
Under consideration for publication in Math. Struct. in Comp. Science

Quantifying Opacity†

B é a t r i c e B é r a r d1, J o h n M u l l i n s2 and M a t h i e u S a s s o l a s1,3,‡

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France
2 École Polytechnique de Montréal, Dept. of Comp. & Soft. Eng., Montreal (Quebec), Canada
3 Département d’informatique, Université Libre de Bruxelles, Bruxelles, Belgique

Received December 21, 2010; Revised July 3, 2012

Opacity is a general language-theoretic framework in which several security properties of

a system can be expressed. Its parameters are a predicate, given as a subset of runs of

the system, and an observation function, from the set of runs into a set of observables.

The predicate describes secret information in the system and, in the possibilistic setting,

it is opaque if its membership cannot be inferred from observation.

In this paper, we propose several notions of quantitative opacity for probabilistic

systems, where the predicate and the observation function are seen as random variables.

Our aim is to measure (i) the probability of opacity leakage relative to these random

variables and (ii) the level of uncertainty about membership of the predicate inferred

from observation. We show how these measures extend possibilistic opacity, we give

algorithms to compute them for regular secrets and observations, and we apply these

computations on several classical examples. We finally partially investigate the

non-deterministic setting.

1. Introduction

Motivations. Opacity (Mazaré, 2005) is a very general framework where a wide range of

security properties can be specified, for a system interacting with a passive attacker. This

includes for instance anonymity or non-interference (Goguen and Meseguer, 1982), the

basic version of which states that high level actions cannot be detected by low level obser-

vations. Non-interference alone cannot capture every type of information flow properties.

Indeed, it expresses the complete absence of information flow yet many information flow

properties, like anonymity, permits some information flow while peculiar piece of informa-

tion is required to be kept secret. The notion of opacity was introduced with the aim to

provide a uniform description for security properties e.g. non-interference, noninference,

various notions of anonymity, key compromise and refresh, downgrading, etc. (Bryans

et al., 2008). Ensuring opacity by control was further studied in (Dubreil et al., 2010).

The general idea behind opacity is that a passive attacker should not have worthwhile

† Part of this work has been published in the proceedings of Qest’10 (Bérard et al., 2010).
‡ Corresponding author: mathieu.sassolas@ulb.ac.be – ULB - Campus de la Plaine, Boulevard du Tri-

omphe, CP212, 1050 Brussels, Belgium.

mailto:mathieu.sassolas@ulb.ac.be

B. Bérard, J. Mullins and M. Sassolas 2

information, even though it can observe the system from the outside. The approach, as

many existing information flow-theoretic approaches, is possibilistic. We mean by this

that non determinism is used as a feature to model the random mechanism generation

for all possible system behaviors. As such, opacity is not accurate enough to take into

account two orthogonal aspects of security properties both regarding evaluation of the

information gained by a passive attacker.

The first aspect concerns the quantification of security properties. If executions leaking

information are negligible with respect to the rest of executions, the overall security might

not be compromised. For example if an error may leak information, but appears only in

1% of cases, the program could still be considered safe. The definitions of opacity (Alur

et al., 2006; Bryans et al., 2008) capture the existence of at least one perfect leak, but

do not grasp such a measure.

The other aspect regards the category of security properties a system has to assume

when interacting with an attacker able to make inferences from experiments on the base

of statistical analysis. For example, if every time the system goes bip, there is 99% chances

that action a has been carried out by the server, then every bip can be guessed to have

resulted from an a. Since more and more security protocols make use of randomization

to reach some security objectives (Chaum, 1988; Reiter and Rubin, 1998), it becomes

important to extend specification frameworks in order to cope with it.

Contributions. In this paper we investigate several ways of extending opacity to a purely

probabilistic framework. Opacity can be defined either as the capacity for an external ob-

server to deduce that a predicate was true (asymmetrical opacity) or whether a predicate

is true or false (symmetrical opacity). Both notions can model relevant security prop-

erties, hence deserve to be extended. On the other hand, two directions can be taken

towards the quantification of opacity. The first one, which we call liberal, evaluates the

degree of non-opacity of a system: how big is the security hole? It aims at assessing the

probability for the system to yield perfect information. The second direction, which is

called restrictive, evaluates how opaque the system is: how robust is the security? The

goal here is to measure how reliable is the information gained through observation. This

yields up to four notions of quantitative opacity, displayed in Table 1, which are formally

defined in this paper. The choice made when defining these measures was that a value 0

should be meaningful for opacity in the possibilistic sense. As a result, liberal measures

are 0 when the system is opaque and restrictive ones are 0 when the system is not.

Moreover, like opacity itself, all these measures can be instantiated into several proba-

bilistic security properties such as probabilistic non-interference and anonymity. We also

show how to compute these values in some regular cases and apply the method to the

Asymmetric Symmetric

Liberal (Security hole) LPO (POA`) LPSO (POS`)

Restrictive (Robustness) RPO (POAr) RPSO (POSr)

Table 1. The four probabilistic opacity measures.

Quantifying Opacity 3

dining cryptographers problem and the crowd protocols, re-confirming in passing the

correctness result of Reiter and Rubin (Reiter and Rubin, 1998).

Although the measures are defined in systems without nondeterminism, they can be

extended to the case of systems scheduled by an adversary. We show that non-memoryless

schedulers are requested in order to reach optimum opacity measures.

Related Work. Quantitative measures for security properties were first advocated in

(Millen, 1987) and (Wittbold and Johnson, 1990). In (Millen, 1987), Millen makes an

important step by relating the non-interference property with the notion of mutual in-

formation from information theory in the context of a system modeled by a deterministic

state machine. He proves that the system satisfies the non-interference property if and

only if the mutual information between the high-level input random variable and the

output random variable is zero. He also proposes mutual information as a measure for

information flow by showing how information flow can be seen as a noisy probabilistic

channel, but he does not show how to compute this measure. In (Wittbold and Johnson,

1990) Wittbold and Johnson introduce nondeducibility on strategies in the context of a

non-deterministic state machine. A system satisfies nondeducibility on strategies if the

observer cannot deduce information from the observation by any collusion with a secret

user and using any adaptive strategies. They observe that if such a system is run multiple

times with feedback between runs, information can be leaked by coding schemes across

multiple runs. In this case, they show that a discrete memoryless channel can be built by

associating a distribution with the noise process. From then on, numerous studies were

devoted to the computation of (covert) channel capacity in various cases (see e.g. (Mantel

and Sudbrock, 2009)) or more generally information leakage.

In (Smith, 2009), several measures of information leakage extending these seminal

works for deterministic or probabilistic programs with probabilistic input are discussed.

These measures quantify the information concerning the input gained by a passive at-

tacker observing the output. Exhibiting programs for which the value of entropy is not

meaningful, Smith proposes to consider instead the notions of vulnerability and min-

entropy to take in account the fact that some execution could leak a sufficiently large

amount of information to allow the environment to guess the remaining secret. As dis-

cussed in Section 6, probabilistic opacity takes this in account.

In (Chatzikokolakis et al., 2008), in order to quantify anonymity, the authors propose to

model the system (then called Information Hiding System) as a noisy channel in the sense

of Information Theory: The secret information is modeled by the inputs, the observable

information is modeled by the outputs and the two set are related by a conditional

probability matrix. In this context, probabilistic information leakage is very naturally

specified in terms of mutual information and capacity. A whole hierarchy of probabilistic

notions of anonymity have been defined. The approach was completed in (Andrés et al.,

2010) where anonymity is computed using regular expressions. More recently, in (Alvim

et al., 2010), the authors consider Interactive Information Hiding Systems that can be

viewed as channels with memory and feedback.

In (Boreale et al., 2011a), the authors analyze the asymptotic behaviour of attacker’s

error probability and information leakage in Information Hiding Systems in the context

B. Bérard, J. Mullins and M. Sassolas 4

of an attacker having the capabilities to make exactly one guess after observing n inde-

pendent executions of the system while the secret information remains invariant. Two

cases are studied: the case in which each execution gives rise to a single observation and

the case in which each state of an execution gives rise to an observation in the context

of Hidden Markov Models. The relation of these sophisticated models of attacker with

our attacker model is still to clarify. Similar models were also studied in (McIver et al.,

2010), where the authors define an ordering w.r.t. probabilistic non-interference.

For systems modeled by process algebras, pioneering work was presented in (Lowe,

2004; Aldini et al., 2004), with channel capacity defined by counting behaviors in dis-

crete time (non-probabilistic) CSP (Lowe, 2004), or various probabilistic extensions of

noninterference (Aldini et al., 2004) in a generative-reactive process algebra. Subsequent

studies in this area by (Aldini and Bernardo, 2009; Boreale, 2009; Boreale et al., 2010) also

provide quantitative measures of information leak, relating these measures with noninter-

ference and secrecy. In (Aldini and Bernardo, 2009), the authors introduce various notions

of noninterference in a Markovian process calculus extended with prioritized/probabilistic

zero duration actions and untimed actions. In (Boreale, 2009) the author introduces two

notions of information leakage in the (non-probabilistic) π-calculus differing essentially

in the assumptions made on the power of the attacker. The first one, called absolute leak-

age, corresponds to the average amount of information that was leaked to the attacker

by the program in the context of an attacker with unlimited computational resources

is defined in terms of conditional mutual information and follows the earlier results of

Millen (Millen, 1987). The second notion, called leakage rate, corresponds to the maxi-

mal number of bits of information that could be obtained per experiment in the context

in which the attacker can only perform a fixed number of tries, each yielding a binary

outcome representing success or failure. Boreale also studies the relation between both

notions of leakage and proves that they are consistent. The author also investigates

compositionality of leakage. Boreale et al. (Boreale et al., 2010) propose a very general

framework for reasoning about information leakage in a sequential process calculus over a

semiring with some appealing applications to information leakage analysis when instan-

tiating and interpreting the semiring. It appears to be a promising scheme for specifying

and analysing regular quantitative information flow like we do in Section 5.

Although the literature on quantifying information leakage or channel capacity is dense,

few works actually tried to extend general opacity to a probabilistic setting. A notion

of probabilistic opacity is defined in (Lakhnech and Mazaré, 2005), but restricted to

properties whose satisfaction depends only on the initial state of the run. The opacity

there corresponds to the probability for an observer to guess from the observation whether

the predicate holds for the run. In that sense our restrictive opacity (Section 4) is close to

that notion. However, the definition of (Lakhnech and Mazaré, 2005) lacks clear ties with

the possibilistic notion of opacity. Probabilistic opacity is somewhat related to the notion

of view presented in (Boreale et al., 2011b) as authors include, like we do, a predicate to

their probabilistic model and observation function but probabilistic opacity can hardly be

compared with view. Indeed, on one hand, although their setting is different (they work

on Information Hiding Systems extended with a view), our predicates over runs could be

Quantifying Opacity 5

viewed as a generalization of the predicates over a finite set of states (properties). On the

other hand, a view in their setting is an arbitrary partition of the state space, whereas

we partition the runs into only two equivalence classes (corresponding to true and false).

Organization of the paper. In Section 2, we recall the definitions of opacity and the prob-

abilistic framework used throughout the paper. Section 3 and 4 present respectively the

liberal and the restrictive version of probabilistic opacity, both for the asymmetrical and

symmetrical case. We present in Section 5 how to compute these measures automatically

if the predicate and observations are regular. Section 6 compares the different measures

and what they allow to detect about the security of the system, through abstract exam-

ples and a case study of the Crowds protocol. In Section 7, we present the framework of

probabilistic systems dealing with nondeterminism, and open problems that arise in this

setting.

2. Preliminaries

In this section, we recall the notions of opacity, entropy, and probabilistic automata.

2.1. Possibilistic opacity

The original definition of opacity was given in (Bryans et al., 2008) for transition systems.

Recall that a transition system is a tuple A = 〈Σ, Q,∆, I〉 where Σ is a set of actions, Q

is a set of states, ∆ ⊆ Q×Σ×Q is a set of transitions and I ⊆ Q is a subset of initial states.

A run in A is a finite sequence of transitions written as: ρ = q0
a1−→ q1

a2−→ q2 · · ·
an−−→ qn.

For such a run, fst(ρ) (resp. lst(ρ)) denotes q0 (resp. qn). We will also write ρ · ρ′ for the

run obtained by concatenating runs ρ and ρ′ whenever lst(ρ) = fst(ρ′). The set of runs

starting in state q is denoted by Runq(A) and Run(A) denotes the set of runs starting

from some initial state: Run(A) =
⋃
q∈I Runq(A).

Opacity qualifies a predicate ϕ, given as a subset of Run(A) (or equivalently as its

characteristic function 1ϕ), with respect to an observation function O from Run(A) onto

a (possibly infinite) set Obs of observables. Two runs ρ and ρ′ are equivalent w.r.t. O if

they produce the same observable: O(ρ) = O(ρ′). The set O−1(o) is called an observation

class. We sometimes write [ρ]O for O−1(O(ρ)).

A predicate ϕ is opaque on A for O if for every run ρ satisfying ϕ, there is a run ρ′

not satisfying ϕ equivalent to ρ.

