕ1 ∧ ϕ2) = ¬ϕ1 ∨ ¬ϕ2

(vi) ¬(ϕ1 ∨ ϕ2) = ¬ϕ1 ∧ ¬ϕ2

The intuition of the 〈`〉 modularity is to say that there exist a required transition on ` satisfying the
rest of the formula. Dually, the [`] modularity expresses that all possible transitions on ` satisfy the rest
of the formula. The semantics of the other operators is the usual one.

Definition 5 (Semantics of Lpµ). For an MTS M and a Lpµ formula ϕ, ϕ is true in M , written M � ϕ
according to the following rules:

(i) M � t

(ii) M � ϕ1 ∧ ϕ2 iff M � ϕ1 and M � ϕ2

(iii) M � ϕ1 ∨ ϕ2 iff M � ϕ1 or M � ϕ2

(iv) M � 〈`〉ϕ iff ∃M ′ ·M `−→r M
′ and M ′ � ϕ

(v) M � [`]ϕ iff ∀M ′ such that M `−→p M
′, M ′ � ϕ

If M � ¬ϕ, ϕ is false in M . If it is neither the case that M � ϕ nor M � ¬ϕ, then ϕ is maybe in M .

To explore what differs between models, we use a special kind of properties, the ones that evaluate
differently in the two models.

Definition 6 (Distinguishing property). For two MTSs M and N , a distinguishing property is a Lpµ
formula ϕ such that M � ϕ and N � ¬ϕ, or conversely.

Note that if ϕ is distinguishing, then ¬ϕ also is. In the following, we will often choose to always have
a formula true in the first model and false in the second one, rather than the other way around.

3.3 Consistency, refinement, and merge

We need a notion of agreement (or rather absence of contradiction) between models in order to formally
define the scope of our approach.

Definition 7 (Consistency relation). A Consistency relation between two MTSs M and N over the same
alphabet Act is a binary relation CM,N such that (M,N) ∈ CM,N and the following conditions hold for
all ` ∈ Act and all (M ′, N ′) ∈ CM,N :

1. M ′ `−→r M
′′ ⇒ ∃N ′′ ·N ′ `−→p N

′′ ∧ (M ′′, N ′′) ∈ CM,N .

2. N ′ `−→r N
′′ ⇒ ∃M ′′ ·M ′ `−→p M

′′ ∧ (M ′′, N ′′) ∈ CM,N .

If there exists a consistency relation between M and N , we say that the models (or states) are
consistent and write it Cons(M,N). Otherwise, they are inconsistent and write ¬Cons(M,N).

Intuitively, refinement is the capacity for an MTS to add knowledge over previously unknown (maybe)
behaviors, without changing any previously known behavior.

Definition 8 (Refinement). An MTS N is a refinement of M an MTS over the same alphabet, written
M � N if there exists a refinement relation R such that:

7

M
`−→r M

′ N
`−→r N

′

M +l N
`−→r M

′ +l N
′

TT M
`−→r M

′ N
`−→m N ′

M +l N
`−→r M

′ +l N
′

TM

M
`−→m M ′ N

`−→r N
′

M +l N
`−→r M

′ +l N
′

MT M
`−→m M ′ N

`−→m N ′

M +l N
`−→m M ′ +l N

′
MM

Figure 4: Rules for the +l operator.

1. (M,N) ∈ R

2. ∀(M ′, N ′) ∈ R, M ′ `−→r M
′′ ⇒

(
∃N ′′ ·N ′ `−→r N

′′ ∧ (M ′′, N ′′) ∈ R
)

3. ∀(M ′, N ′) ∈ R, N ′ `−→p N
′′ ⇒

(
∃M ′′ ·M ′ `−→p M

′′ ∧ (M ′′, N ′′) ∈ R
)

One can refine a model until all behaviors are known, in which case we have an LTS, which we call
an implementation of the MTS. Since different refinements will yield different LTSs, one can see an MTS
as the (possibly infinite) set of its implementations.

The process of merging two MTSs M and N will try to agregate the knowledge contained in both of
them into one model. Hence we will try to find a minimal common refinement of M and N . A common
refinement will have all knowledge from M with some knowledge over some of its maybe behaviors, and
conversely for N . We want minimality so that we do not add extra knowledge. In terms of sets of imple-
mentations, a merge will represent the intersection of the implementations of M and the implementations
of N .

Finding a minimal common refinement is not always a simple problem [13, 4]. One obstacle that
stops merging is inconsistency. Seen as sets of LTSs, two inconsistent MTSs have disjoint sets of imple-
mentations since they contain contradictory information. Therefore, inconsistent MTSs do not have any
common refinement.

In terms of Lpµ, refinement preserves true and false properties.

Property 1. For M an MTS and ϕ an Lpµ formula, if M � N and M � ϕ, then N � ϕ.

Note that the converse, that holds in the case of the whole µ-calculus [12], does not necessarily hold
here. Therefore if there is a distinguishing property ϕ between M and N , there cannot be a common
refinement, since ϕ would both be true and false in it. On the other hand, there is a common refinement
if and only if the models are consistent, as shown in [4].

However, in the case in which the models are consistent, there is a way to build a common refinement
(not alway minimal). Presented in [13], the +l operator considers only pairs of consistent states and
applies the rules of Figure 4.

4 Explaining Inconsistency Graphically

In this section we explain how sound graphical feedback that explains why two models are inconsistent
can be provided. In subsequent sections we show how such feedback can be automatically generated.

As shown in the previous section, the notion of inconsistency defined as the non-existence of a common
refinement is characterised by the existence of a modal µ-calculus formula that evaluates to true in one of
the models and false in the other. This means that µ-calculus formulas have sufficient expressiveness to
provide feedback on inconsistency for all inconsistent models. As µ-calculus is clearly not an accessible
language from a practitioners perspective, we show how graphical feedback in terms of two tree directed
acyclic graphs – each one overlaid on one of the models being compared – can provide an intuitive
explanation to inconsistency. These graphs formally correspond to proofs as to why the formula does or
does not hold in the inconsistent models.

8

4, ψ1

0, ψ

4, 〈accept〉〈applyLaw〉t 4, 〈amend〉t

5, 〈applyLaw〉t 0, t

5, t

propose

τ τ

accept amend

applyLaw

(a) ψ = 〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t), ψ1 =
〈accept〉〈applyLaw〉t ∧ 〈amend〉t

0′,¬ψ

1, ψ24, ψ2

1, [amend]f4, [accept][applyLaw]f

4, [applyLaw]f

proposepropose

ττ

accept

(b) ¬ψ = [propose]([accept][applyLaw]f ∨ [amend]f), ψ2 =
¬ψ1 = [accept][applyLaw]f ∨ [amend]f

Figure 5: Proof trees for (a) formula ψ in model A; (b) formula ¬ψ in model B.

We first define the notion of a proof tree. A proof tree for a model M and a modal µ-calculus
formula φ encodes a proof that M satisfies φ. Each node of the tree consists of an MTS and a modal
µ-calculus formula. Each transition is labelled with an action in Act∪{τ}. A node n = 〈M,φ〉 has nodes

ni = 〈Mi, φ1〉 reached by transitions labelled `i only if M � φ follows from ∀i ·Mi � φi ∧M
`i−→Mi. The

proof tree for a model M and a formula φ has 〈M,φ〉 as its root the node and all leaves have a formula
which is either a tautology or a node of the form 〈M, [`]φ〉 where there is no transition on ` from M .

Definition 9 (Proof Trees). Given a model M and property ϕ such that M � ϕ, a proof tree for ϕ in
M denoted ΠM,ϕ of is a labelled tree ProofTree(M,ϕ), inductively defined by:

(i) ProofTree(M, t) = (M, t)

(ii) ProofTree(M, 〈`〉ϕ) = (M, 〈`〉ϕ) `−→ ProofTree(M ′, ϕ) where M `−→r M
′ and M ′ � ϕ.

(iii) ProofTree(M, [`]ϕ) = (M, [`]ϕ) `−→ {ProofTree(M ′1, ϕ), . . . , P roofTree(M ′k, ϕ)} where the set{
M

`−→p M
′
i

∣∣∣i ∈ {1, . . . , k}} are all possible transitions on ` from M and ∀i ∈ {1, . . . , k},M ′i � ϕ.

(iv) ProofTree(M,
∧k
i=1 ϕi) = (M,

∧k
i=1 ϕi)

τ−→ {ProofTree(M,ϕ1), . . . , P roofTree(M,ϕk)}.