Definition 2.1 (Opacity). Let A be a transition system and O : Run(A) → Obs a

surjective function called observation. A predicate ϕ ⊆ Run(A) is opaque on A for O if,

for any o ∈ Obs, the following holds:

O−1(o) 6⊆ ϕ.

However, detecting whether an event did not occur can give as much information as the

detection that the same event did occur. In addition, as argued in (Alur et al., 2006), the

asymmetry of this definition makes it impossible to use with refinement: opacity would

B. Bérard, J. Mullins and M. Sassolas 6

not be ensured in a system derived from a secure one in a refinement-driven engineering

process. More precisely, if A′ refines A and a property ϕ is opaque on A (w.r.t O), ϕ is

not guaranteed to be opaque on A′ (w.r.t O).

Hence we use the symmetric notion of opacity, where a predicate is symmetrically

opaque if it is opaque as well as its negation. More precisely:

Definition 2.2 (Symmetrical opacity). A predicate ϕ ⊆ Run(A) is symmetrically

opaque on system A for observation function O if, for any o ∈ Obs, the following holds:

O−1(o) 6⊆ ϕ and O−1(o) 6⊆ ϕ.

The symmetrical opacity is a stronger security requirement. Security goals can be

expressed as either symmetrical or asymmetrical opacity, depending on the property at

stake.

For example non-interference and anonymity can be expressed by opacity properties.

Non-interference states that an observer cannot know whether an action h of high-level

accreditation occurred only by looking at the actions with low-level of accreditation in

the set L. So non-interference is equivalent to the opacity of predicate ϕNI , which is true

when h occurred in the run, with respect to the observation function OL that projects

the trace of a run onto the letters of L; see Section 3.2 for a full example. We refer

to (Bryans et al., 2008) and (Lin, 2011) for other examples of properties using opacity.

When the predicate breaks the symmetry of a model, the asymmetric definition is usu-

ally more suited. Symmetrical opacity is however used when knowing ϕ or ϕ is equivalent

from a security point of view. For example, a noisy channel with binary input can be

seen as a system A on which the input is the truth value of ϕ and the output is the

observation o ∈ Obs. If ϕ is symmetrically opaque on A with respect to O, then this

channel is not perfect: there would always be a possibility of erroneous transmission. The

ties between channels and probabilistic transition systems are studied in (Andrés et al.,

2010) (see discussion in Section 4.2).

2.2. Probabilities and information theory

Recall that, for a countable set Ω, a discrete distribution (or distribution for short) is

a mapping µ : Ω → [0, 1] such that
∑
ω∈Ω µ(ω) = 1. For any subset E of Ω, µ(E) =∑

ω∈E µ(ω). The set of all discrete distributions on Ω is denoted by D(Ω). A discrete

random variable with values in a set Γ is a mapping Z : Ω → Γ where [Z = z] denotes

the event {ω ∈ Ω | Z(ω) = z}.
The entropy of Z is a measure of the uncertainty or dually, information about Z,

defined by the expected value of log(µ(Z)):

H(Z) = −
∑
z

µ(Z = z) · log(µ(Z = z))

where log is the base 2 logarithm.

For two random variables Z and Z ′ on Ω, the conditional entropy of Z given the event

Quantifying Opacity 7

[Z ′ = z′] such that µ(Z ′ = z′) 6= 0 is defined by:

H(Z|Z ′ = z′) = −
∑
z

(µ(Z = z|Z ′ = z′) · log(µ(Z = z|Z ′ = z′)))

where µ(Z = z|Z ′ = z′) = µ(Z=z,Z′=z′)
µ(Z′=z′) .

The conditional entropy of Z given the random variable Z ′ can be interpreted as the

average entropy of Z that remains after the observation of Z ′. It is defined by:

H(Z|Z ′) =
∑
z′

µ(Z ′ = z′) ·H(Z|Z ′ = z′)

The vulnerability of a random variable Z, defined by V (Z) = maxz µ(Z = z) gives the

probability of the likeliest event of a random variable. Vulnerability evaluates the proba-

bility of a correct guess in one attempt and can also be used as a measure of information

by defining min-entropy and conditional min-entropy (see discussions in (Smith, 2009;

Andrés et al., 2010)).

2.3. Probabilistic models

In this work, systems are modeled using probabilistic automata behaving as finite au-

tomata where non-deterministic choices for the next action and state or termination are

randomized: this is why they are called “fully probabilistic”. We follow the model defi-

nition of (Segala, 1995), which advocates for the use of this special termination action

(denoted here by
√

instead of δ there). However, the difference lies in the model seman-

tics: we consider only finite runs, which involves a modified definition for the (discrete)

probability on the set of runs. Extensions to the non-deterministic setting are discussed

in Section 7.

Recall that a finite automaton (FA) is a tuple A = 〈Σ, Q,∆, I, F 〉 where 〈Σ, Q,∆, I〉
is a finite transition system and F ⊆ Q is a subset of final states. The automaton is

deterministic if I is a singleton and for all q ∈ Q and a ∈ Σ, the set {q′ | (q, a, q′) ∈ ∆} is a

singleton. Runs in A, Runq(A) and Run(A) are defined like in a transition system. A run

of an FA is accepting if it ends in a state of F . The trace of a run ρ = q0
a1−→ q1 · · ·

an−−→ qn
is the word tr(ρ) = a1 · · · an ∈ Σ∗. The language of A, written L(A), is the set of traces

of accepting runs starting in some initial state.

Replacing in a FA non-deterministic choices by choices based on a discrete distri-

bution and considering only finite runs result in a fully probabilistic finite automaton

(FPFA). Consistently with the standard notion of substochastic matrices, we also con-

sider a more general class of automata, substochastic automata (SA), which allow us

to describe subsets of behaviors from FPFAs, see Figure 1 for examples. In both mod-

els, no non-determinism remains, thus the system is to be considered as autonomous:

its behaviors do not depend on an exterior probabilistic agent acting as a scheduler for

non-deterministic choices.

Definition 2.3 (Substochastic automaton). Let
√

be a new symbol representing

a termination action. A substochastic automaton (SA) is a tuple 〈Σ, Q,∆, q0〉 where Σ

B. Bérard, J. Mullins and M. Sassolas 8

is a finite set of actions, Q is a finite set of states, with q0 ∈ Q the initial state and

∆ : Q→ ((Σ×Q)] {
√
} → [0, 1]) is a mapping such that for any q ∈ Q,∑

x∈(Σ×Q)]{
√
}

∆(q)(x) ≤ 1

∆ defines substochastically the action and successor from the current state, or the ter-

mination action
√

.

In SA, we write q → µ for ∆(q) = µ and q
a−→ r whenever q → µ and µ(a, r) > 0. We also

write q ·
√

whenever q → µ and µ(
√

) > 0. In the latter case, q is said to be a final state.

Definition 2.4 (Fully probabilistic finite automaton). A fully probabilistic automa-

ton (FPFA) is a particular case of SA where for all q ∈ Q, ∆(q) = µ is a distribution in

D((Σ×Q)] {
√
}) i.e. ∑

x∈(Σ×Q)]{
√
}

∆(q)(x) = 1

and for any state q ∈ Q there exists a path (with non-zero probability) from q to some

final state.

Note that we only target finite runs and therefore we consider a restricted case, where

any infinite path has probability 0.

Since FPFA is a subclass of SA, we overload the metavariable A for both SA and

FPFA. The notation above allows to define a run for an SA like in a transition system as

a finite sequence of transitions written ρ = q0
a1−→ q1

a2−→ q2 · · ·
an−−→ qn. The sets Runq(A)

and Run(A) are defined like in a transition system. A complete run is a (finite) sequence

denoted by ρ ·
√

where ρ is a run and ∆(lst(ρ))(
√

) > 0. The set CRun(A) denotes the

set of complete runs starting from the initial state. In this work, we consider only such

complete runs.

The trace of a run for an SA A is defined like in finite automata. The language of a

substochastic automaton A, written L(A), is the set of traces of complete runs starting

in the initial state.

For an SA A, a mapping PA into [0, 1] can be defined inductively on the set of complete

runs by:

PA(q
√

) = µ(
√

) and PA(q
a−→ ρ) = µ(a, r) ·PA(ρ)

where q → µ and fst(ρ) = r.

The mapping PA is then a discrete distribution on CRun(A). Indeed, the
√

action

can be seen as a transition label towards a new sink state q√. Then, abstracting from

the labels yields a finite Markov chain, where q√ is the only absorbing state and the

coefficients of the transition matrix are Mq,q′ =
∑
a∈Σ ∆(q)(a, q′). The probability for

a complete run to have length n is then the probability pn to reach q√ in exactly n

steps. Therefore, the probability of all finite complete runs is P(CRun(A)) =
∑
n pn

and a classical result (Kemeny and Snell, 1976) on absorbing chains ensures that this

probability is equal to 1.

Since the probability space is not generated by (prefix-closed) cones, this definition

Quantifying Opacity 9

a, 1
2

b, 1
4

√
, 1
4

√
, 1

(a) FPFA A1

a, 1
2

√
, 1
4

(b) SA A2

Figure 1. A2 is the restriction of A1 to a∗.

does not yield the same probability measure as the one from (Segala, 1995). Since opacity

properties are not necessarily prefix-closed, this definition is consistent with our approach.

When A is clear from the context, PA will simply be written P.

Since PA is a (sub-)probability on CRun(A), for any predicate ϕ ⊆ CRun(A), we

have P(ϕ) =
∑
ρ∈ϕ P(ρ). The measure is extended to languages K ⊆ L(A) by P(K) =

P
(
tr−1(K)

)
=
∑

tr(ρ)∈K P(ρ).

In the examples of Figure 1, restricting the complete runs of A1 to those satisfying

ϕ = {ρ | tr(ρ) ∈ a∗} yields the SA A2, and PA1(ϕ) = PA2(CRun(A2)) = 1
2 .

A non probabilistic version of any SA is obtained by forgetting any information about

probabilities.

Definition 2.5. Let A = 〈Σ, Q,∆, q0〉 be an SA. The (non-deterministic) finite automa-

ton unProb(A) = 〈Σ, Q,∆′, q0, F 〉 is defined by:

— ∆′ = {(q, a, r) ∈ Q× Σ×Q | q → µ, µ(a, r) > 0},
— F = {q ∈ Q | q → µ, µ(

√
) > 0} is the set of final states.

It is easily seen that L(unProb(A)) = L(A).

An observation function O : CRun(A) → Obs can also be easily translated from the

probabilistic to the non probabilistic setting. For A′ = unProb(A), we define unProb(O)

on Run(A′) by unProb(O)(q0
a1−→ q1 · · · qn) = O(q0

a1−→ q1 · · · qn
√

).

3. Measuring non-opacity

3.1. Definition and properties

One of the aspects in which the definition of opacity could be extended to probabilistic

automata is by relaxing the universal quantifiers of Definitions 2.1 and 2.2. Instead of

wanting that every observation class should not be included in ϕ (resp. ϕ or ϕ for the

symmetrical case), we can just require that almost all of them do. To obtain this, we give

a measure for the set of runs leaking information. To express properties of probabilistic

opacity in an FPA A, the observation function O is considered as a random variable, as

well as the characteristic function 1ϕ of ϕ. Both the asymmetrical and the symmetrical

notions of opacity can be generalized in this manner.

Definition 3.1 (Liberal probabilistic opacity). The liberal probabilistic opacity or

LPO of predicate ϕ on FPA A, with respect to (surjective) observation function O :

B. Bérard, J. Mullins and M. Sassolas 10

CRun→ Obs is defined by:

POA` (A, ϕ,O) =
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o).

The liberal probabilistic symmetrical opacity or LPSO is defined by:

POS` (A, ϕ,O) = POA` (A, ϕ,O) + POA` (A, ϕ,O)

=
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o) +
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o).

This definition provides a measure of how insecure the system is. The following propo-

sitions shows that a null value for these measures coincides with (symmetrical) opacity

for the system, which is then secure.

For LPO, it corresponds to classes either overlapping both ϕ and ϕ or included in ϕ as

in Figure 2(a). LPO measures only the classes that leak their inclusion in ϕ. So classes

included in ϕ are not taken into account. On the other extremal point, POA` (A, ϕ,O) = 1

when ϕ is always true.

When LPSO is null, it means that each equivalence class O−1(o) overlaps both ϕ and

ϕ as in Figure 2(c). On the other hand, the system is totally insecure when, observing

through O, we have all information about ϕ. In that case, the predicate ϕ is a union

of equivalence classes O−1(o) as in Figure 2(e) and this can be interpreted in terms of

conditional entropy relatively to O. The intermediate case occurs when some, but not

all, observation classes contain only runs satisfying ϕ or only runs not satisfying ϕ, as in

Figure 2(d).

Proposition 3.2.

(1) 0 ≤ POA` (A, ϕ,O) ≤ 1 and 0 ≤ POS` (A, ϕ,O) ≤ 1

(2) POA` (A, ϕ,O) = 0 if and only if ϕ is opaque on unProb(A) with respect to unProb(O).

POS` (A, ϕ,O) = 0 if and only if ϕ is symmetrically opaque on unProb(A) with respect

to unProb(O).

(3) POA` (A, ϕ,O) = 1 if and only if ϕ = CRun(A).

POS` (A, ϕ,O) = 1 if and only if H(1ϕ|O) = 0.

Proof of Proposition 3.2.

(1) The considered events are mutually exclusive, hence the sum of their probabilities

never exceeds 1.

(2) First observe that a complete run r0a . . . rn
√

has a non null probability in A iff

r0a . . . rn is a run in unProb(A). Suppose POA` (A, ϕ,O) = 0. Recall that O is assumed

surjective. Then there is no observable o such that O−1(o) ⊆ ϕ. Conversely, if ϕ is

opaque on unProb(A), there is no observable o ∈ Obs such that O−1(o) ⊆ ϕ, hence

the null value for POA` (A, ϕ,O). The case of LPSO is similar, also taking into account

the dual case of ϕ in the above.

Quantifying Opacity 11

(a) POA` (A, ϕ,O) = 0 (b) 0 < POA` (A, ϕ,O) < 1

ϕ

O−1(o)
Classes leaking
their inclusion
into ϕ

Classes leaking
their inclusion
into ϕ

(c) POS` (A, ϕ,O) = 0 (d) 0 < POS` (A, ϕ,O) < 1 (e) POS` (A, ϕ,O) = 1

Figure 2. Liberal probabilistic asymmetrical and symmetrical opacity.

(3) For LPO, this is straightforward from the definition. For LPSO, H(1ϕ|O) = 0 iff∑
o∈Obs

i∈{0,1}

P(1ϕ = i|O = o) · log(P(1ϕ = i|O = o)) = 0

Since all the terms have the same sign, this sum is null if and only if each of its term

is null. Setting for every o ∈ Obs, f(o) = P(1ϕ = 1|O = o) = 1 −P(1ϕ = 0|O = o),

we have: H(1ϕ|O) = 0 iff ∀ o ∈ Obs, f(o) · log(f(o)) + (1− f(o)) · log(1− f(o)) = 0.

Since the equation x · log(x)+(1−x) · log(1−x) = 0 only accepts 1 and 0 as solutions,

it means that for every observable o, either all the runs ρ such that O(ρ) = o are in ϕ,

or they are all not in ϕ. Therefore H(1ϕ|O) = 0 iff for every observable o, O−1(o) ⊆ ϕ
or O−1(o) ⊆ ϕ, which is equivalent to POS` (A, ϕ,O) = 1.

3.2. Example: Non-interference

For the systems A3 and A4 of Figure 3, we use the predicate ϕNI which is true if

the trace of a run contains the letter h. In both cases the observation function OL
returns the projection of the trace onto the alphabet {`1, `2}. Remark that this example

is an interference property (Goguen and Meseguer, 1982) seen as opacity. Considered

unprobabilistically, both systems are interferent since an `2 not preceded by an `1 betrays

the presence of an h. However, they differ by how often this case happens.

The runs of A3 and A4 and their properties are displayed in Table 2. Then we can see

that [ρ1]OL
= [ρ2]OL

overlaps both ϕNI and ϕNI , while [ρ3]OL
is contained totally in ϕ.

B. Bérard, J. Mullins and M. Sassolas 12

`1,
1
2

h, 1
4

h, 1
4

`1, 1

`2, 1 `2, 1

√
, 1

(a) FPA A3

`1,
1
8

h, 3
4

h, 1
8

`1, 1

`2, 1 `2, 1

√
, 1

(b) FPA A4

Figure 3. Interferent FPAs A3 and A4.

tr(ρ) PA3
(ρ) PA4

(ρ) ∈ ϕNI? OL(ρ)

tr(ρ1) = `1`2
√

1/2 1/8 0 `1`2

tr(ρ2) = h`1`2
√

1/4 1/8 1 `1`2

tr(ρ3) = h`2
√

1/4 3/4 1 `2

Table 2. Runs of A3 and A4.

Hence the LPO can be computed for both systems:

POA` (A3, ϕNI ,OL) =
1

4
POA` (A4, ϕNI ,OL) =

3

4

Therefore A3 is more secure than A4. Indeed, the run that is interferent occurs more

often in A4, leaking information more often.

Note that in this example, LPO and LPSO coincide. This is not always the case.

Indeed, in the unprobabilistic setting, both symmetrical and asymmetrical opacity of

ϕNI with respect to OL express the intuitive notion that “an external observer does not

know whether an action happened or not”. The asymmetrical notion corresponds to the

definition of strong nondeterministic non-interference in (Goguen and Meseguer, 1982)

while the symmetrical one was defined as perfect security property in (Alur et al., 2006).

4. Measuring the robustness of opacity

The completely opposite direction that can be taken to define a probabilistic version is

a more paranoid one: how much information is leaked through the system’s uncertainty?

For example, on Figure 2(c), even though each observation class contains a run in ϕ and

one in ϕ, some classes are nearly in ϕ. In some other classes the balance between the

runs satisfying ϕ and the ones not satisfying ϕ is more even. Hence for each observation

class, we will not ask if it is included in ϕ, but how likely ϕ is to be true inside this class

with a probabilistic measure taking into account the likelihood of classes. This amounts

to measuring, inside each observation class, ϕ in the case of asymmetrical opacity, and

the balance between ϕ and ϕ in the case of symmetrical opacity. Note that these new

Quantifying Opacity 13

measures are relevant only for opaque systems, where the previous liberal measures are

equal to zero.

In (Bérard et al., 2010), another measure was proposed, based on the notion of mutual

information (from information theory, along similar lines as in (Smith, 2009)). However,

this measure had a weaker link with possibilistic opacity (see discussion in Section 6).

What we call here RPO is a new measure, whose relation with possibilistic opacity is

expressed by the second item in Proposition 4.2.

4.1. Restricting Asymmetrical Opacity

In this section we extend the notion of asymmetrical opacity in order to measure how

secure the system is.

Definition and properties. In this case, an observation class is more secure if ϕ is less

likely to be true. That means that it is easy (as in “more likely”) to find a run not in ϕ

in the same observation class. Dually, a high probability for ϕ inside a class means that

few (again probabilistically speaking) runs will be in the same class yet not in ϕ.

Restrictive probabilistic opacity is defined to measure this effect globally on all obser-

vation classes. It is tailored to fit the definition of opacity in the classical sense: indeed,

if one class totally leaks its presence in ϕ, RPO will detect it (second point in Proposi-

tion 4.2).

Definition 4.1. Let ϕ be a predicate on the complete runs of an FPA A and O an

observation function. The restrictive probabilistic opacity (RPO) of ϕ on A, with respect

to O, is defined by

1

POAr (A, ϕ,O)
=
∑
o∈Obs

P(O = o) · 1

P(1ϕ = 0 | O = o)

RPO is the harmonic means (weighted by the probabilities of observations) of the

probability that ϕ is false in a given observation class. The harmonic means averages the

leakage of information inside each class. Since security and robustness are often evaluated

on the weakest link, more weight is given to observation classes with the higher leakage,

i.e. those with probability of ϕ being false closest to 0.

The following proposition gives properties of RPO.

Proposition 4.2.

(1) 0 ≤ POAr (A, ϕ,O) ≤ 1

(2) POAr (A, ϕ,O) = 0 if and only if ϕ is not opaque on unProb(A) with respect to

unProb(O).

(3) POAr (A, ϕ,O) = 1 if and only if ϕ = ∅.

Proof. The first point immediately results from the fact that RPO is a means of values

between 0 and 1.

From the definition above, RPO is null if and only if there is one class that is contained

B. Bérard, J. Mullins and M. Sassolas 14

in ϕ. Indeed, this corresponds to the case where the value of 1
P(1ϕ=0|O=o) goes to +∞,

for some o, as well as the sum.

Thirdly, if ϕ is always false, then RPO is 1 since it is a means of probabilities all of

value 1. Conversely, if RPO is 1, because it is defined as an average of values between 0

and 1, then all these values must be equal to 1, hence for each o, P(1ϕ = 0 | O = o) = 1

which means that P(1ϕ = 0) = 1 and ϕ is false.

Example: Debit Card System. Consider a Debit Card system in a store. When a card is

inserted, an amount of money x to be debited is entered, and the client enters his pin

number (all this being gathered as the action Buy(x)). The amount of the transaction is

given probabilistically as an abstraction of the statistics of such transactions. Provided

the pin is correct, the system can either directly allow the transaction, or interrogate the

client’s bank for solvency. In order to balance the cost associated with this verification

(bandwidth, server computation, etc.) with the loss induced if an insolvent client was

debited, the decision to interrogate the bank’s servers is taken probabilistically according

to the amount of the transaction. When interrogated, the bank can reject the transaction

with a certain probability† or accept it. This system is represented by the FPA Acard of

Figure 4.

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

Buy(x)

x > 1000, 0.05

500 < x ≤ 1000, 0.2

100 < x ≤ 500, 0.45

x ≤ 100, 0.3

Call, 0.95

Accept, 0.8

Reject, 0.2

Accept, 0.05

Call, 0.75

Accept, 0.9

Reject, 0.1

Accept, 0.25

Call, 0.5

Accept, 0.95

Reject, 0.05

Accept, 0.5

Call, 0.2

Accept, 0.99

Reject, 0.01

Accept, 0.8

Figure 4. The Debit Card system Acard.

Now assume an external observer can only observe if there has been a call or not to

the bank server. In practice, this can be achieved, for example, by measuring the time

taken for the transaction to be accepted (it takes longer when the bank is called), or by

spying on the telephone line linking the store to the bank’s servers (detecting activity on

the network or idleness). Suppose what the external observer wants to know is whether

† Although the bank process to allow or forbid the transaction is deterministic, the statistics of the

result can be abstracted into probabilities.

Quantifying Opacity 15

the transaction was worth more than 500e. By using RPO, one can assess how this

knowledge can be derived from observation.

Formally, in this case the observables are {ε,Call}, the observation function OCall being

the projection on {Call}. The predicate to be hidden to the user is represented by the

regular expression ϕ>500 = Σ∗(“x > 1000”+“500 < x ≤ 1000”)Σ∗ (where Σ is the whole

alphabet). By definition of RPO:

1

POAr (Acard, ϕ>500,OCall)
= P(OCall = ε) · 1

P(¬ϕ>500|OCall = ε)

+ P(OCall = Call) · 1

P(¬ϕ>500|OCall = Call)

Computing successively P(OCall = ε), P(¬ϕ>500|OCall = ε), P(OCall = Call), and

P(¬ϕ>500|OCall = Call) (see Appendix A), we obtain:

POAr (Acard, ϕ>500,OCall) =
28272

39377
' 0.718.

The notion of asymmetrical opacity, however, fails to capture security in terms of

opacity for both ϕ and ϕ. And so does the RPO measure. Therefore we define in the

next section a quantitative version of symmetrical opacity.

4.2. Restricting symmetrical opacity

Symmetrical opacity offers a sound framework to analyze the secret of a binary value.

For example, consider a binary channel with n outputs. It can be modeled by a tree-like

system branching on 0 and 1 at the first level, then branching on observables {o1, . . . , on},
as in Figure 5. If the system wishes to prevent communication, the secret of predicate

“the input of the channel was 1” is as important as the secret of its negation; in this case

“the input of the channel was 0”. Such case is an example of initial opacity (Bryans et al.,

2008), since the secret appears only at the start of each run. Note that any system with

initial opacity and a finite set of observables can be transformed into a channel (Andrés

et al., 2010), with input distribution (p, 1 − p), which is the distribution of the secret

predicate over {ϕ,ϕ}.

Definition and properties. Symmetrical opacity ensures that for each observation class

o (reached by a run), the probability of both P(ϕ | o) and P(ϕ | o) is strictly above 0.

That means that the lower of these probabilities should be above 0. In turn, the lowest of

these probability is exactly the complement of the vulnerability (since 1ϕ can take only

two values). That is, the security is measured with the probability of error in one guess

(inside a given observation class). Hence, a system will be secure if, in each observation

class, ϕ is balanced with ϕ.

Definition 4.3 (Restrictive probabilistic symmetric opacity). Let ϕ be a predi-

cate on the complete runs of an FPA A and O an observation function. The restrictive

B. Bérard, J. Mullins and M. Sassolas 16

0, p 1, 1− p

o1, p01

. .
.

on, p0n

o1, p11

..
.

on, p1n

(a) A system with initial secret

0

1

...

o1

on

p01

p0n

p11

p1n

(b) Channel with binary input

Figure 5. A system and its associated channel.

probabilistic symmetric opacity (RPSO) of ϕ on A, with respect to O, is defined by

POSr (A, ϕ,O) =
−1∑

o∈Obs P(O = o) · log (1− V (1ϕ | O = o))

where V (1ϕ | O = o) = maxi∈{0,1}P(1ϕ = i | O = o).

Remark that the definition of RPSO has very few ties with the definition of RPO.

Indeed, it is linked more with the notion of possibilistic symmetrical opacity than with

the notion of quantitative asymmetrical opacity, and thus RPSO is not to be seen as an

extension of RPO.