(v) ProofTree(M,
∨k
i=1 ϕi) = (M,

∨k
i=1 ϕi)

τ−→ ProofTree(M,ϕj) for some j such that M � ϕj and
1 ≤ j ≤ k.

Consider the models A and B in Figure 1 and the distinguishing property ψ in the caption which
proves they are inconsistent. The proof thatA |= ψ can be depicted in the proof tree shown in Figure 5(a).
Note the conjunction in the formula is encoded as two separate branches.

An abstraction of a proof tree for a property ϕ on a model M can be depicted graphically over
M by simply highlighting the portion of M that is covered by transitions in ϕ. For example consider
Figure 2(b) which depicts using dashed lines the projection of the proof tree shown in Figure 5(a).

Definition 10 (Proof tree projection on a MTS). The projection N of a proof ΠM,ϕ for ϕ in M is the

subgraph of M such that m `−→ m′ ∈ ρ⇔ ∃ρ, ϕ′ · (m, ρ) `−→ (m′, ϕ′) ∈ ΠM,ϕ.

To aid user comprehension, when projecting proof trees with leafs of the form (m, [`]φ), we explicitly
display the ` transitions that are not possible in state M . For instance, the proof tree show in Figure 5(b)
has a leaf labelled (4, [applyLaw]f) which states that in state 4 of model B there are no applyLaw
transitions. This fact is shown in the projection of the proof tree onto B in Figure 2(c), with a dashed
crossed out transition.

5 Characterization of Inconsistency

In this section, we define pseudo-merge which is the basis for providing the various features described
in Section 2. Intuitively, the pseudo-merge of two models is a model which distinguishes the behaviour

9

for which the models agree and captures the states in which they show disagreement. We then provide
an algorithm that builds a pseudo-merge that is correct and complete with respect to explaining the
inconsistencies of the models being merged: We define the set of formulas defined by a pseudo-merge
and show that on one hand, all these properties are distinguishing (correctness), and on the other,
that any distinguishing formula for the two models can be explained (via a shorter explanation) using
pseudo-merge (completeness). These results allow us to conclude that pseudo-merge is a sound, compact
representation of the inconsistencies between two models which can be used to generate appropriate
feedback to users. In Section 6, we discuss how users choose which of the many properties encoded in
the pseudo-merge is to be used as feedback. The graphical representation of such properties has been
discussed in Section 4.

5.1 Pseudo-merge

A pseudo-merge of MTSs M and N is an MTS where with two identified subsets of states: disagreement
states for M (IM) and disagreement states for N (IN) such that if disagreement states for M (resp.
N) are removed, then the pseudo-merge is a refinement of M (resp. N). All other states are called
agreement states, with the interpretation that the transitions between such states are behaviours that
M and N agree upon. All behaviours leading to disagreement states are inconsistent with either M or
N . The transitions that go from agreement states to disagreement states are of particular interest as
they represent the first points in which one model disagrees with the other. Finally, a pseudo-merge for
M and N with empty disagreement states is a common refinement of M and N .

Definition 11 (Pseudo-merge). A pseudo-merge of two MTSs M and N with identical alphabets Act is
a tuple 〈P, IM , IN 〉, where P is an MTS 〈S,Act,∆r,∆p, s〉, IM ⊆ S and IN ⊆ S such that subMTSs of P
over states S \ IM and S \ IN refine M and N , respectively. We call transitions in S ×Act× (IM ∪ IN)
and (S \ (IM ∪ IN))×Act× (IM ∪ IN) disagreement transitions and boundary disagreement transitions,
respectively.

An example of a pseudo-merge for models A and B of Figures 1(a) and 1(b) is depicted in Figure 3.
The disagreement states for B are labelled with a pair with ∗ as the first element and shown in light grey.
The disagreement states for A are labelled with a pair with ∗ as the second element and shown dark
grey. Boundary disagreement transitions are dashed, whereas the rest of the disagreement transitions
are dotted.

We now present an algorithm, +pm, for computing a pseudo-merge of two models. It an adaptation of
the algorithm introduced in [13] for constructing common refinements of consistent MTSs. The algorithm,
applied to models M and N , first builds a synchronous product by constructing the Cartesian product
of SM ∪ {∗} × SN ∪ {∗}, where SM and SN are the states of M and N and ∗ is a special symbol for
denoting states in one model that do not have correspondences in the other. Second, the algorithm
removes transitions related to specific non-deterministic choices from the synchronous product. Finally,
the sets of disagreement states are defined as IN = (SM × {∗}) and IM = ({∗} × SN). Intuitively, IM
means that M has gone into an inconsistent state from following N .

We now explain the algorithm in more detail. The synchronous product is built over the Cartesian
product of SM ∪ {∗} × SN ∪ {∗}. The algorithm adds transitions resulting from executing M and
N synchronously, i.e., simultaneous transitions synchronizing on the action labelling these transitions.
Transitions in the synchronous product are computed based on the rules in Figure 6. For instance, if
M and N can transit on ` through a required transition then the synchronous product of M and N
can transit on ` through a required transition as well, as indicated by rule TT. If M can transit on `
over a required transition and N can transit on ` over a maybe transition, this means that M has more
information over the occurrence of ` than N has (N does not rule that the transition is required nor
prohibited). Hence, there is an agreement and the synchronous product of M and N can transit on `
through a required transition. This is codified in rule TM, while the symmetric situation is described
in rule MT. Using a similar reasoning, it is expected that the rules do not allow a transition on ` in
the synchronous product if one model can transit on ` with a maybe transition while the other cannot

10

M
`−→r M

′ N
`−→r N

′

M +pm N
`−→r M

′ +pm N ′
TT M

`−→r M
′ N

`−→m N ′

M +pm N
`−→r M

′ +pm N ′
TM M

`−→m M ′ N
`−→r N

′

M +pm N
`−→r M

′ +pm N ′
MT

M
`−→m M ′ N

`−→m N ′ Cons(M ′, N ′)

M +pm N
`−→m M ′ +pm N ′

MM M
`−→r M

′ N
`
6−→

M +pm N
`−→r M

′ +pm ∗
TF M

`
6−→ N

`−→r N
′

M +pm N
`−→r ∗+pm N ′

FT

γ ∈ {t,m} M
`−→γ M

′

M +pm N
`−→γ M

′ +pm ∗
Γ∗ γ ∈ {t,m} N

`−→γ N
′

∗+pm N
`−→γ ∗+pm N ′

∗Γ

Figure 6: Rules for the pseudo-merge operator.

transit all together on `. The rules also do not allow an ` transition on the synchronous product of M
and N if they both agree in prohibiting ` transitions on M and N .

Rules FT and TF are of particular interest as they capture the situation in which M and N disagree.
For instance, TF states that if an `-transition is required in M but prohibited in N , then the synchronous
product `-transitions to a state which models that N has flagged the fact that a transition has occurred
which is inconsistent with its own behaviour (the ∗ state). Rules Γ∗ and ∗Γ encode the synchronous
product once one of the models has reached a has reached a ′∗′-state. Essentially, the synchronous
product allows the model that is not in ∗ to transition freely while prohibiting any transitioning of the
other model.

We give special treatment to the case in which both models have maybe `-transitions: Rule MM
states that the synchronous product of M and N has a maybe ` transition if M and N have maybe
`-transitions, and the states reached by these transitions in M and N are consistent (recall Definition
7). The intuition here is that we are not interested in introducing inconsistent pairs of states reachable
through maybe transitions because these do not represent true disagreements between M and N as they
can be removed by refining the maybe transition.

Once the synchronous product is constructed, a subset of transitions is then removed from the syn-
chronous product to resolve non-deterministic choices of M and N according to the following rule: if a
state (m,n) of the synchronous product has an `-transition to (m′, n′) such that m′ and n′ are incon-
sistent, remove this transition unless (i) m `−→r m

′ and there is no transition on ` from n to any state
n′′ where m′ and n′′ are consistent; or (ii) a dual case involving n `−→r n

′ occurs. The intuition for this
rule is that M similarly to the rule MM, we do not want to include transitions to pairs of inconsistent
states if these can be avoided in common implementations of M and N because if this is the case then
they do not represent proper disagreements between M and N . The rule states that if when computing
the synchronous product, either of the models has a non-deterministic choice on `, we wish to pair `
transitions, if possible, such that the resulting state in the synchronous product is consistent. In other
words, we do not include pairings of ` transitions that lead to inconsistent states if there was a consistent
option.