In the definition of RPSO, taking − log(1−V (1ϕ | O = o)) allows to give more weight

to very imbalanced classes, up to infinity for classes completely included either in ϕ or in

ϕ. Along the lines of (Smith, 2009), the logarithm is used in order to produce a measure

in terms of bits instead of probabilities. These measures are then averaged with respect

to the probability of each observation class. The final inversion ensures that the value is

between 0 and 1, and can be seen as a normalization operation. The above motivations

for the definition of RPSO directly yield the following properties:

Proposition 4.4.

(1) 0 ≤ POSr (A, ϕ,O) ≤ 1

(2) POSr (A, ϕ,O) = 0 if and only if ϕ is not symmetrically opaque on unProb(A) with

respect to unProb(O).

(3) POSr (A, ϕ,O) = 1 if and only if ∀o ∈ Obs, P(1ϕ = 1 | O = o) = 1
2 .

Proof of Proposition 4.4.

(1) Since the vulnerability of a random variable that takes only two values is between 1
2

and 1, we have 1 − V (1ϕ | O = o) ∈ [0, 1
2] for all o ∈ Obs. So − log(1 − V (1ϕ | O =

o)) ∈ [1,+∞[for any o. The (arithmetic) means of these values is thus contained

within the same bounds. The inversion therefore yields a value between 0 and 1.

(2) If ϕ is not symmetrically opaque, then for some observation class o, O−1(o) ⊆ ϕ or

O−1(o) ⊆ ϕ. In both cases, V (1ϕ | O) = 1, so − log(1 − V (1ϕ | O = o)) = +∞ and

the average is also +∞. Taking the limit for the inverse gives the value 0 for RPSO.

Conversely, if RPSO is 0, then its inverse is +∞, which can only occur if one of

Quantifying Opacity 17

the − log(1 − V (1ϕ | O = o)) is +∞ for some o. This, in turn, means that some

V (1ϕ | O = o) is 1, which means the observation class of o is contained either in ϕ

or in ϕ.

(3) POSr (A, ϕ,O) = 1 iff
∑
o∈Obs P(O = o) · (− log (1− V (1ϕ | O = o))) = 1. Since this

is an average of values above 1, this is equivalent to − log (1− V (1ϕ | O = o)) = 1

for all o ∈ Obs, i.e. V (1ϕ | O = o) = 1
2 for all o. In this particular case, we also have

V (1ϕ | O = o) = 1
2 iff P(1ϕ = 1 | O = o) = 1

2 which concludes the proof.

Example 1: Sale protocol. We consider the sale protocol from (Alvim et al., 2010), de-

picted in Figure 6. Two products can be put on sale, either a cheap or an expensive one,

and two clients, either a rich or a poor one, may want to buy it. The products are put on

sale according to a distribution (α and α = 1− α) while buyers behave probabilistically

(through β and γ) although differently according to the price of the item on sale. The

poor, β rich, β

cheap,α

poor, γ rich, γ

expensive,α

√
, 1

√
, 1

√
, 1

√
, 1

Figure 6. A simple sale protocol represented as an FPA Sale.

0 0,25 0,5 0,75

0,25

0,5

0,75

1

β

γ

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a) POSr (Sale, ϕpoor, P rice) when α = 1
8

0 0,25 0,5 0,75

0,25

0,5

0,75

1

β

γ

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b) POSr (Sale, ϕpoor, P rice) when α = 1
2

Figure 7. RPSO for the sale protocol.

price of the item is public, but the identity of the buyer should remain secret. Hence the

observation function Price yields cheap or expensive, while the secret is, without loss of

symmetry, the set ϕpoor of runs ending with poor. The bias introduced by the preference

of, say, a cheap item by the poor client betrays the secret identity of the buyer. RPSO

B. Bérard, J. Mullins and M. Sassolas 18

allows to measure this bias, and more importantly, to compare the bias obtained globally

for different values of the parameters α, β, and γ.

More formally, we have:

P(Price = cheap) = α P(Price = expensive) = α

V (1ϕpoor | O = cheap) = max(β, β) V (1ϕpoor | O = expensive) = max(γ, γ)

POSr (Sale, ϕpoor, P rice) =
−1

α · log(min(β, β)) + α · log(min(γ, γ))
.

The variations of RPSO w.r.t. to β and γ is depicted for several values of α in Figure 7,

red meaning higher value for RPSO. Thus, while the result is symmetric for α = 1
2 , the

case where α = 1
8 gives more importance to the fluctuations of γ.

Example 2: Dining Cryptographers Protocol. Introduced in (Chaum, 1988), this problem

involves three cryptographers C1, C2 and C3 dining in a restaurant. At the end of the

meal, their master secretly tells each of them if they should be paying: pi = 1 iff cryp-

tographer Ci pays, and pi = 0 otherwise. Wanting to know if one of the cryptographers

paid or if the master did, they follow the following protocol. They flip a coin with each

of their neighbor, the third one not seeing the result of the flip, marking fi,j = 0 if the

coin flip between i and j was heads and fi,j = 1 if it was tails. Then each cryptographer

Ci, for i ∈ {1, 2, 3}, announces the value of ri = fi,i+1 ⊕ fi,i−1 ⊕ pi (where ‘3 + 1 = 1’,

‘1 − 1 = 3’ and ‘⊕’ represents the XOR operator). If
⊕3

i=1 ri = 0 then no one (i.e. the

master) paid, if
⊕3

i=1 ri = 1, then one of the cryptographers paid, but the other two do

not know who he is.

Here we will use a simplified version of this problem to limit the size of the model. We

consider that some cryptographer paid for the meal, and adopt the point of view of C1

who did not pay. The anonymity of the payer is preserved if C1 cannot know if C2 or C3

paid for the meal. In our setting, the predicate ϕ2 is, without loss of symmetry, “C2 paid”.

Note that predicate ϕ2 is well suited for analysis of symmetrical opacity, since detecting

that ϕ2 is false gives information on who paid (here C3). The observation function lets

C1 know the results of its coin flips (f1,2 and f1,3), and the results announced by the

other cryptographers (r2 and r3). We also assume that the coin used by C2 and C3 has

a probability of q to yield heads, and that the master flips a fair coin to decide if C2

or C3 pays. It can be assumed that the coins C1 flips with its neighbors are fair, since

it does not affect anonymity from C1’s point of view. In order to limit the (irrelevant)

interleaving, we have made the choice to fix the ordering between the coin flips.

The corresponding FPA D is depicted on Figure 8 where all
√

transitions with prob-

ability 1 have been omitted from final (rectangular) states. On D, the runs satisfying

predicate ϕ2 are the ones where action p2 appears. The observation function O1 takes a

run and returns the sequence of actions over the alphabet {h1,2, t1,2, h1,3, t1,3} and the

final state reached, containing the value announced by C2 and C3.

There are 16 possible complete runs in this system, that yield 8 equiprobable observ-

Quantifying Opacity 19

r2 = 1
r3 = 0

p2,
1
2

r2 = 0
r3 = 1

p3,
1
2

h2,3, q

r2 = 0
r3 = 1

p2,
1
2

r2 = 1
r3 = 0

p3,
1
2

t2,3, 1− q

h1,3,
1
2

r2 = 1
r3 = 1

p2,
1
2

r2 = 0
r3 = 0

p3,
1
2

h2,3, q

r2 = 0
r3 = 0

p2,
1
2

r2 = 1
r3 = 1

p3,
1
2

t2,3, 1− q

t1,3,
1
2

h1,2,
1
2

r2 = 0
r3 = 0

p2,
1
2

r2 = 1
r3 = 1

p3,
1
2

h2,3, q

r2 = 1
r3 = 1

p2,
1
2

r2 = 0
r3 = 0

p3,
1
2

t2,3, 1− q

h1,3,
1
2

r2 = 0
r3 = 1

p2,
1
2

r2 = 1
r3 = 0

p3,
1
2

h2,3, q

r2 = 1
r3 = 0

p2,
1
2

r2 = 0
r3 = 1

p3,
1
2

t2,3, 1− q

t1,3,
1
2

t1,2,
1
2

Figure 8. The FPA corresponding to the Dining Cryptographers protocol.

q

POSr (D, ϕ2,O1)

0

1

1
2

1

Figure 9. Evolution of the restrictive probabilistic symmetric opacity of the

Dining Cryptographers protocol when changing the bias on the coin.

ables:

Obs = {(h1,2h1,3(r2 = 1, r3 = 0)), (h1,2h1,3(r2 = 0, r3 = 1)),

(h1,2t1,3(r2 = 0, r3 = 0)), (h1,2t1,3(r2 = 1, r3 = 1)),

(t1,2h1,3(r2 = 0, r3 = 0)), (t1,2h1,3(r2 = 1, r3 = 1)),

(t1,2t1,3(r2 = 1, r3 = 0)), (t1,2t1,3(r2 = 0, r3 = 1)) }
Moreover, each observation results in a run in which C2 pays and a run in which C3

pays, this difference being masked by the secret coin flip between them. For example,

runs ρh = h1,2h1,3h2,3p2(r2 = 1, r3 = 0) and ρt = h1,2h1,3t2,3p3(r2 = 1, r3 = 0) yield the

same observable o0 = h1,2h1,3(r2 = 1, r3 = 0), but the predicate is true in the first case

and false in the second one. Therefore, if 0 < q < 1, the unprobabilistic version of D is

opaque. However, if q 6= 1
2 , for each observable, one of them is more likely to be lying,

therefore paying. In the aforementioned example, when observing o0, ρh has occurred

with probability q, whereas ρt has occurred with probability 1 − q. RPSO can measure

this advantage globally.

For each observation class, the vulnerability of ϕ2 is max(q, 1 − q). Hence the RPSO

will be

POSr (D, ϕ2,O1) =
−1

log(min(q, 1− q))
The variations of the RPSO when changing the bias on q are depicted in Figure 9.

Analysis of RPSO according to the variation of q yields that the system is perfectly

secure if there is no bias on the coin, and insecure if q = 0 or q = 1.

B. Bérard, J. Mullins and M. Sassolas 20

5. Computing opacity measures

We now show how all measures defined above can be computed for regular predicates and

simple observation functions. The method relies on a synchronized product between an

SA A and a deterministic FA K, similarly to (Courcoubetis and Yannakakis, 1998). This

product (which can be considered pruned of its unreachable states and states not reaching

a final state) constrains the unprobabilistic version of A by synchronizing it with K. The

probability of L(K) is then obtained by solving a system of equations associated with

this product. The computation of all measures results in applications of this operation

with several automata.

5.1. Computing the probability of a substochastic automaton

Given an SA A, a system of equations can be derived on the probabilities for each state

to yield an accepting run. This allows to compute the probability of all complete runs of

A by a technique similar to those used in (Courcoubetis and Yannakakis, 1998; Hansson

and Jonsson, 1994; Bianco and de Alfaro, 1995) for probabilistic verification.

Definition 5.1 (Linear system of a substochastic automata). LetA = 〈Σ, Q,∆, q0〉
be a substochastic automaton where any state can reach a final state. The linear system

associated with A is the following system SA of linear equations over R:

SA =

Xq =
∑
q′∈Q

αq,q′Xq′ + βq


q∈Q

where αq,q′ =
∑
a∈Σ

∆(q)(a, q′) and βq = ∆(q)(
√

)

When non-determinism is involved, for instance in Markov Decision Processes (Cour-

coubetis and Yannakakis, 1998; Bianco and de Alfaro, 1995), two systems of inequa-

tions are needed to compute maximal and minimal probabilities. Here, without non-

determinism, both values are the same, hence Lemma 5.2 is a particular case of the results

in (Courcoubetis and Yannakakis, 1998; Bianco and de Alfaro, 1995), where uniqueness

is ensured by the hypothesis (any state can reach a final state). The probability can thus

be computed in polynomial time by solving the linear system associated with the SA.

Lemma 5.2. Let A = 〈Σ, Q,∆, q0〉 be a substochastic automaton and define for all

q ∈ Q, LAq = P(CRunq(A)). Then (LAq)q∈Q is the unique solution of the system SA.

5.2. Computing the probability of a regular language

In order to compute the probability of a language inside a system, we build a substochastic

automaton that corresponds to the intersection of the system and the language, then

compute the probability as above.

Definition 5.3 (Synchronized product). Let A = 〈Σ, Q,∆, q0〉 be a substochastic

automaton and let K = 〈Q×Σ×Q,QK ,∆K , qK , F 〉 be a deterministic finite automaton.

Quantifying Opacity 21

The synchronized product A||K is the substochastic automaton 〈Σ, Q×QK ,∆′, (q0, qK)〉
where transitions in ∆′ are defined by: if q1 → µ ∈ ∆, then (q1, r1) → ν ∈ ∆′ where for

all a ∈ Σ and (q2, r2) ∈ Q×QK ,

ν(a, (q2, r2)) =

{
µ(a, q2) if r1

q1,a,q2−−−−→ r2 ∈ ∆K

0 otherwise

and ν(
√

) =

{
µ(
√

) if r1 ∈ F
0 otherwise

In this synchronized product, the behaviors are constrained by the finite automaton.

Actions not allowed by the automaton are trimmed, and states can accept only if they

correspond to a valid behavior of the DFA. Note that this product is defined on SA in

order to allow several intersections. The correspondence between the probability of a

language in a system and the probability of the synchronized product is laid out in the

following lemma.

Lemma 5.4. Let A = 〈Σ, Q,∆, q0〉 be an SA and K a regular language over Q×Σ×Q
accepted by a deterministic finite automaton K = 〈Q× Σ×Q,QK ,∆K , qK , F 〉. Then

PA(K) = L
A||K
(q0,qK)

Proof. Let ρ ∈ CRun(A) with tr(ρ) ∈ K and ρ = q0
a1−→ q1 · · ·

an−−→ qn
√

. Since

tr(ρ) ∈ K and K is deterministic, there is a unique run ρK = qK
a1−→ r1 · · ·

an−−→ rn in

K with rn ∈ F . Then the sequence ρ′ = (q0, qK)
a1−→ (q1, r1) · · · an−−→ (qn, rn) is a run of

A||K. There is a one-to one-match between runs of A||K and pairs of runs in A and K
with the same trace. Moreover,

PA||K(ρ′) = ∆′(q0, qK)(a1, (q1, r1))× · · · ×∆′(qn, rn)(
√

)

= ∆(q0)(a1, q1)× · · · ×∆(qn)(
√

)

PA||K(ρ′) = PA(ρ).

Hence

PA(K) =
∑

{ρ|tr(ρ)∈K}

PA(ρ) =
∑

ρ′∈Run(A||K)

PA||K(ρ′) = PA||K(Run(A||K))

and therefore from Lemma 5.2, PA(K) = L
A||K
(q0,q′0).

5.3. Computing all opacity measures

All measures defined previously can be computed as long as, for i ∈ {0, 1} and o ∈ Obs,
all probabilities

P(1ϕ = i) P(O = o) P(1ϕ = i,O = o)

can be computed. Indeed, even deciding whether O−1(o) ⊆ ϕ can be done by testing

P(O = o) > 0 ∧P(1ϕ = 0,O = o) = 0.

Now suppose Obs is a finite set, ϕ and all O−1(o) are regular sets. Then one can build

B. Bérard, J. Mullins and M. Sassolas 22

deterministic finite automata Aϕ, Aϕ, Ao for o ∈ Obs that accept respectively ϕ, ϕ, and

O−1(o).

Synchronizing automaton Aϕ with A and pruning it yields a substochastic automaton

A||Aϕ. By Lemma 5.4, the probability P(1ϕ = 1) is then computed by solving the linear

system associated with A||Aϕ. Similarly, one obtain P(1ϕ = 0) (with Aϕ), P(O = o)

(with Ao), P(1ϕ = 1,O = o) (synchronizing A||Aϕ with Ao), and P(1ϕ = 0,O = o)

(synchronizing A||Aϕ with Ao).

Theorem 5.5. Let A be an FPA. If Obs is a finite set, ϕ is a regular set and for

o ∈ Obs, O−1(o) is a regular set, then for PO ∈ {POA` ,PO
S
` ,PO

A
r ,PO

S
r }, PO(A, ϕ,O)

can be computed.

The computation of opacity measures is done in polynomial time in the size of Obs and

DFAs Aϕ, Aϕ, Ao.
A prototype tool implementing this algorithm was developed in Java (Eftenie, 2010),

yielding numerical values for measures of opacity.

6. Comparison of the measures of opacity

In this section we compare the discriminating power of the measures discussed above.

As described above, the liberal measures evaluate the leak, hence 0 represents the best

possible value from a security point of view, producing an opaque system. For such an

opaque system, the restrictive measure evaluate the robustness of this opacity. As a result,

1 is the best possible value.

6.1. Abstract examples

The values of these metrics are first compared for extremal cases of Figure 10. These

values are displayed in Table 3.

(a) A1 (b) A2 (c) A3 (d) A4 (e) A5 (f) A6 (g) A7

ϕ O−1(o)

Figure 10. Example of repartition of probabilities of 1ϕ and O in 7 cases.

First, the system A1 of Figure 10(a) is intuitively very secure since, with or without

observation, an attacker has no information whether ϕ was true or not. This security

is reflected in all symmetrical measures, with highest scores possibles in all cases. It is

nonetheless deemed more insecure for RPO, since opacity is perfect when ϕ is always

false.

The case of A2 of Figure 10(b) only differs from A1 by the global repartition of ϕ

Quantifying Opacity 23

System (a) A1 (b) A2 (c) A3 (d) A4 (e) A5 (f) A6 (g) A7

LPO 0 0 0 1
4

1
4

1
4

0

LPSO 0 0 0 1
4

1
2

1
2

1
4

RPO 1
2

3
4

3
8

0 0 0 12
25

RPSO 1 1
2

1
2

0 0 0 0

Table 3. Values of the different opacity measures for systems of Figure 10(a)-(g).

in Run(A). The information an attacker gets comes not from the observation, but from

ϕ itself. Therefore RPSO, which does not remove the information available before ob-

servation, evaluates this system as less secure than A1. Measures based on information

theory (Smith, 2009; Bérard et al., 2010) would consider this system as secure. However,

such measures lack strong ties with opacity, which depend only on the information avail-

able to the observer, wherever this information comes from. In addition, RPO finds A2

more secure than A1: ϕ is verified less often. Note that the complement would not change

the value for symmetrical measures, while being insecure for RPO (with POAr = 1
4).

However, since each observation class is considered individually, RPSO does not dis-

criminate A2 and A3 of Figure 10(c). Here, the information is the same in each obser-

vation class as for A2, but the repartition of ϕ gives no advantage at all to an attacker

without observation.

When the system is not opaque (resp. symmetrically opaque), RPO (resp. RPSO)

cannot discriminate them, and LPO (resp. LPSO) becomes relevant. For example, A4 is

not opaque for the classical definitions, therefore POAr = POSr = 0 and both POA` > 0

and POS` > 0.

System, A5 of Figure 10(e) has a greater POS` than A4. However, LPO is unchanged

since the class completely out of ϕ is not taken into account. Remark that system A7 is

opaque but not symmetrically opaque, hence the relevant measures are POS` and POAr .

Also note that once a system is not opaque, the repartition of classes that do not leak

information is not taken into account, hence equal values in the cases of A5 and A6.

6.2. A more concrete example

Consider the following programs P1 and P2, inspired from (Smith, 2009), where k is a

given parameter, random select uniformly an integer value (in binary) between its two

arguments and & is the bitwise and :
P1: H := random(0, 28k − 1);

if H mod 8 = 0 then

L := H

else

L := −1

fi

P2: H := random(0, 28k − 1);

L := H & 07k1k

In both cases, the value of H, an integer over 8k bits, is supposed to remain secret,

and cannot be observed directly, while the value of L is public. Thus the observation is

B. Bérard, J. Mullins and M. Sassolas 24

qi q0

q8·28k−3

q8

q1

H = 0, 1

28k

H = 8, 1

28k

H = 8 · 28k−3, 1

28k

H = 1, 1

28k
H = 28k−1, 1

28k
. . .

r0
L = 0, 1

√
, 1

r8
L = 8, 1

√
, 1

r8·28k−3
L = 8 · 28k−3, 1

√
, 1

. .
.

r1
L = −1, 1

√
, 1

(a) FPA AP1

qi

q0

q2k−1

q1

H = 08k

H = 17k0k

H = 08k−11

H = 17k0k−11

H = 07k1k

H = 18k

. . .

..
.

. . .

r0
L = 0, 1

√
, 1

r8
L = 1, 1

√
, 1

r2k+1
L = 2k − 1, 1

√
, 1

. .
.

(b) FPA AP2
; all edges stemming from qi have

equal probability 1
28k

Figure 11. FPAs for programs P1 and P2.

Program POA` POS` POAr POSr

P1
1
8

1 0 0

P2 0 0 1− 1
27k

1
7k

Table 4. Opacity measures for programs P1 and P2.

the “L := . . .” action. Intuitively, P1 divulges the exact value of H with probability 1
8 .

On the other hand, P2 leaks the value of one eighth of its bits (the least significant ones)

at every execution.

These programs can be translated into FPAs AP1
and AP2

of Figure 11. In order

to have a boolean predicate, the secret is not the value of variable H, but whether

H = L: ϕ= =
{

(H = x)(L = x) | x ∈ {0, . . . , 28k − 1}
}

. Non opacity then means that

the attacker discovers the secret value. Weaker predicates can also be considered, like

equality of H with a particular value or H belonging to a specified subset of values, but

we chose the simplest one. First remark that ϕ= is not opaque on P1 in the classical

sense (both symmetrically or not). Hence both RPO and RPSO are null. On the other

hand, ϕ= is opaque on P2, hence LPO and LPSO are null. The values for all measures

are gathered in Table 4. Note that only restrictive opacity for P2 depends on k. This

comes from the fact that in all other cases, both ϕ= and the equivalence classes scale at

the same rate with k. In the case of P2, adding length to the secret variable H dilutes

ϕ= inside each class. Hence the greater k is, the hardest it is for an attacker to know

that ϕ= is true, thus to crack asymmetrical opacity. Indeed, it will tend to get false in

most cases, thus providing an easy guess, and a low value for symmetrical opacity.

Quantifying Opacity 25

6.3. Crowds protocol

The anonymity protocol known as crowds was introduced in (Reiter and Rubin, 1998) and

recently studied in the probabilistic framework in (Chatzikokolakis et al., 2008; Andrés

et al., 2010). When a user wants to send a message (or request) to a server without the

latter knowing the origin of the message, the user routes the message through a crowd

of n users. To do so, it selects a user randomly in the crowd (including himself), and

sends him the message. When a user receives a message to be routed according to this

protocol, it either sends the message to the server with probability 1 − q or forwards it

to a user in the crowd, with probability q. The choice of a user in the crowd is always

equiprobable. Under these assumptions, this protocol is known to be secure, since no

user is more likely than another to be the actual initiator; indeed its RPO is very low.

However, there can be c corrupt users in the crowd which divulge the identity of the

person that sent the message to them. In that case, if a user sends directly a message to

a corrupt user, its identity is no longer protected. The goal of corrupt users is therefore

not to transmit messages, hence they cannot initiate the protocol. The server and the

corrupt users cooperate to discover the identity of the initiator. RPO can measure the

security of this system, depending on n and c.

First, consider our protocol as the system in Figure 12. In this automaton, states

1, . . . , n − c corresponding to honest users are duplicated in order to differentiate their

behavior as initiator or as the receiver of a message from the crowd. The predicate we

want to be opaque is ϕi that contains all the runs in which i is the initiator of the request.

The observation function O returns the penultimate state of the run, i.e. the honest user

that will be seen by the server or a corrupt user.

For sake of brevity, we write ‘i ’ to denote the event “a request was initiated by i”

and ‘ j’ when “j was detected by the adversary”, which means that j sent the message

either to a corrupt user or to the server, who both try to discover who the initiator was.

The abbreviation i j stands for i ∧ j. Notation ‘¬i ’ means that “a request

was initiated by someone else than i”; similarly, combinations of this notations are used

in the sequel. We also use the Kronecker symbol δij defined by δij = 1 if i = j and 0

otherwise.

Computation of the probabilities. All probabilities P(i j) can be automatically com-

puted using the method described in Section 5. For example, P(1 (n− c)), the proba-

bility for the first user to initiate the protocol while the last honest user is detected, can

be computed from substochastic automaton Ccn||A1 (n−c) depicted on Figure 13. In this

automaton, the only duplicated state remaining is 1′.

This SA can also be represented by a transition matrix (like a Markov chain), which is

given in Table 5. An additional column indicates the probability for the
√

action, which

ends the run (here it is either 1 if the state is final and 0 if not).

The associated system is represented in Table 6 where LS corresponds to the “Server”

state. Each line of the system is given by the outgoing probabilities of the corresponding

state in the SA, or alternatively by the corresponding line of the matrix. Resolving it

B. Bérard, J. Mullins and M. Sassolas 26

0 1′

(n− c)′

. .
.

1
n−c

1
n−c

Server1

n− c

√
, 1

. . .

1− q

1− q

q · 1
n

q · 1
n

q · 1
n

q · 1
n

. . .n− c+ 1 n
√
, 1

√
, 1

1
n

1
n

1
n

1
n

1
n

1
n

1
n

1
n

q · 1
n

q · 1
n

q · 1
n q · 1

n

Figure 12. FPA Ccn for Crowds protocol with n users, among whom c are

corrupted.

0 1′
1

n−c

Server1

n− c

√
, 1

2

. . .
1− q

q · 1
n

q · 1
n

q · 1
n

q · 1
n

q · 1
n

q · 1
n

q · 1
n

q · 1
n

q · 1
n

. . .n− c+ 1 n
√
, 1

√
, 1

1
n

1
n

1
n q · 1

n q · 1
n

Figure 13. SA Ccn||A1 (n−c) corresponding to runs where user 1 initiates the

protocol and user (n− c) is detected.

(see Appendix B) yields, Li = q
n for all i ∈ {1, . . . , n − c − 1}, Ln−c = 1 − q·(n−c−1)

n ,

L1′ = 1
n , and L0 = 1

(n−c)·n . Therefore, P(1 (n− c)) = 1
(n−c)·n .