Definition 12 (The Synchronous Product). Let M = (SM , Act,∆r
M ,∆

p
M , s0M) and N = (SN , Act,

∆r
N ,∆

p
N , s0N) be MTSs. Then a synchronous product of M and N is an MTS P = 〈SP , Act,∆r

P ,∆
p
P , p0〉,

where SP = SM × SN , p0 = (s0M , s0N), and ∆r
P and ∆p

P are the smallest relations that satisfy the rules
given in Figure 6.

Definition 13 (The +pm Operator). Let M , N and P be MTSs in Definition 12. Result of M +pmN is
a tuple 〈P ′, IM , IN 〉, where IN = (SM × {∗}), IM = ({∗} × SN) and P ′ = 〈SP , Act,∆r

P ′ ,∆p
P ′ , p0〉, where

∆p
P ′ is defined as shown in Figure 7 and ∆r

P ′ = ∆r
P ∩∆p

P ′.

Applying +pm to the models of the law-making process (see Figure 1), we obtain the model in Figure 3.
This model includes three branches from the initial state on action propose, corresponding to all possible
matchings containing at least one required transition of the non-deterministic choice on this action in

11

∆p
P ′ = ∆p

P \ {(m,n) `−→p (m′, n′) ∈ ∆p
P | ¬Cons(m′, n′) ∧ (m 6 `−→r m

′ ∨ ∃n′′ · (Cons(m′, n′′) ∧ n `−→p n
′′))

∧ (n 6 `−→r n
′ ∨ ∃m′′ · (Cons(m′′, n′) ∧m `−→p m

′′))}

Figure 7: Definition of transitions for M +pm N .

((m,n), `, (m′, n′)) ∈ ∆D ⇒ (((∀m′′, ((m,n), `, (m′′, n′)) ∈ ∆r ⇒ ((m,n), `, (m′′, n′)) ∈ ∆D) ∧
(∀n′′, ((m,n), `, (m′, n′′)) ∈ ∆D ⇒ (n′ = n′′)) ∧ ((n, `, n′) ∈ ∆r

N)) ∨
((∀n′′, ((m,n), `, (m′, n′′)) ∈ ∆r ⇒ ((m,n), `, (m′, n′′)) ∈ ∆D) ∧
(∀m′′, ((m,n), `, (m′′, n′)) ∈ ∆D ⇒ (m′ = m′′)) ∧ ((m, `,m′) ∈ ∆r

M)))

Figure 8: Formalization of condition (6) of Definition 14.

the original models. The boundary disagreement transitions in these models are

(4, 1′) amend−→ (4, ∗′) (5, 5′)
applyLaw−→ (5, ∗′)

(5, 5′)
applyAct−→ (∗, 5′) (1, 4′) amend−→ (∗, 4′)

As in the merge operation in [13], the pseudo-merge operator +pm works in O(|M | · |N | · |Act|), where
M and N are the original MTSs, size of a model is a number of states in it, and Act is their shared
alphabet. The maximal size of the resulting pseudo-merge is (|M |+ 1) · (|N |+ 1) as we traverse pairs of
states in M ∪ {∗} ×N ∪ {∗}.

Theorem 1. M +pm N is a pseudo-merge.

Proof of Theorem 1. Given two MTSs M = 〈SM , Act, sM ,∆r
M ,∆

p
M 〉 and N = 〈SN , Act, sN ,∆r

N ,∆
p
N 〉,

let P = 〈SP , Act, p0,∆r
P ,∆

p
P 〉 as defined in Definition 13. Let PM be P ’s subMTS w.r.t. states S \ IM .

We show that M � PM . We define the relation R = {(m, (m,n))|(m,n) ∈ S \IM} (n may well be ∗) and
need to show that R is a refinement relation between PM and M , that is, it satisfies both conditions of
Definition 8. Let ((m,n),m) ∈ R. If m `−→r m

′, then by one of the rules TT, TM, TF, or Γ∗ with γ = t,
there is a transition (m,n) `−→r (m′, n′). Of all such transitions, at least one has not been removed by
the removal rules (see Figure 7). On the other hand, if (m,n) `−→p (m′, n′), this transition could not be

created by rules FT or ∗Γ, since those lead to states in IM . All other cases require that m `−→p m
′.

5.2 Correctness and Completeness

We now define the set of modal µ-calculus formula denoted by a M +pmN , show that all the formulas in
the set are distinguishing properties of M and N , and then that there are no distinguishing properties
that provide shorter explanations to the inconsistency between M and N .

The set of modal µ-calculus formula denoted by a M +pmN is defined as the set of formula that can
be constructed by any distinguishing DAG embedded into M +pm N .

Definition 14 (Distinguishing DAG). Let M +pm N = 〈〈S,L,∆r,∆p, s0〉, IM , IN 〉. We call a DAG
D = (v0, V,∆D), where V ⊆ S a distinguishing DAG iff

(1) D has the same initial state, i.e., v0 = s0

(2) D contains only required transitions, i.e., ∆D ⊆ ∆r

(3) D contains no transitions from a disagreement state, i.e., p `−→ p′ ∈ ∆D =⇒ p /∈ (IM ∪ IN)

(4) Leaf transitions are disagreement, i.e., p ∈ V ∧ (∀p′ ∈ S · p `−→ p′ /∈ ∆D) =⇒ p ∈ IM ∪ IN

12

(5) All transitions from a given state are on the same symbol, i.e., (p `−→ p′ ∈ ∆D ∧ p
`′

−→ p′′ ∈ ∆D) =⇒
` = `′

(6) Each transition corresponds to taking all transitions on a symbol in one original MTS and only one,
required, transition in the other, i.e., see Figure 8.

An example of a distinguishing DAG for M +pm N is the subgraph which consists of transitions

(0, 0′)
propose−→r (4, 4′)

accept−→r (5, 5′)
applyLaw−→r (5, ∗′) and (0, 0′)

propose−→r (4, 1′) amend−→r (0, ∗′).

Definition 15 (Formula of a Distinguishing DAG). The formula induced by a distinguishing DAG D =
(v0, V,∆D) on the pseudo-merge 〈〈S,L,∆r,∆p, (m0, n0)〉, IM , IN 〉 is a Lµ formula F , defined inductively
below:

(i) If ((m,n), `, (m′, ∗)) ∈ ∆D, then F((m,n)) = 〈`〉t

(ii) If ((m,n), `, (∗, n′)) ∈ ∆D, then F((m,n)) = [`]f

(iii) If ∀i, 1 ≤ i ≤ k · ((m,n), `, (m′, n′
i)) ∈ ∆D, or if k = 1 and m `−→r m

′ ∈M , then

F((m,n)) = 〈`〉
k∧

i=1

F((m′, n′
i))

(iv) If ∀i, 1 ≤ i ≤ k · ((m,n), `, (m′
i, n

′)) ∈ ∆D, or if k = 1 and m 6 `−→r m
′
1 ∈M then

F((m,n)) = [`]
k∨

i=1

F((m′
i, n

′))

The formula for the distinguishing DAG in our example is φ = 〈propose〉(〈accept〉〈applyLaw〉t ∧
〈amend〉t). Note that projecting this distinguishing DAG onto the model A in Figure 1, we obtain the
diagram of Figure 2(b) (see Section 2), where the dashed edges correspond to those covered by the DAG.

Definition 16 (Formulas of +pm). The set of formulas of a pseudo-merge M +pm N are those induced
by all distinguishing DAGs of M +pm N .

Theorem 2 (Correctness of +pm). All formulas of M +pm N are distinguishing properties for M and
N .

The proof consists in proving the following lemma:

Lemma 1. Let D be a distinguishing DAG on P = M +pm N and ϕ = F(D). Then M � ϕ ∧N � ¬ϕ.

Proof. 1. If D has only one transition, then it is between a normal (m,n) and a disagreement state
(case (4) of Definition 14). This transition can only have been created by rules TF or FT.

If the rule TF was applied, then the transition is of the form (M,N) `−→ (M ′, ∗). Hence, ϕ = 〈`〉t,
by case (i) of Definition 15, there is a transition M

`−→r M
′, and M � ϕ. Since we know that there is

no transition on ` from N , N � ¬ϕ.
If rule FT was applied, we have a dual situation. The formula we obtain is [`]f (case (ii) of Defini-

tion 15), which is true in states of M that do not have a transition on ` and false in those in N that
require one.