In this case, simple reasoning on the symmetries of the model allows to derive other

probabilities P(i j). Remark that the probability for a message to go directly from

initiator to the adversay (who cannot be the server) is c
n : it only happens if a corrupt

user is chosen by the initiator. If a honest user is chosen by the initiator, then the

length of the path will be greater, with probability n−c
n . By symmetry all honest users

Quantifying Opacity 27

0 1′ 1 · · · n− c n− c+ 1 · · · n Server
√

0 0 1
n−c 0 · · · 0 0 · · · 0 0 0

1′ 0 0 1
n

· · · 1
n

0 · · · 0 0 0

1 0 0 q · 1
n
· · · q · 1

n
0 · · · 0 0 0

...
...

...
...

. . .
...

...
. . .

...
...

...

n− c− 1 0 0 q · 1
n
· · · q · 1

n
0 · · · 0 0 0

n− c 0 0 q · 1
n
· · · q · 1

n
q · 1

n
· · · q · 1

n
1− q 0

n− c+ 1 0 0 0 · · · 0 0 · · · 0 0 1
...

...
...

...
. . .

...
...

. . .
...

...
...

n 0 0 0 · · · 0 0 · · · 0 0 1

Server 0 0 0 · · · 0 0 · · · 0 0 1

Table 5. The matrix giving the transition probabilities between the states of

Ccn||A1 (n−c).



L0 = 1
n−c · L1′

L1′ =
∑n−c
i=1

1
n
· Li

L1 =
∑n−c
i=1

q
n
· Li

.

..

Ln−c−1 =
∑n−c
i=1

q
n
· Li



Ln−c = (1− q) · LS +
∑n
i=1

q
n
· Li

Ln−c+1 = 1
...

Ln = 1

LS = 1

Table 6. Linear system associated to SA Ccn||A1 (n−c) of Figure 13.

have equal probability to be the initiator, and equal probability to be detected. Hence

P(i) = P(j) = 1
n−c .

Event i j occurs when i is chosen as the initiator (probability 1
n−c), and either (1) if

i = j and i chooses a corrupted user to route its message, or (2) if a honest user is chosen

and j sends the message to a corrupted user or the server (the internal route between

honest users before j is irrelevant). Therefore

P(i j) =
1

n− c
·
(
δij ·

c

n
+

1

n− c
· n− c

n

)
P(i j) =

1

n− c
·
(
δij ·

c

n
+

1

n

)
The case when i is not the initiator is derived from this probability:

P(¬i j) =

n−c∑
k=1
k 6=i

P(k j)

P(¬i j) =
1

n− c
·
(

(1− δij) ·
c

n
+
n− c− 1

n

)
Conditional probabilities thus follow:

P(i | j) =
P(i j)

P(j)
= δij ·

c

n
+

1

n

B. Bérard, J. Mullins and M. Sassolas 28

P(¬i | j) =
P(¬i j)

P(j)
= (1− δij) ·

c

n
+
n− c− 1

n

Interestingly, these probabilities do not depend on q‡.

Computation of RPO. From the probabilities above, one can compute an analytical value

for POAr (Ccn,1ϕi ,O).

1

POAr (Ccn, ϕi,O)
=

n−c∑
j=1

P(j)
1

P(¬i | j)

= (n− c− 1) · 1

n− c
· n

n− 1
+

1

n− c
· n

n− c− 1

=
n

n− c

(
n− c− 1

n− 1
+

1

n− c− 1

)
1

POAr (Ccn, ϕi,O)
=

n · (n2 + c2 − 2nc− n+ 2c)

(n− c) · (n− 1) · (n− c− 1)

Hence

POAr (Ccn, ϕi,O) =
(n− c) · (n− 1) · (n− c− 1)

n · (n2 + c2 − 2nc− n+ 2c)

which tends to 1 as n increases to +∞ (for a fixed number of corrupted users). The

evolution of RPO is represented in Figure 14(a) where blue means low and red means

high. If the proportion of corrupted users is fixed, say n = 4c, we obtain

POAr (Cc4c, ϕi,O) =
(4c− 1) · (9c− 3)

4c · (9c− 2)

which also tends to 1 as the crowds size increases. When there are no corrupted users,

POAr (C0
n, ϕi,O) =

n− 1

n
,

which is close to 1, but never exactly, since ϕi is not always false, although of decreas-

ing proportion as the crowds grows. This result has to be put in parallel with the one

from (Reiter and Rubin, 1998), which states that crowds is secure since each user is

“beyond suspicion” of being the initiator, but “absolute privacy” is not achieved.

Computation of RPSO. From the probabilities computed above, we obtain that if i 6= j,

V (i | j) = max

(
1

n
,
n− 1

n

)
=

1

n
max(1, n− 1).

Except in the case of n = 1 (when the system is non-opaque, hence POSr (C0
1 , ϕ1,O) = 0),

V (i | j) = n−1
n .

In the case when i = j

V (i | i) = max

(
c+ 1

n
,
n− c− 1

n

)
=

1

n
max(c+ 1, n− c− 1).

‡ This stems from the fact that the original models had either the server or the corrupt users as attackers,

not both at the same time.

Quantifying Opacity 29

2,5 5 7,5 10 12,5 15 17,5 20

5

10

15

20

n

c

0 2.5 5 7.5 10 12.5 15 17.5 20
0

5

10

15

20

(a) Evolution of POAr (Ccn, ϕi,O) with n and c.

Red meaning a value close to 1 and blue

meaning close to 0.

n

POSr (C5n, ϕi,O)

0 2 4 6 8 10 12 14 16 18 20
0

0.25

0.5

0.75

1

(b) Evolution of POSr (Ccn, ϕi,O) with n when
c = 5.

Figure 14. Evolution of restrictive opacity with the size of the crowd.

That means the vulnerability for the observation class corresponding to the case when i

is actually detected depends on the proportion of corrupted users in the crowd. Indeed,

V (i | i) = c+1
n if and only if n ≤ 2(c+ 1). The two cases shall be separated.

When n ≤ 2(c+ 1). The message is initially more likely to be sent to a corrupt user or

to the initiator himself than to any other user in the crowd:

n−c∑
j=1

P(j) · log(1− V (i | j)) =
(n− c− 1) · log

(
1
n

)
+ log

(
n−c−1
n

)
n− c

=
1

n− c
· (log(n− c− 1)− (n− c) · log(n))

=
log(n− c− 1)

n− c
− log(n)

Hence POSr (Ccn, ϕi,O) =
1

log(n)− log(n−c−1)
n−c

When n > 2(c+ 1). The message is initially more likely to be sent to a honest user

different from the initiator:

n−c∑
j=1

P(j) · log(1− V (i | j)) =
(n− c− 1) · log

(
1
n

)
+ log

(
c+1
n

)
n− c

=
1

n− c
· (log(c+ 1)− (n− c) · log(n))

=
log(c+ 1)

n− c
− log(n)

Hence POSr (Ccn, ϕi,O) =
1

log(n)− log(c+1)
n−c

The evolution of RPSO for c = 5 is depicted in Figure 14(b).

One can see that actually the RPSO decreases when n increases. That is because when

there are more users in the crowd, user i is less likely to be the initiator. Hence the

B. Bérard, J. Mullins and M. Sassolas 30

predicate chosen does not model anonymity as specified in (Reiter and Rubin, 1998)

but a stronger property since RPSO is based on the definition of symmetrical opacity.

Therefore it is meaningful in terms of security properties only when both the predicate

and its negation are meaningful.

7. Dealing with nondeterminism

The measures presented above were all defined in the case of fully probabilistic finite

automata. However, some systems present nondeterminism that cannot reasonably be

abstracted away. For example, consider the case of a system, in which a malicious user

Alice can control certain actions. The goal of Alice is to establish a covert communication

channel with an external observer Bob. Hence she will try to influence the system in order

to render communication easier. Therefore, the actual security of the system as observed

by Bob should be measured against the best possible actions for Alice. Formally, Alice

is a scheduler who, when facing several possible output distributions {µ1, . . . , µn}, can

choose whichever distribution ν on {1, . . . , n} as weights for the µis. The security as

measured by opacity is the minimal security of all possible successive choices.

7.1. The nondeterministic framework

Here we enlarge the setting of probabilistic automata considered before with nondeter-

minism. There are several outgoing distribution from a given state instead of a single

one.

Definition 7.1 (Nondeterministic probabilistic automaton). A nondeterministic

probabilistic automaton (NPA) is a tuple 〈Σ, Q,∆, q0〉 where

— Σ is a finite set of actions;

— Q is a finite set of states;

— ∆ : Q→ P(D((Σ×Q)]{
√
})) is a nondeterministic probabilistic transition function;

— q0 is the initial state;

where P(A) denotes the set of finite subsets of A.

The choice over the several possible distributions is made by the scheduler. It does

not, however, selects one distribution to be used, but can give weight to the possible

distributions.

Definition 7.2 (Scheduler). A scheduler on A = 〈Σ, Q,∆, q0〉 is a function

σ : Run(A)→ D(D((Σ×Q)] {
√
}))

such that σ(ρ)(ν) > 0⇒ ν ∈ ∆(lst(ρ)).

The set of all schedulers for A is denoted SchedA (the dependence on A will be omitted

if clear from the context).

Observe that the choice made by a scheduler can depend on the (arbitrarily long)

history of the execution. A scheduler σ is memoryless if there exists a function σ′ : Q→

Quantifying Opacity 31

D(D((Σ × Q)] {
√
})) such that σ(ρ) = σ′(lst(ρ)). Hence a memoryless scheduler takes

only into account the current state.

Definition 7.3 (Scheduled NPA). NPA A = 〈Σ, Q,∆, q0〉 scheduled by σ is the

(infinite) FPFA A/σ = 〈Σ, Run(A),∆′, ε〉 where

∆′(ρ)(a, ρ′) =
∑

µ∈∆(q)

σ(ρ)(µ) · µ(a, q′) if ρ′ =

ρ︷ ︸︸ ︷
q0 → · · · → q

a→ q′

and ∆′(ρ)(a, ρ′) = 0 otherwise.

A scheduled NPA behaves as an FPFA, where the outgoing distribution is the set of all

possible distributions weighted by the scheduler.

All measures defined in this paper on fully probabilistic finite automata can be ex-

tended to non-deterministic probabilistic automata. First note that all measures can be

defined on infinite systems, although they cannot in general be computed automatically,

even with proper restrictions on predicate and observables. From the security point of

view, opacity in the case of an NPA should be the measure for the FPFA obtained with

the worst possible scheduler. Hence the leak evaluated by the liberal measures (LPO and

LPSO) is the greatest possible, and the robustness evaluated by the restrictive measures

(RPO and RPSO) is the weakest possible.

Definition 7.4. Let A be an NPA, ϕ a predicate, and O an observation function.

For PO ∈ {POA` ,PO
S
` }, P̂O(A, ϕ,O) = max

σ∈Sched
PO(A/σ, ϕ,O).

For PO ∈ {POAr ,PO
S
r }, P̂O(A, ϕ,O) = min

σ∈Sched
PO(A/σ, ϕ,O).

7.2. The expressive power of schedulers

In the context of analysis of security systems running in a hostile environment, it is

quite natural to consider the scheduler to be under control of the adversary. However if

not constrained this gives the adversary an unreasonably strong power even for obviously

secure systems as it can reveal certain secrets. Also several classes of schedulers have been

proposed in order to avoid considering unrealistic power of unconstrained schedulers and

the ability of these classes to reach supremum probabilities (Giro and D’Argenio, 2009).

We now investigate this problem for quantitative opacity.

First we show that memoryless schedulers are not sufficiently expressive, with the

following counterexample.

Theorem 7.5. There exists an NPA B such that the value P̂OAr (B, ϕ,O) cannot be

reached by a memoryless scheduler.

Proof. Consider the NPA B of Figure 15. Transitions on a and b going to state q1

(along with the westbound
√

) are part of the same probabilistic transition indicated

by the arc linking the outgoing edges (and similarly eastbound). Let ϕ be the (regular)

predicate consisting of runs whose trace projected onto {a, b} is in (ab)+ + (ab)∗a (so a

B. Bérard, J. Mullins and M. Sassolas 32

q0q1 q2

√
, 1
8

√
, 1
8

a, 3
4

b, 1
8

o1, 1

a, 1
8

b, 3
4

o2, 1

Figure 15. A nondeterministic probabilistic automaton B.

q0

q1 q2

√
, 1
8

a, 3
4
p

b, 1
8
p

o1, 1

a, 1
8
(1− p)

b, 3
4
(1− p)

o2, 1

(a) Fully probabilistic finite automaton B/σp

q0, e

q1 q0, o

q2
√
, 1
8

√
, 1
8

a, 3
4

b, 1
8

o1, 1

a, 1
8

b, 3
4

o2, 1

(b) Fully probabilistic finite automaton B/σm

Figure 16. Scheduled automata.

and b must alternate). Let O be the observation function that keeps the last oi of the

run. Hence there are only three observables, ε, o1, and o2. Intuitively, a scheduler can

introduce a bias in the next letter read from state q0.