2. Suppose the lemma holds on all DAGs with up to a height k. We prove it for a DAG D with
height k + 1. Consider all transitions stemming from the root (M,N) of D. By (6) of Definition 14, we
have two dual cases.

Suppose they are all transitions on ` from (M,N) to states (M ′, N ′1), . . . , (M ′, N ′k). By case (iii) of
Definition 15, the formula ϕ is then 〈`〉

∧k
i=1 ϕi, where ϕi is a shortand for F((m′, n′i)). By induction

13

hypothesis, ∀i ∈ {1, . . . , k},M ′ � ϕi ∧ N ′i � ¬ϕi. In that case, we also know that there is a transition

M
`−→r M

′. Therefore, M � ϕ. With rules TT and TM, the operator builds a transition (M,N) `−→r

(M ′, N ′) for every possible transition on ` from N . Therefore, ∀N N−→p

′
, ∃i ∈ {1, . . . , k} such that

N ′ = N ′i . Since for all possible targets on ` from N the conjuction of the ϕis does not hold, N � ¬ϕ.
The dual case is treated with case (iv) of Definition 15.
All formulas induced by the pseudo-merge are built from a distinguishing DAG, and are therefore

true in M and false in N .

We now express the notion of completeness of the pseudo-merge constructed by +pm. We say that
M+pmN is complete in the sense that any property that distinguishes M from N results in an explanation
that is at least as long as some explanation derived from M +pm N . By an explanation we mean a
projection of proof trees of a distinguishing formula onto the models being compared.

Theorem 3 (Completeness of +pm). Let M and N be inconsistent MTSs. For any distinguishing
property ϕ and two proofs, Πϕ

M and Π¬ϕN of the fact that M � ϕ and N � ¬ϕ, there exists a formula ϕ′

induced by M +pm N , a proof Πϕ′

M of M � ϕ′ and a proof Π¬ϕ
′

N N � ¬ϕ′ such that the projection of Πϕ′

M

on M (resp. Π¬ϕ
′

N on N) is subgraphs, with the same initial state, of the projection of Πϕ
M on M (resp.

Π¬ϕN on N).

Outline of a proof of completeness (Theorem 3). The entire proof is available in Appendix A.1.
We start by combining the given proofs in one sole tree. We then collapse some nodes of this tree

that correspond to loops in the pseudo-merge, and cut some superfluous subtrees. This results in another
tree, encoding the (smaller) proof of another formula. We show that we can project this tree onto the
pseudo-merge, and that the projection is a distinguishing DAG. Moreover, we show that the formula
induced by the distinguishing DAG is the same as proved by the tree. Finally, we split the tree into two
proof-trees, one for each model. The way the new tree is built ensures that the new proofs start at the
same state as the original ones and are projected as subgraphs of the original ones.

Finally, if M and N are consistent, then M +pm N yields a common refinement of M and N . In
other words, M +pm N = 〈P, IM , IN 〉 s.t. IM = IN = ∅. Furthermore, P is the same model as the one
returned by +l in [13].

Property 2 (+pm of consistent MTSs). If M and N are consistent, then M +pm N = M +l N .

Proof. The only application of rules TM, MT, TT of +pm that have no direct correspondence in +l are
those where succesor states, M ′ or N ′, are inconsistent, but these transitions will be removed because
for each consistent (m,n), there is a consistent state (m′′, n′′). Conversely, as seen in Figures 4 and 6, all
rules of +l are included in rules of +pm.

6 User-guided Feedback Generation

Having explained how sound graphical feedback on inconsistency can be provided from a property that
distinguished two behavior models (see Section 4) and how a compact representation of all explanations
to inconsistencies can be constructed (see Section 5), we now show how such a representation can be
used by a modeler to explore the inconsistencies between two models.

A user who wishes to explore the reasons why two models are inconsistent can use the pseudo-merge
operator to construct a model with which to explore the behaviour for which the two models being
compared agree upon and to produce queries on why certain transitions to disagreement states of the
pseudo-merge represent inconsistencies. The queries on disagreement transitions can be used to generate
sound graphical feedback on why the transition partially represents an inconsistency between the models.

We now discuss how user-guided feedback on inconsistent models can be generated automatically.
Specifically, we discuss an algorithm which given the pseudo-merge of two models M and N and a
disagreement transition of the pseudo-merge produces a distinguishing DAG (recall Definition 14) over

14

the pseudo-merge which covers the disagreement transition. This disagreement DAG encodes (recall
Definition 15) a property φ for M and N for which there exists proof trees showing that φ holds in M
and ¬φ does not hold in M . These proof trees when projected on M and N cover the disagreement
transition selected by the user. In short, the algorithm constructs explanations, in the form of highlighted
transitions in M and N , of a distinguishing property for M and N such that the explanations cover the
user-selected disagreement transition.

Definition 17 (S t T). If S and T are sets of pairs of the form (a,B), with B being a set we define the
following set

S t T = {(a,B ∪ C)|(a,B) ∈ S ∧ (a,C) ∈ T} ∪ {(a,B)|(a,B) ∈ S ∧ @C · (a,C) ∈ T} ∪
{(a,C)|(a,C) ∈ T ∧ @B · (a,B) ∈ S}

Algorithm 1 BuildDistinguishingDAG
1: procedure BuildDistinguishingDAG(M0, N0)
2: Let P = M0 +pm N0

3: Choose (M1, N1) `−→r (M ′1, N
′
1) ∈ P such that (M ′1, N

′
1) ∈ IM0 ∪ IN0 (∗ Chosen by the user ∗)

4: Let π be a strict1 required agreement path to (M1, N1) traversing only pairs of inconsistent states

5: π = π :: ((M1, N1) `−→r (M ′1, N
′
1)) (∗ Extend π with our goal transition ∗)

6: X = ∅ (∗ Set of visited states ∗)
7: Let I = {(M,N), {(M,N)}} (∗ Pairs of states to traverse first ∗)
8: Let J = ∅ (∗ Pairs of states to traverse ∗)
9: Let D = (V,E) = ({(M,N)}, ∅) (∗ A placeholder for the DAG ∗)

10: while I ∪ J 6= ∅ do
11: if I = ∅ then
12: Let (M,N), F = J.pop()
13: else
14: Let (M,N), F = I.pop()

15: X = X ∪ {(M,N)}
16: if (M,N) a−→r (M ′, N ′) is a step in π then

(∗ Try to apply the normal algorithm with letter a ∗)
17: Let success = SubRoutine(M,N,F, {M ′}, {N ′}, {a})
18: if ¬ success then
19: Backtrack
20: else
21: Let success = SubRoutine(M,N,F, States(M), States(N), Act) (∗ Apply the normal

algorithm ∗)
22: if ¬ success then
23: Backtrack
24: return D

Property 3 (Correctness of BuildDistinguishingDAG (Algorithm 1)). If M and N are inconsistent
MTSs over the same alphabet, then algorithm BuildDistinguishingDAG returns a distinguishing DAG
of M +pm N containing the transition (M1, N1) `−→r (M ′1, N

′
1) ∈ P , if there is one such DAG.

Proof of property 3. We shall show that the graph that is built by BuildDistinguishingDAG is indeed
a distinguishing DAG, as defined by Definition 14. First, we do build a DAG, because before adding new
vertices, we check that the pair of states is not in the set F of ancestors in the graph we are constructing,
preventing the inclusion of any cycle in the graph. On each case of the SubRoutine, every transitions
we add correspond to a required transition in at leat one of the models. Therefore, by one of the rules

15

Algorithm 2 SubRoutine
1: procedure SubRoutine(M,N,F, targetsM , targetsN , subAct)

2: if M a−→r M
′ ∧ N

a
6−→ ∧ M ′ ∈ targetsM ∧ a ∈ subAct then

3: V = V ∪ {(M ′, ∗)}
4: E = E ∪ (M,N) a−→r (M ′, ∗)
5: return True
6: else if N a−→r N

′ ∧ M
a
6−→ ∧ N ′ ∈ targetsN ∧ a ∈ subAct then

7: V = V ∪ {(∗, N)}
8: E = E ∪ (M,N) a−→r (∗, N ′)
9: return True

10: else if M a−→r M
′ ∧ (∀N ′, N a−→p N

′ ⇒ ¬Cons(M ′, N ′) ∧ (M ′, N ′) /∈ F) ∧M ′ ∈ targetsM ∧ a ∈
subAct then

11: Let T = {N ′|N a−→p N
′}

12: V = V ∪ {(M ′, N ′)|N ′ ∈ T}
13: E = E ∪ {(M,N) a−→r (M ′, N ′)|N ′ ∈ T}
14: for N ′ ∈ T such that (M,N) a−→r (M ′, N ′) ∈ π do
15: I = (I t {((M ′, N ′), F ∪ {(M ′, N ′)})}) \X
16: T.remove(N ′)

17: J = (J t {((M ′, N ′), F ∪ {(M ′, N ′)})|N ′ ∈ T}) \X
18: return True
19: else if N a−→r N

′ ∧ (∀M ′,M a−→p M
′ ⇒ ¬Cons(M ′, N ′) ∧ (M ′, N ′) /∈ F) ∧ N ′ ∈ targetsN ∧ a ∈

subAct then
20: Let T = {M ′|M a−→p M

′}
21: V = V ∪ {(M ′, N ′)|N ′ ∈ T}
22: E = E ∪ {(M,N) a−→r (M ′, N ′)|N ′ ∈ T}
23: for M ′ ∈ T such that (M,N) a−→r (M ′, N ′) ∈ π do
24: I = (I t {((M ′, N ′), F ∪ {(M ′, N ′)})}) \X
25: T.remove(M ′)

26: J = (J t {((M ′, N ′), F ∪ {(M ′, N ′)})|M ′ ∈ T}) \X
27: return True
28: else
29: return False

16

TT, TM, MT, TF, FT, the transition we are adding to the DAG will be required. Because we never add
states from IM0 ∪ IN0 in I or J , we will never take transitions that stem from one of these in the DAG.
On the other hand, a transition will be a leaf only if it has been built by on of the two first cases of
SubRoutine: otherwise, we will add its targets to one of the set I or J , unless it has already been visited.
In both cases, the pair has been or will be visited, and visiting a state means adding transition from it
in the DAG. As we visit a given pair of states only once, and that an application of the SubRoutine
adds transitions labelled by only one letter, all transitions stemming from a node of our DAG will have
the same letter. Finally, the conditions of lines 10 and 19 ensure that from a state we add to the DAG
all transitions on a letter for one of the MTS and only one from the other, and that this transition is
required. Therefore, the graph returned by BuildDistinguishingDAG is a distinguishing DAG

Applying the algorithm successively on disagreement transitions (5, 5′)
applyLaw−→r (5, ∗′), (4, 1′) amend−→r

(0, ∗′), (5, 5′)
applyAct−→r (∗, 5′), and (1, 4′), amend−→r (∗, 0′) of the pseudo-merge of Figure 3, we obtain distin-

guishing graphs corresponding to the following formulas.

〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t) (1)
〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t) (2)
〈propose〉(〈accept〉[applyAct]f ∧ 〈amend〉t) (3)
[propose](〈accept〉〈applyLaw〉t ∨ [amend]f) (4)

Note that the formulas derived from the DAGs that cover the first two transitions ((5, 5′)
applyAct−→r (∗, 5′)

and (4, 1′), amend−→r (0, ∗′)) are identical. This is because, both transitions form part of exactly the same
argument as to why the models are inconsistent.

As mentioned above, there are cases when it is not possible to construct a distinguishing DAG that
covers the user-selected disagreement transition. An example of such a case is shown on Figure 9 where if
transition (3, 2′) d−→r (∗, 3′) is selected, there is no distinguishing DAG over the pseudo-merge that covers
it. This is because if we want to reach this transition, we have first to take transition (0, 0′) a−→r (2, 1′),
but condition (6) of Definition 14 states that we have to take all possible transitions on a from state 0.
That forces us to have transition (0, 0′) a−→r (1, 1) in the DAG. Since condition (4) of the definition of a
distinguishing DAG forces us to continue from (1, 1) which is not a disagreement state, we must include
transition (1, 1) b−→r (0, 0′) in the DAG, which forms a loop, violating condition (1) of the definition,
that requires that we have an acyclic graph.

The reason for the non-existence of a distinguishing DAG that covers (3, 2′) d−→r (∗, 3′) is that distin-
guishing properties that cover the transition are not minimal. For example, property [a](〈c〉[d]f ∨〈b〉〈b〉t)
covers the transition, but has proof trees that are strictly larger than formula 〈b〉t which corresponds to
the formula generated by the algorithm when transition (0, 0) b−→r (4, ∗′) is selected. Informally, the fact
that we can reduce a distinguishing formula covering (3, 2′) d−→r (∗, 3′) into one does cover the transition
shows that this disagreement is not relevant and that only the one that is relevant is represented by
(0, 0) b−→r (4, ∗′). The reason why this irrelevant disagreement transition appears in the pseudo-merge
is that the rule for removing unnecessary transitions for the non-deterministic case is slightly week. We
aim to refine the construction of pseudo-merge to eliminate these borderline cases.

Summarising, in this section we have shown how to build a distinguishing DAG that covers a user-
selected disagreement transition in a pseudo-merge. As shown in previous sections, resulting DAG can
be used to provided sound feedback on the inconsistencies between the models being compared. We have
shown that the psuedo-merge may include some disagreement transitions, related to non-deterministic
choices, that do no yield minimal distinguishing properties. The practical implications of this are that
the user, when selecting one of these transitions, may be required to pick a different transition in order
to produce feedback on inconsistency.

17

P : 0

1

2 3

4

a?

a?

b

b

c

(a)

Q: 0′ 1′ 2′ 3′

a

b?

c? d

(b)

P +pm Q: 0, 0′

1, 1′

2, 1′ 3, 2′ ∗, 3′

4, ∗′

a

a

b

b

c d

(c) Pseudo-merge of the models in (a) and (b)

Figure 9: A case when we cannot build a distinguishing DAG containing a given transition

7 Validation

In this section we present several models that have been used to test and validate our approach. The
first one uses small models of a printer, the second is a bigger one of a safety injection system, adapted
from [9].

7.1 The special case of LTSs

Although presented in the more general case of MTSs, our thechnique is also appliable for LTSs. If we
see MTSs as the set of LTSs that implement it, the only implementation of an LTS being itself modulo
bisimulation, and consistency as the fact of having a common refinement, consistency between LTSs is
exactly the same as bisimilarity. In this case we would therefore produce a graphical explanation of why
the models are not bisimilar.

7.2 The printer case study

To build this example, we asked two grad-students/coworkers/fellow students to act as different stake-
holders that are building the same model. We gave them an alphabet and its intended semantics in
english, and asked them to build independently a state-machine modfelling a printer with a pre-output
tray where sheets are stapled. The rest of the requirements where willingly imprecise to force them to
make choices that could be inconsistent.

The specification of the printer as it was given originally is the following.

• The system: a printer with a pre-output tray

• One model:

– No difference between input and output

– No modelling of the repairman or the job giver/taker

• Alphabet :

idle The printer doesn’t do anything

jobIn A print job is given to the printer

jobOut Ejects the printed job and reports

jobDiscard Discard whatever was printed and reports

takeSheet The rolls take a sheet from the tray

printSheet The ink is put on the paper

staple Staple the sheets together

block The sheet folds and get stuck in the printer

noPaper No more paper in the tray

18

E: 0 1

2

3

4

5

6

7

8

9

idle

jobIn

noInk, noPaper

takeSheet

humanHand

block

printSheet
humanHand

jobDiscard, jobOut

block

jobDiscard,
jobOut

staple

humanHand

blockhumanHand

jobDiscard, jobOut

jobDiscard, jobOut

(a) Esteban’s model

G: 0′ 1′ 2′

3′

4′5′

idle

jobIn

noPaper

takeSheet
noInk

block

printSheet

humanHand

staple

jobDiscard,
jobOut

(b) Guido’s model

Figure 10: Models of a printer drawn by Esteban and Guido.

noInk No more ink in the toner

humanHand A repairman fixes the printer

• Requirement: A sheet never goes backwards

1. on the paper tray

2. taken

3. printed

4. goes on the pre-output tray

5. goes on the output tray or garbage

The models that where produced are shown on Figure 10. We then applied our +pm operator to these
models. The result is depicted on Figure 11. We can see that there is a main part on which the models
agree:the big loop (0, 0′)

jobIn−→r (1, 1′) takeSheet−→r (3, 2′)
printSheet−→r (5, 4′)

staple−→r (9, 5′)
jobOut−→r (0, 0′) (the last

action can also be a jobDiscard). Incidentally, this part corresponds to an execution without error
of the printer. On the pseudo-merge we can identify 13 transitions from agreement to disagreement
states. From each of these transitions we can try to build a distinguishing DAG, and therefore a formula
that distinguishes between models E and G. We obtain 11 distinct distinguishing formulas (because the
formula does not take into account the target of the leaf disagreement transition). Note that although
model E is non deterministic, none of the formula explicitely use this non determinism. For example,
consider formula 〈jobIn〉〈takeSheet〉〈printSheet〉〈jobOut〉t that corresponds to one of the transition on
jobOut from state 5 that does not have a counterpart in model G since it requires to staple the sheets
first. On the other hand, the way errors are handled in both models is different, and that yields totally
different inconsistencies, for example the formula 〈jobIn〉〈noPaper〉[takeSheet]f that corresponds to the
fact that in model E only a human intervention can solve the lack of paper, whereas in model G the
problem “solves itself”.