First consider a memoryless scheduler σp. It can only choose once what weight will be

affected to each transition. This choice is parametrized by probability p that represents

the weight of probability of the q1 transition. The scheduled NPA B/σp
is depicted on

Figure 16(a). The probabilities can be computed using the technique laid out in Section 5.

We obtain the following probabilities (see Appendix C.1 for details):

P(ε) =
1

8
P(o1) =

7

8
· p P(o2) =

7

8
· (1− p) P(ϕ, ε) = 0

P(ϕ, o1) =
p

25p2 − 25p+ 58
· 5p+ 49

8
P(ϕ, o2) =

1− p
25p2 − 25p+ 58

· 15p+ 7

4

Which yields

1

POAr (B/σp
, ϕ,O)

=
1

8
+

49

8
· f(p) ·

(
p

7f(p)− 5p− 49
+

1− p
7f(p)− 30p− 14

)
with f(p) = 25p2 − 25p+ 58 (see Appendix C.2). It can be shown§ that regardless of p,

POAr (B/σp
, ϕ,O) never falls below 0.88.

Now consider a scheduler σm with memory who will try to maximize the realization of

ϕ. In order to achieve that, it introduces a bias towards taking the letter which will fulfill

ϕ: first an a, then a b, etc. Hence on the even positions, it will choose only transition

§ With the help of tools such as WolframAlpha.

Quantifying Opacity 33

to q1 (with probability 1) while it will choose the transition to q2 on odd positions. The

resulting FPFA is depicted on Figure 16(b). In this case, the probabilities of interest are:

P(ε) =
1

8
P(o1) =

7

15
P(o2) =

7

8
· 7

15

P(ϕ, ε) = 0 P(ϕ, o1) =
3

14
P(ϕ, o2) =

3

4
· 3

14

Probability P(o1) can be obtained by noticing that the execution has to stop after an odd

number of letters from {a, b} have been read. The probability of stopping after exactly

n letters from a or b is 1
8 ·
(

7
8

)n
. Therefore

P(o1) =
1

8
·
∑
i≥0

(
7

8

)2i+1

=
1

8
· 7

8
· 1

1− 49
64

=
1

8
· 7

8
· 64

15
=

7

15
.

Similar reasoning yield the other probabilities. The computation of RPO from these

values (see Appendix C.3) gives POAr (B/σm
, ϕ,O) = 88192

146509 ' 0.60.

Hence a lower security is achieved by a scheduler provided it has (a finite amount of)

memory.

Note that this example used RPO, but a similar argument could be adapted for the other

measures.

7.3. Restricted schedulers

What made a scheduler with memory more powerful than the one without in the coun-

terexample of Section 7.2 was the knowledge of the truth value of ϕ and exactly what

was observed. More precisely, if the predicate and the observables are regular languages

represented by finite deterministic and complete automata (FDCA), schedulers can be

restricted to choices according to the current state of these automata and the state of the

system. We conjecture that this knowledge is sufficient to any scheduler to compromise

security at the best of its capabilities.

Let ϕ ⊆ CRun(A) be a regular predicate represented by an FDCA Aϕ. Let O :

CRun(A)→ {o1, . . . , on} be an observation function such that for 1 ≤ i ≤ n, O−1(oi) is

a regular set represented by an FDCA Aoi . Consider the synchronized product Aϕ,O =

Aϕ||Ao1 || . . . ||Aon , which is also an FDCA, and denote by Qϕ,O its set of states. Let

Aϕ,O(ρ) be the state of Aϕ,O reached after reading ρ.

Definition 7.6 (Restricted (ϕ,O)-scheduler). A scheduler σ for A is said (ϕ,O)-

restricted if there exists a function σ′ : (Qϕ,O × Q) → D(D((Σ × Q)] {
√
})) such that

for any run ρ ∈ Run(A), σ(ρ) = σ′(Aϕ,O(ρ), lst(ρ)).

Remark that memoryless schedulers are always (ϕ,O)-restricted.

Proposition 7.7. If σ is (ϕ,O)-restricted, then A/σ is isomorphic to a finite FPFA.

These schedulers keep all information about the predicate and the observation. We con-

jecture that the relevant supremum is reached by a (ϕ,O)-restricted scheduler.

B. Bérard, J. Mullins and M. Sassolas 34

Sketch of proof of Proposition 7.7 It can be shown that if σ is (ϕ,O)-restricted, then:

(1) σ is a memoryless scheduler for the product A||Aϕ,O
(2) and (A||Aϕ,O)/σ = A/σ.

8. Conclusion

In this paper we introduced two dual notions of probabilistic opacity. The liberal one

measures the probability for an attacker observing a random execution of the system

to be able to gain information he can be sure about. The restrictive one measures the

level of certitude in the information acquired by an attacker observing the system. The

extremal cases of both these notions coincide with the possibilistic notion of opacity,

which evaluates the existence of a leak of sure information. These notions yield measures

that generalize either the case of asymmetrical or symmetrical opacity, thus providing

four measures.

However, probabilistic opacity is not always easy to compute, especially if there are

an infinite number of observables. Nevertheless, automatic computation is possible when

dealing with regular predicates and finitely many regular observation classes. A prototype

tool was implemented in Java, and can be used for numerical computation of opacity

values.

In future work we plan to explore more of the properties of probabilistic opacity, to in-

stantiate it to known security measures (anonymity, non-interference, etc.). Also, we want

to extend the study of the non-deterministic case, by investigating the expressiveness of

schedulers.

Acknowledgments. We wish to thank Catuscia Palamidessi for interesting discussions

on this work. Thanks also to the reviewers for their helpful comments and to Adrian

Eftenie for implementing the tpot tool.

The authors are supported by projects ImpRo (ANR-2010-BLAN-0317) (French Gov-

ernment), CoChaT (DIGITEO-2009-27HD) (Région Île de France), inVEST (ERC Start-

ing Grant 279499), the NSERC Discovery Individual grant No. 13321 (Government of

Canada), and by the FQRNT Team grant No. 167440 (Quebec’s Government).

References

Aldini, A. and Bernardo, M. (2009). A General Framework for Nondeterministic, Probabilistic,

and Stochastic Noninterference. In Degano, P. and Viganò, L., editors, Proc. of Foundations

and Applications of Security Analysis; ARSPA-WITS 2009, volume 5511 of Lecture Notes in

Computer Science, pages 191–245. Springer.

Aldini, A., Bravetti, M., and Gorrieri, R. (2004). A process-algebraic approach for the analysis

of probabilistic noninterference. Journal of Computer Security, 12(2):191–245.

Alur, R., Černý, P., and Zdancewic, S. (2006). Preserving secrecy under refinement. In Proc.

of the 33rd Intl. Colloquium on Automata, Languages and Programming (ICALP’06), volume

4052 of LNCS, pages 107–118. Springer.

Alvim, M. S., Andrés, M. E., and Palamidessi, C. (2010). Information flow in interactive systems.

In Gastin, P. and Laroussinie, F., editors, Proceedings of the 21th International Conference

on Concurrency Theory (CONCUR’10), volume 6269 of LNCS, pages 102–116. Springer.

Quantifying Opacity 35

Andrés, M. E., Palamidessi, C., van Rossum, P., and Smith, G. (2010). Computing the leakage

of information-hiding systems. In Proc. 16th Intl. Conf. on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’10), volume 6015 of LNCS, pages 373–389.

Springer.

Bérard, B., Mullins, J., and Sassolas, M. (2010). Quantifying opacity. In Ciardo, G. and Segala,

R., editors, Proceedings of the 7th International Conference on Quantitative Evaluation of

Systems (QEST’10), pages 263–272. IEEE Computer Society.

Bianco, A. and de Alfaro, L. (1995). Model checking of probabilistic and nondeterministic sys-

tems. In Proc. 15th Conf. on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS’95), volume 1026 of LNCS, pages 499–513. Springer.

Boreale, M. (2009). Quantifying information leakage in process calculi. Information and Com-

putation, 207(6):699–725.

Boreale, M., Clark, D., and Gorla, D. (2010). A semiring-based trace semantics for processes

with applications to information leakage analysis. In Calude, C. S. and Sassone, V., editors,

Proc. of 6th IFIP TC 1/WG 2.2 International Conference, TCS 2010, Held as Part of WCC

2010 (IFIP TCS), volume 323 of IFIP, pages 340–354. Springer.

Boreale, M., Pampaloni, F., and Paolini, M. (2011a). Asymptotic Information Leakage under

One-Try Attacks. In Hofmann, M., editor, Foundations of Software Science and Computa-

tional Structures - 14th International Conference, FOSSACS 2011, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2011, volume 6604 of

Lecture Notes in Computer Science, pages 396–410. Springer.

Boreale, M., Pampaloni, F., and Paolini, M. (2011b). Quantitative information flow, with a

view. In Atluri, V. and Dı́az, C., editors, Proc. of 16th European Symposium on Research

in Computer Security (ESORICS 2011), volume 6879 of Lecture Notes in Computer Science,

pages 588–606. Springer.

Bryans, J. W., Koutny, M., Mazaré, L., and Ryan, P. Y. A. (2008). Opacity generalised to

transition systems. Intl. Jour. of Information Security, 7(6):421–435.

Chatzikokolakis, K., Palamidessi, C., and Panangaden, P. (2008). Anonymity protocols as noisy

channels. Information and Computation, 206(2-4):378–401.

Chaum, D. (1988). The dining cryptographers problem: unconditional sender and recipient

untraceability. Journal of Cryptology, 1:65–75.

Courcoubetis, C. and Yannakakis, M. (1998). Markov Decision Processes and Regular Events.

IEEE Transactions on Automatc Control, 43(10):1399–1418.

Dubreil, J., Darondeau, P., and Marchand, H. (2010). Supervisory Control for Opacity. IEEE

Transactions on Automatic Control, 55(5):1089 –1100.

Eftenie, A. (2010). Computing quantitative opacity with tpot – http://www.info.polymtl.

ca/~adeft/computing_opacity/.

Giro, S. and D’Argenio, P. R. (2009). On the expressive power of schedulers in distributed

probabilistic systems. Electronic Notes in Theoretical Computer Science, 253(3):45–71.

Goguen, J. A. and Meseguer, J. (1982). Security policy and security models. In Proc. of IEEE

Symposium on Security and Privacy, pages 11–20. IEEE Computer Society Press.

Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512–535.

Kemeny, J. G. and Snell, J. L. (1976). Finite Markov Chains. Undergraduate Texts in Math-

emetics. Sringer-Verlag.

Lakhnech, Y. and Mazaré, L. (2005). Probabilistic opacity for a passive adversary and its

application to Chaum’s voting scheme. Technical Report 4, Verimag.

http://www.info.polymtl.ca/~adeft/computing_opacity/
http://www.info.polymtl.ca/~adeft/computing_opacity/

B. Bérard, J. Mullins and M. Sassolas 36

Lin, F. (2011). Opacity of discrete event systems and its applications. Automatica, 47(3):496–

503.

Lowe, G. (2004). Defining information flow quantity. Journal of Computer Security, 12(3-4):619–

653.

Mantel, H. and Sudbrock, H. (2009). Information-theoretic modeling and analysis of interrupt-

related covert channels. In Degano, P., Guttman, J., and Martinelli, F., editors, Proceedings

of the Workshop on Formal Aspects in Security and Trust, FAST 2008, Springer, LNCS 5491,

pages 67–81.

Mazaré, L. (2005). Decidability of opacity with non-atomic keys. In Proc. 2nd Workshop

on Formal Aspects in Security and Trust (FAST’04), volume 173 of Intl. Federation for

Information Processing, pages 71–84. Springer.

McIver, A., Meinicke, L., and Morgan, C. (2010). Compositional closure for bayes risk in prob-

abilistic noninterference. In Abramsky, S., Gavoille, C., Kirchner, C., auf der Heide, F. M.,

and Spirakis, P. G., editors, Proc. of 37th International Colloquium on Automata, Languages

and Programming (ICALP’10), Part II, volume 6199 of Lecture Notes in Computer Science,

pages 223–235. Springer.

Millen, J. K. (1987). Covert Channel Capacity. In Proc. of IEEE Symposium on Research in

Computer Security and Privacy, pages 144–161.

Reiter, M. K. and Rubin, A. D. (1998). Crowds: anonymity for web transactions. ACM Trans-

actions on Information and System Security, 1(1):66–92.

Segala, R. (1995). Modeling and Verification of Randomized Distributed Real-Time Systems.

PhD thesis, MIT, Department of Electrical Engineering and Computer Science.

Smith, G. (2009). On the foundations of quantitative information flow. In Proc. 12th Intl. Conf.

on Foundations of Software Science and Computational Structures (FOSSACS’09), pages

288–302. Springer-Verlag.

Wittbold, J. T. and Johnson, D. M. (1990). Information flow in nondeterministic systems. In

Proc. of IEEE Symposium on Research in Computer Security and Privacy, pages 144–161.

Appendix A. Computation of RPO for the debit card system

We give here the details of the computation of RPO in the example of the debit cards

system of Section 4.1.