7.3 The safety injection system

The safety injection system is part of a controller for a nuclear power plant. It is suppose to maintain
a sufficiently high pressure of coolant in the reactor, except when it operates in a special Overridden
mode, in which case a lower pressure is allowed. It was presented in [9] where the global goal is refined
into smaller ones used to generate a model. By changing one of these goals, we generate another model,
that is not bisimilar to the original one. The size of these models (25 and 48 states) does not allow us to
represent them here. The change we made is to require a delay of one time unit (tick) before starting or

19

E +pm G: 0, 0′ 1, 1′

2, ∗′

2, 1′ 3, 2′

1, ∗′

∗, 1′

∗, 2′

4, 3′

5, 4′

3, ∗′

∗, 3′

∗, 4′

6, ∗′

7, ∗′

9, 5′

4, ∗′ 5, ∗′

∗, 5′

8, ∗′

7, 0′

9, ∗′

0, ∗′

∗, 0′

idle

jobIn

noInk

noPaper
takeSheet

humanHand

humanHand

noPaper

takeSheet

noInk

block

printSheet

noInk,
noPaper

takeSheet

noPaper

takeSheet

noInk

block

printSheet

humanHand

block

jobDiscard,
jobOut

jobDiscard,
jobOut

staple

block

printSheet

humanHand

staple

humanHand

block

jobIn

idle

jobDiscard, jobOut

jobDiscard, jobOut

humanHand

block

jobDiscard,
jobOut

jobDiscard,
jobOutstaple

jobDiscard,
jobOut

humanHand

jobIn

block

idle

jobDiscard,
jobOut

jobDiscard,
jobOut

jobIn

idle

Figure 11: The pseudo-merge of the printer models of Figure 10.

20

stopping the injection system when this is required, that is to say when we are in a normal mode with a
low pressure of coolant in the system. We introduced non-determinism in the models before comparing
them by removing the information we had on the values of the pressure when it changes. For example, in
both models we replaced all transitions on an action raisePressure[x] or lowerPressure[x] by an action
pressure, thus hiding the value of x. By building a pseudo-merge (not represented for it has 220 states)
and generating distinguishing formulas, we obtain for example

ψ = 〈enableSafetyInjection〉〈tick〉〈toc〉〈pressure〉
(〈sendSafetyInjectionSignal〉〈tick〉〈toc〉〈stopSafetyInjectionSignal〉〈tick〉t
∧ [tick]f)

We can see that for the pressure transition in the first model, there is no good corresponding transition
in the second model: one leads to an inconsistency we introduced by requiring a delay of one tick before
strating the system; the other one leads to parts of the models where the pressure is assumed to be
different (but was hidden), finally leading to an inconsistency.

8 Conclusion and future work

We have defined a formalism to represent inconsistencies between two MTSs in one augmented model
we call a pseudo-merge. We have presented an way to build such a model through our +pm operator.
The obtained model contains several explanations of why the models are inconsistent. Moreover, all
explanation of inconsistency can be reduced to the ones contained in our pseudo-merge. We can therefore
explore inconsistencies between the models, keeping the explanations as small as possible. However, the
pseudo-merge may contain misleading information, as some inconsistencies can trigger the display of
consistent parts of the models as inconsistent. We hope to refine our construction of the pseudo-merge
in order to get rid of such cases.

References

[1] M. Chechik, N. D’Ippolito, D. Fishbein, and S. Uchitel. “MTSA: The Modal Transition System Analyzer”.
In Proceedings of International Conference on Automated Software Engineering (ASE’08), 9 2008.

[2] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[3] E. Clarke, Y. Lu, S. Jha, and H. Veith. Tree-Like Counterexamples in Model Checking. In Proceedings of the

Seventeenth Annual IEEE Symposium on Logic in Computer Science (LICS’02), pages 19–29, Copenhagen,
Denmark, July 2002. IEEE Computer Society.

[4] D. Fischbein and S. Uchitel. “On Correct and Complete Merging of Partial Behaviour Models”. In Proceedings
of ACM SIGSOFT Sixteenth International Symposium on the Foundations of Software Engineering (FSE’08),
11 2008.

[5] C. Hoare. Communicating Sequential Processes. Prentice-Hall, New York, 1985.
[6] M. Huth, R. Jagadeesan, and D. A. Schmidt. “Modal Transition Systems: A Foundation for Three-Valued

Program Analysis”. In Proceedings of 10th European Symposium on Programming (ESOP’01), volume 2028
of LNCS, pages 155–169. Springer, 2001.

[7] R. Keller. “Formal Verification of Parallel Programs”. Communications of the ACM, 19(7):371–384, 1976.
[8] K. Larsen and B. Thomsen. “A Modal Process Logic”. In Proceedings of 3rd Annual Symposium on Logic in

Computer Science (LICS’88), pages 203–210. IEEE Computer Society Press, 1988.
[9] E. Letier and S. Uchitel. “Deriving event-based transition systems from goal-oriented requirements models”.

In Proceedings of International Conference on Automated Software Engineering (ASE’08), 9 2008.
[10] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.
[11] R. Milner. “Communicating and Mobile Systems: the Pi-Calculus”. Cambridge University Press, 1999.
[12] C. Stirling. “Modal and Temporal Logics for Processes”. In Proceedings of the VIII Banff Higher Order

Workshop Conference on Logics for Concurrency : Structure Versus Automata, pages 149–237. Springer-
Verlag New York, Inc., 1996.

[13] S. Uchitel and M. Chechik. “Merging Partial Behavioural Models”. In Proceedings of 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 43–52, November 2004.

21

A: 0 1 2 3 4
a

b?

c?

d
b

c

b

c

(a)

B: 0′

1′

2′

3′

4′

5′

6′

7′

8′ 9′

a?

a?

b

c

d

d

c

b

c?

a

b?

a

d

d

(b)

Figure 12: Models used to illustrate completeness of the pseudo-merge.

A Proof of selected properties

A.1 Proof of completeness of the pseudo-merge

In this section we shall prove Theorem 3. Since it is a rather long but constructive proof, we shall
illustrate each step with an example.

The proof procedes as follows. We start by combining the given proofs in one sole tree. We then
collapse some nodes of this tree that correspond to loops in the pseudo-merge, and cut some superfluous
subtrees. This will give us another tree that encodes the proof of a new formula, smaller. We will show
that we can project this tree onto the pseudo-merge, and that the projection is a distinguishing DAG.
Moreover, we will show that the formula induced by the distinguishing DAG is the same that is proved
by the tree. Finally, we will split the tree into two proof-trees, one for each model. The way the new
tree is built will ensure that the new proofs are projected as subgraphs of the original ones.

Example The example we are going to use are the models A and B of Figure 12. We will suppose that
the distinguishing property we originally have is ϕ = 〈a〉([b]〈d〉〈c〉〈c〉[a][d]f ∧ [c]〈d〉〈b〉[a]f). Proof-trees for
this property on the models are shown on Figure 13. We don’t show the projection of these proof-trees
on the original models since in both cases it corresponds nearly to the whole model. In A, the only
transition not included in this projection are the self-loop on b on state 4. In B, self loop on b? on state
7′ is the only one left out.

A.1.1 Combining the proof-trees

First, let us define a combination Πϕ
M,N of the proof trees Πϕ

M and Π¬ϕN . Intuitively, Πϕ
M,N will encode

the two very similar proofs for each model into a proof that ϕ is a distinguishing formula for M and N .
This combination can be built with the Comb operator.

Definition 18 (The Comb operator). Given two proof-trees for a formula and its negation on two models,
we define the Comb operator inductively as follows:

(i) Comb((Πϕ
M , (∗,⊥))) = Πϕ

M where every node (m,ϕ′) is replaced by a node ((m, ∗), ϕ′)

(ii) Comb((∗,⊥), (Π¬ϕN)) = Π¬ϕN where every node (n, ϕ′) is replaced by a node ((∗, n), ϕ′)

(iii) Comb((M, 〈`〉ϕ) `−→ (M ′, ϕ), (N, [`]¬ϕ)) = ((M,N), 〈`〉ϕ) `−→ Comb((M, ∗), ϕ)

(iv) Comb((M, [`]ϕ), (N, 〈`〉¬ϕ) `−→ (N ′,¬ϕ)) = ((M,N), [`]ϕ) `−→ Comb((∗, N), ϕ)

(v) Comb((M, 〈`〉ϕ) `−→ (M ′, ϕ), (N, [`]¬ϕ) `−→ {(N ′i ,¬ϕ)}i) =

((M,N),
∧k
i=1 ϕ) `−→ {Comb((M ′, ϕ), (N ′i ,¬ϕ))}i

(vi) Comb((M, [`]ϕ) `−→ {(M ′i , ϕ)}i, (N, 〈`〉¬ϕ) `−→ (N ′,¬ϕ)) =

((M,N),
∨k
i=1 ϕ) `−→ {Comb((M ′i , ϕ), (N ′,¬ϕ))}i

(vii) Comb((M,
∧k
i=1 ϕi)

τ−→ {(M,ϕi)}i, (N,
∨k
i=1 ¬ϕi)

τ−→ (N,¬ϕi0)) =
((M,N),

∧k
i=1 ϕi)

τ−→ Comb((M,ϕi0), (N,¬ϕi0))

22

1, [b] · · · ∧ [c] . . .

0, ϕ = 〈a〉 . . .

1, [b] . . . 1, [c] . . .

2, 〈d〉 . . . 2, 〈d〉 . . .

3, 〈c〉 . . . 3, 〈b〉 . . .

4, 〈c〉 . . . 4, 〈a〉f

4, 〈a〉 . . .

a

τ τ

b c

d d

c b

c

(a) A proof-tree of A � ϕ

0′,¬ϕ = [a] . . .

1′, 〈b〉 · · · ∨ 〈c〉 . . . 2′, 〈b〉 · · · ∨ 〈c〉 . . .

1′, 〈b〉 . . . 2′, 〈c〉 . . .

3′, [d] . . . 4′, [d] . . .

5′, [c] . . . 5′, [b] . . .

7′, [c] . . . 6′, 〈a〉t

7′, 〈a〉 . . . 8′, t

8′, 〈d〉t

9′, t

a a

τ τ

b c

d d

c b

ac

a

d

(b) A proof-tree of B � ¬ϕ

Figure 13: The original proof-trees showing that ϕ = 〈a〉([b]〈d〉〈c〉〈c〉[a][d]f ∧ [c]〈d〉〈b〉[a]f) is true in A
and false in B.

23

(0, 0′), ϕ = 〈a〉 . . .

(1, 1′), [b] · · · ∧ [c] . . . (1, 2′), [b] · · · ∧ [c] . . .

(1, 1′), [b] . . . (1, 2′), [c] . . .

(2, 3′), 〈d〉 . . . (2, 4′), 〈d〉 . . .

(3, 5′), 〈c〉 . . . (3, 5′), 〈b〉 . . .

(4, 7′), 〈c〉 . . . (4, 6′), [a]f

(4, 7′), [a] . . . (∗, 8′), f

(∗, 8′), [d]f

(∗, 9′), f

a a

τ τ

b c

d d

c b

c a

a

d

(a) Combination of the proof-trees of Figure 13. τ tran-
sitions between identical nodes have been ignored to

reduce the size of the tree.

(0, 0′), ψ = 〈a〉 . . .

(1, 1′), [b] · · · ∧ [c] . . . (1, 2′), [b] · · · ∧ [c] . . .

(1, 1′), [b] . . . (1, 2′), [c] . . .

(2, 3′), 〈d〉 . . . (2, 4′), 〈d〉 . . .

(3, 5′), 〈c〉 . . . (3, 5′), 〈c〉 . . .

(4, 7′), [a]f (4, 7′), [a]f

(∗, 8′), f (∗, 8′), f

a a

τ τ

b c

d d

c c

a a

(b) The new tree obtained by reducing the one on Fig-
ure 14(a)

Figure 14: Combination of the proof-trees of Figure 13 and a reduction of it.

(viii) Comb((M,
∨k
i=1 ϕi)

τ−→ (M,ϕi0), (N,
∧k
i=1 ¬ϕi)

τ−→ {(N,¬ϕi)}i) =
((M,N),

∨k
i=1 ϕi)

τ−→ Comb((M,ϕi0), (N,¬ϕi0))

Rules (v) and (vi) of the previous definition duplicate the subformula ϕ, but the obtained formula
is logically equivalent to the original one. We assume that we treat each copy separately. In particular,
we assume that we keep track of which duplicate corresponds to which child. Note that we actually lose
some information in cases (vii) and (viii). But the information is either not really important (in the
sense that it represents a proof for a part of the formula that will go away) or not really lost but present
in a sibling, and can be retreived when needed. The main property of this combined tree is that in each
node ((m,n), ϕ′) with both m 6= ∗ and n 6= ∗, m � ϕ′ and n � ¬ϕ′. This property holds because for each
such node there is a node (m,ϕ′) ∈ Πϕ

M (resp. (n,¬ϕ′) ∈ Π¬ϕN).

Example The combination of proof-trees of Figure 13 yield the combined proof-tree of Figure 14(a).
If we project it on the pseudo-merge of models A and B displayed on Figure 15, we get almost all the
graph (there again, only self loop on b on state (4, 7′) is not included in the projection). We can notice
that we don’t have a DAG because of the loop on state (4, 6′), that from the pair of states (3, 5′) there
are outgoing transitions on letters b and c, and that there is a transition stemming from a disagreement
state (on a, from state (∗, 8)).

A.1.2 Reducing the combination

Now we will remove from this tree parts of the formula, and hence of the proof, that are not crucial to
show the essence of the explanation of the inconsistency. Some of these parts are loops. If two states are
inconsistent and there are two ways of showing it, in terms of two formulas ϕ and ϕ′ and their proofs,
with ϕ′ being a subformula of ϕ, the witness ϕ′ is a smaller therefore better one. Similarly, the witness

24

A+pm B: 0, 0′

1, 1′

1, 2′

2, 3′

2, 4′

3, 5′

4, 6′

4, 7′

∗, 8′ ∗, 9′

a

a

b

c

d

d

c

b

c

a

b

a

d

d

Figure 15: Pseudo-merge of the models of Figure 12

does not need to be too long, in the sense that once one of the proof-tree being combined has reached
a leaf and the other hasn’t, we have a witness of inconsistency. More formally, we apply the following
procedure to Πϕ

M,N :

Step 1 Replace each highest node ((m, ∗), ϕ′) −→ . . . by ((m, ∗), t), and each highest node ((∗, n), ϕ′) −→
. . . by ((∗, n), f).

Step 2 For each node pair (m,n), find the set Fm,n of all nodes of the form ((m,n), ϕ′′). Select one of the
lowest, that is to say a node ((m,n), ϕ′′) ∈ Fm,n of which no descendent is in Fm,n Then replace
all subtrees rooted in ((m,n), ϕ′) by the one rooted in ((m,n), ϕ′′).

Step 3 For each node ((m,n), [`]ϕ′) with only one child ((m′, n′), ϕ′′), and if m `−→r m
′ ∈M , then change

[`]ϕ′ into 〈`〉ϕ′

Step 4 Propagate the changes made to the formulas bottom-up. Since we have kept track of which
subformula corresponds to each child, if the child has changed, we change the corresponding
subformula in the parent. Having made copies of the formula, a change in a subtree will not
affect a sibling.

We obtain a new tree Πϕ′

(M,N). Note that all τ transitions have been collapsed in step 2. Therefore all
formulas will either be a constant (t or f) or start by a 〈`〉 or a [`]. In the latter case, the outgoing
transitions will bear the letter `. Step 3’s only purpose is to make an arbitrary choice between 〈`〉 and [`]
when it does not matter, that is to say when there is one and only one transition on ` from both states
m and n, and that this transition is required. We shall later show that this tree also encodes the proofs
for ϕ′ on M and N , that is to say that we will be able to extract two proof-trees Πϕ′

M and Π¬ϕ
′

N from it.