P(OCall = ε) = P(OCall = ε, x > 1000) + P(OCall = ε, 500 < x ≤ 1000)

+ P(OCall = ε, 100 < x ≤ 500) + P(OCall = ε, x ≤ 100)

= P(OCall = ε) ·P(x > 1000)

+ P(OCall = ε) ·P(500 < x ≤ 1000)

+ P(OCall = ε) ·P(100 < x ≤ 500)

+ P(OCall = ε) ·P(x ≤ 100)

= 0.05 · 0.05 + 0.25 · 0.2 + 0.5 · 0.45 + 0.8 · 0.3
P(OCall = ε) = 0.5175

P(OCall = Call) = 1−P(OCall = ε) = 0.4825

Quantifying Opacity 37

P(¬ϕ>500|OCall = ε) =
P(¬ϕ>500,OCall = ε)

P(OCall = ε)

=
P(x ≤ 100,OCall = ε) + P(100 < x ≤ 500,OCall = ε)

P(OCall = ε)

=
P(OCall = ε|x ≤ 100) ·P(x ≤ 100)

P(OCall = ε)

+
P(OCall = ε|100 < x ≤ 500) ·P(100 < x ≤ 500)

P(OCall = ε)

=
0.8 · 0.3 + 0.5 · 0.45

0.5175

P(¬ϕ>500|OCall = ε) =
0.465

0.5175
' 0.899

P(¬ϕ>500|OCall = Call) =
P(¬ϕ>500,OCall = Call)

P(OCall = Call)

=
P(x ≤ 100,OCall = Call) + P(100 < x ≤ 500,OCall = Call)

P(OCall = Call)

=
P(OCall = Call|x ≤ 100) ·P(x ≤ 100)

P(OCall = Call)

+
P(OCall = Call|100 < x ≤ 500) ·P(100 < x ≤ 500)

P(OCall = Call)

=
0.2 · 0.3 + 0.5 · 0.45

0.4825

P(¬ϕ>500|OCall = Call) =
0.285

0.4825
' 0.591

1

POAr (Acard, ϕ>500,OCall)
= 0.5175 · 0.5175

0.465
+ 0.4825 · 0.4825

0.285

1

POAr (Acard, ϕ>500,OCall)
=

39377

28272
' 1.393

The last line was obtained by reducing the one above with the help of the formal com-

putation tool WolframAlpha.

Appendix B. Resolution of the linear system for Crowds protocol

It can be seen in the system of Table 6 (page 27) that L1 = L2 = · · · = Ln−c−1 = q ·L1′

and Ln−c+1 = · · · = Ln = LS = 1. Therefore, it suffices to eliminate L1′ and compute

L0, L1 and Ln−c. 
L0 = 1

q(n−c) · L1

L1 = q
(
n−c−1
n · L1 + 1

n · Ln−c
)

Ln−c = 1− q(n−c)
n + L1

B. Bérard, J. Mullins and M. Sassolas 38

The line for Ln−c is obtained as follows:

Ln−c = (1− q) · LS +

n∑
i=1

q

n
· Li

Ln−c = (1− q) · LS +

n−c∑
i=1

q

n
· Li +

n∑
i=n−c+1

q

n
· Li

Ln−c = 1− q + L1 +
q · c
n

Ln−c = 1− q(n− c)
n

+ L1

This yields, for L1:

L1 =
q

n
(n− c) · L1 +

q

n

(
1− q(n− c)

n

)
n

q
· L1 = (n− c) · L1 + 1− q(n− c)

n

L1

(
n

q
− (n− c)

)
=

n− q(n− c)
n

L1 =
q

n

The other values are easily deduced from L1.

Appendix C. Calculations in the proof of Theorem 7.5

C.1. Probabilities in B/σp
.

We compute the probabilities of several events in the automaton B/σp
, reproduced on

Figure 17(a). Recall that ϕ = (ab)+ + (ab)∗a and O is the last letter read, so the set of

observables is Obs = {ε, o1, o2}.
The computation of the probability P(ϕ, o1) in FPFA B/σp

goes as follows. We write

p = 1−p for brevity. First we build the synchronized product B/σp
||Aϕ||Ao1 , as depicted

in Figure 18. The linear system of Table 7 is built from this automaton. This system

can be trimmed down in order to remove redundancy, and since only the value of x000 =

P(ϕ, o1) is of interest:
x000 = 1

8p x010 + 3
4p x011

x010 = 1
8p x021 + 3

4p x020

x011 = 1
8 + 3

4p x020 + 1
8p x021

x020 = 1
8p x010 + 3

4p x011

x021 = 1
8 + 1

8p x010 + 3
4p x011

⇐⇒


x000 = 1

8p x010 + 3
4p x011

x010 = 1
8p x021 + 3

4p x020

x011 = 1
8 + x010

x020 = x000

x021 = 1
8 + x000

We therefore obtain:{
x000 = 1

8p x010 + 3
4p
(

1
8 + x010

)
x010 = 1

8p
(

1
8 + x000

)
+ 3

4p x000
So

{
x000 = 1

8p x010 + 3
4p
(

1
8 + x010

)
x010 = 1

64p+ 1
8p x000 + 3

4p x000

Quantifying Opacity 39

q0

q1 q2

√
, 1
8

a, 3
4
p

b, 1
8
p

o1, 1

a, 1
8
(1− p)

b, 3
4
(1− p)

o2, 1

(a) Fully probabilistic finite automaton B/σp

p0 p1 p2
a

b

a

o1, o2 o1, o2 o1, o2

(b) Deterministic finite automaton Aϕ

r0 r1

o1

o2

a, b a, b

o2 o1

(c) Deterministic finite automaton Ao1

s0 s1

o2

o1

a, b a, b

o1 o2

(d) Deterministic finite automaton Ao2

Figure 17. Automata for the computation of P(ϕ, o1) and P(ϕ, o2).

q0, p0, r0

q2, p1, r0

q0, p1, r0

q1, p2, r0 q2, p2, r0

q1, p1, r0

q0, p1, r1

√
, 1
8

q2, p2, r1 q1, p2, r1

q0, p2, r0

q0, p2, r1

√
, 1
8

q2, p1, r1 q1, p1, r1

a, p
8

a, 3p
4

o2, 1 o1, 1

b, p
8

b, 3p
4

b, 3p
4

b, p
8

o2, 1 o2, 1

o1, 1 o1, 1

a, p
8

a, 3p
4

a, p
8

a, 3p
4

o1, 1o2, 1

Figure 18. Substochastic Automaton B/σp
||Aϕ||Ao1 .

B. Bérard, J. Mullins and M. Sassolas 40

x000 = 1
8
p x210 + 3

4
p x110

x210 = x010
x110 = x011
x010 = 1

8
p x120 + 3

4
p x220

x011 = 1
8

+ 3
4
p x221 + 1

8
p x121

x120 = x021
x220 = x020
x221 = x020
x121 = x021
x020 = 1

8
p x210 + 3

4
p x110

x021 = 1
8

+ 1
8
p x211 + 3

4
p x111

x211 = x010
x111 = x011

Table 7. Linear system associated to the SA B/σp
||Aϕ||Ao1 . The variables names

indicate the corresponding state in the automaton; for example x210 corresponds

to state (q2, p1, r0).

As a result

x000 =
1

8
p

(
1

64
p+

1

8
p x000 +

3

4
p x000

)
+

3

4
p

(
1

8
+

1

64
p+

1

8
p x000 +

3

4
p x000

)
In the sequel, we replace x000 with x for readability’s sake.

x =
1

8
p

(
1

64
p+

1

8
p x+

3

4
p x

)
+

3

4
p

(
1

8
+

1

64
p+

1

8
p x+

3

4
p x

)
⇐⇒ x =

1

512
pp+

1

64
ppx+

3

32
p2x+

3

32
p+

3

256
p2 +

3

32
p2x+

9

16
ppx

⇐⇒ x

(
1− 1

64
pp− 3

32
p2 − 3

32
p2 − 9

16
pp

)
=

1

512
pp+

3

32
p+

3

256
p2

⇐⇒ x =
1
8pp+ 6p+ 3

4p
2

64− pp− 6p2 − 6p2 − 36pp

⇐⇒ x =
1
8p(1− p) + 6p+ 3

4p
2

64− 37p(1− p)− 6(p2 − 2p+ 1)− 6p2

⇐⇒ x =
1
8p−

1
8p

2 + 6p+ 3
4p

2

64− 37p+ 37p2 − 6p2 + 12p− 6− 6p2

⇐⇒ x =
1

8
· p · 5p+ 49

25p2 − 25p+ 58

The same technique can be applied to the computation of P(ϕ, o2) in B/σp
. The product

is depicted on Figure 19, and the linear system obtained boils down to{
x000 = 1

8p
(

1
8 + x010

)
+ 3

4p x010

x010 = 1
8p x000 + 3

4p
(

1
8 + x000

)
As before, x000 is replaced by x for readability; we solve:

Quantifying Opacity 41

q0, p0, s0

q2, p1, s0

q0, p1, s1

√
, 1
8

q1, p2, s1q2, p2, s1

q1, p1, s0

q0, p1, s0

q2, p2, s0q1, p2, s0

q0, p2, s0

q0, p2, s1

√
, 1
8

q2, p1, s1 q1, p1, s1

a, p
8

a, 3p
4

o2, 1 o1, 1

b, p
8

b, 3p
4

b, 3p
4

b, p
8

o2, 1o2, 1

o1, 1o1, 1

a, p
8

a, 3p
4

a, p
8

a, 3p
4

o1, 1o2, 1

Figure 19. Substochastic Automaton B/σp
||Aϕ||Ao2 .

x =
1

8
p

(
1

8
+

1

8
px+

3

4
p

(
1

8
+ x

))
+

3

4
p

(
1

8
px+

3

4
p

(
1

8
+ x

))
x =

1

64
p+

1

64
ppx+

3

256
p2 +

3

32
p2x+

3

32
p2x+

9

128
pp+

9

16
ppx

x =
1
64p+ 3

256p
2 + 9

128pp

1− 1
64pp−

3
32p

2 − 3
32p

2 − 9
16pp

x =
4p+ 3p2 + 18pp

256− 24p2 − 24p2 − 148pp

x =
(1− p)(4 + 3− 3p+ 18p)

256− 24p2 + 48p− 24− 24p2 − 148p+ 148p2

x =
(1− p)(15p+ 7)

232− 100p+ 100p2

x =
(1− p)(15p+ 7)

4(25p2 − 25p+ 58)

B. Bérard, J. Mullins and M. Sassolas 42

C.2. Computation of RPO for B/σp

In the sequel, we write f(p) = 25p2 − 25p+ 58. We have P(ϕ|ε) = 1 and

P(ϕ|o1) = 1− P(ϕ, o1)

P(o1)

P(ϕ|o1) = 1− 1

8
· p · 5p+ 49

25p2 − 25p+ 58
· 8

7p

P(ϕ|o1) =
7f(p)− 5p− 49

7f(p)

P(ϕ|o2) = 1− P(ϕ, o2)

P(o2)

P(ϕ|o2) = 1− (1− p)(15p+ 7)

4(25p2 − 25p+ 58)
· 8

7(1− p)

P(ϕ|o2) =
7f(p)− 30p− 14

7f(p)

1

POAr
(
B/σp

, ϕ,O
) = P(ε) + P(o1) · 1

P(ϕ|o1)
+ P(o2) · 1

P(ϕ|o2)

1

POAr
(
B/σp

, ϕ,O
) =

1

8
+

7

8
· p · 7f(p)

7f(p)− 5p− 49
+

7

8
· (1− p) · 7f(p)

7f(p)− 30p− 14

1

POAr
(
B/σp

, ϕ,O
) =

1

8
+

49f(p)

8

(
p

7f(p)− 5p− 49
+

1− p
7f(p)− 30p− 14

)

C.3. Computation of RPO for B/σm

We have:

P(ϕ|ε) = 1 P(ϕ|o1) = 1− 3

14
· 15

7
=

53

98
P(ϕ|o2) = 1− 3

4
· 3

14
· 15

7
· 8

7
=

208

343

Therefore:

1

POAr (B/σm
, ϕ,O)

=
1

8
+

7

15
· 98

53
+

7

8
· 7

15
· 343

208

1

POAr (B/σm
, ϕ,O)

=
146509

88192

POAr (B/σm
, ϕ,O) =

88192

146509

POAr (B/σm
, ϕ,O) ' 0.60

	Introduction
	Preliminaries
	Possibilistic opacity
	Probabilities and information theory
	Probabilistic models

	Measuring non-opacity
	Definition and properties
	Example: Non-interference

	Measuring the robustness of opacity
	Restricting Asymmetrical Opacity
	Restricting symmetrical opacity

	Computing opacity measures
	Computing the probability of a substochastic automaton
	Computing the probability of a regular language
	Computing all opacity measures

	Comparison of the measures of opacity
	Abstract examples
	A more concrete example
	Crowds protocol

	Dealing with nondeterminism
	The nondeterministic framework
	The expressive power of schedulers
	Restricted schedulers

	Conclusion
	References
	 Computation of RPO for the debit card system
	 Resolution of the linear system for Crowds protocol
	 Calculations in the proof of Theorem 7.5
	Probabilities in B/p.
	Computation of RPO for B/p
	Computation of RPO for B/m