Example When we apply the procedure described above to our example, we start by cutting the
branch (4, 6′), [a][a]f a−→ (∗, 8′), [d]f d−→ (∗, 9′) into (4, 6′), [a]f a−→ (∗, 8′), f . Then we remark that the
pair of states (3, 5′) appears twice (we do not count the trivial collapsing of τ transitions). Since the
nodes labelled with this pair are not ancestor of one another, we can choose any of them to replace the
other. Suppose that we choose to keep the subtree whose formula is 〈c〉〈c〉[a][a]f (note that we have not
yet updated the formula accordingly to the changes made to one of its branches). In that case we still
have two occurences of the pair (4, 6′). In that case, the one labeled with 〈c〉[a][a]f is an ancestor of
the one labeled by [a][a]f . We will therefore keep the latter, and it will replace the former. Finally, we
update the labels of the formulas, starting from the leaves, yielding the new tree of Figure 14(b). The
formula at the root of this tree is ψ = 〈a〉([b]〈d〉〈c〉[a]f ∧ [c]〈d〉〈c〉[a]f . Note that the graph we obtain by
projecting this tree on the pseudo-merge is a distinguishing DAG.

A.1.3 Having a distinguishing DAG

But for now, we will show that this formula is induced by the pseudo-merge. Let us consider the projection
of Πϕ′

(M,N) over M +pm N . This projection is possible because each non-τ transition in the original tree
Πϕ

(M,N) corresponds to at least a required transition in an original model. By one of the rule of Figure 6
except MM, Γ∗, or ∗Γ when γ = m, there will be a required transition built in M +pm N . Moreover,

25

none of these transitions will be removed, because this only happens when there is no inconsistency on
the letter, and this is not the case since we have a distinguishing property starting with this letter. Since
the transformation of Πϕ

(M,N) into Πϕ′

(M,N) collapses only nodes that share the same labels for states,
and never adds transitions, we will still be able of projecting it on the pseudo-merge. As said before,
this projection will only have required transitions, therefore complies with condition 2 of Definition 14.
Moreover, step 2 of the transformation has removed all loops. Therefore we are sure that the projection
will be a directed acyclic graph, as is required by condition 1. Step 1 has removed all transitions from
nodes corresponding to (m, ∗) or (∗, n). Hence the projection verifies condition 3. In addition, all leaves
are either made so by step 1 or just copies from ones of an original proof by cases (iii) followed by an
application of case (i) to the leaf or, dually, (iv) followed by an application of case (i) to the leaf. In all
cases, the leaves are disagreement states, and condition 4 of Definition 14 holds. By step 2, all nodes
corresponding to a pair of states will bear the same formula. As said before, the outgoing transitions
from these will be the first letter of the formula. Since the formula is the same, the letter will be the
same, and condition 5 will hold. Finally, in the case the formula starts with 〈`〉, we have combined a
proof-tree for 〈`〉ϕ with one for [`]¬ϕ. By definition of these, we had a required transition in M and
consider only this one, whereas we have considered all possible transitions in N . By a dual reasonning in
the case when the formula starts with [`], condition 6 of Definition 14 holds. Therefore, we can project
Πϕ′

(M,N) on the pseudo-merge and obtain a distinguishing DAG.

A.1.4 Extracting a formula

Let us show that the formula we obtain from this DAG with the F operator is exactly ϕ′. By step 1 of
the transformation, the cases (i) and (ii) of the tree with only one transition produces the same formula.
Suppose that F does produce the formula that labels the nodes when applied to the projection of all
subtrees. Suppose case (iii) of the F operator is applied. That means that we have used the case (v) of
the Comb operator to produce the tree (or the subtree that has now replaced it). In that case we have
introduced a conjuction of formulas, one for each child. Even if they were originally identical, they may
have changed during the transformation. In all cases, the propagation of changes by step 4 changed the
placeholder into the formula that now labels the corresponding child. Since each child bears the formula
that could have been produced by the F operator over the projection, so does the parent. Case (iv)
being dual, nodes always bear the formula that would have been produced by the application of the F
operator over the projection of Πϕ′

(M,N) over M +pm N . It is therefore the case for ϕ′ itself. Hence ϕ′ is
a formula induced by the pseudo-merge.

A.1.5 Building new proof-trees

Let us now produce separate proof-trees Πϕ′

M and Π¬ϕ
′

N from the tree Πϕ′

(M,N). To that end we use the

Split operator on our tree Πϕ′

(M,N).

Definition 19 (The Split operator). For a tree of which nodes are labelled with a pair of states and a
Lµ formula, we inductively define the Split operator as follows (⊥ is the empty tree; transitions leading
to it are ignored):

(i) Split((M, ∗), t) = ((M, t),⊥)

(ii) Split((∗, N), f) = (⊥, (N, t))

(iii) Split(((M,N), 〈`〉
∧k
i=1 ϕi)

`−→ {((M ′, N ′i), ϕi)}i) =

((M, 〈`〉
∧k
i=1 ϕi)

`−→ (M ′,
∧k
i=1 ϕi)

τ−→ {Πϕi
M ′}i, (N, [`]

∨k
i=1 ¬ϕi)

`−→ {(N ′i ,
∨k
i=1 ¬ϕi)

τ−→ Π¬ϕi
N ′
i
}i)

where ∀i ∈ {1, . . . , k}, (Πϕi
M ′ ,Π¬ϕiN ′

i
) = Split(((M ′, N ′i), ϕi))

(iv) Split(((M,N), [`]
∨k
i=1 ϕi)

`−→ {((M ′i , N ′), ϕi)}i) =

((M, [`]
∨k
i=1 ϕi)

`−→ {(M ′i ,
∨k
i=1 ϕi)

τ−→ Πϕi
M ′
i
}i, (N, 〈`〉

∧k
i=1 ¬ϕi)

`−→ (N ′,
∧k
i=1 ¬ϕi)

τ−→ {Πϕi
N ′}i)

where ∀i ∈ {1, . . . , k}, (Πϕi
M ′
i
,Π¬ϕiN ′) = Split(((M ′i , N

′), ϕi))

If none of the above cases is applicable, then the result of the Split operator is undefined.

26

1, [b] · · · ∧ [c] . . .

0, ψ = 〈a〉 . . .

1, [b] . . . 1, [c] . . .

2, 〈d〉 . . . 2, 〈d〉 . . .

3, 〈c〉 . . . 3, 〈c〉 . . .

4, [a]f 4, [a]f

a

τ τ

b c

d d

c c

(a) A proof-tree for A � ψ

0′,¬ψ = [a] . . .

1′, 〈b〉 · · · ∨ 〈c〉 . . . 2′, 〈b〉 · · · ∨ 〈c〉 . . .

1′, 〈b〉 . . . 2′, 〈c〉 . . .

3′, [d] . . . 4′, [d] . . .

5′, [c] . . . 5′, [c] . . .

7′, 〈a〉t 7′, 〈a〉t

8′, t 8′, t

a a

τ τ

b c

d d

c c

a a

(b) A proof-tree for B � ¬ψ

Figure 16: The proof-trees that show that ψ is true in A and false in B, obtained from the reduced tree
of Figure 14(b)

Note that the above definition is total in our case, because of the particular form of our tree. That
is to say we will always be able to use one of the cases and build two trees. To prove that the trees
produced by Split are indeed proof-trees, we just have to prove that on a [`] (resp. 〈`〉) we do consider
all possible transitions on ` in M (resp. N). This is true because we originally had proof-trees and never
remove transitions only: nodes are replaced by others, that are also correct because they come from the
tree. Therefore when we remove transitions, we remove them all, and change the formula accordingly.

Example When we split the tree of Figure 14(b), we obtain the proof-trees of Figure 16. We can
remark that the projection of each of these new proof-trees is indeed a subgraph of the projection of the
original corresponding proof-tree.

What remains to be shown is that the proofs we produced are subgraphs of the ones we initially had.
Since we never add transitions and only replace nodes for ones with the same labels, all transition in the
projection of Πϕ′

M over M (resp. Π¬ϕ
′

N over N) are also transitions of the projection of Πϕ
M over M (resp.

Π¬ϕN over N).

27

