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ABSTRACT
Collaborative text editing systems allow users to concurrently edit
a shared document, inserting and deleting elements (e.g., charac-
ters or lines). There are a number of protocols for collaborative text
editing, but so far there has been no precise specification of their
desired behavior, and several of these protocols have been shown
not to satisfy even basic expectations. This paper provides a precise
specification of a replicated list object, which models the core func-
tionality of replicated systems for collaborative text editing. We de-
fine a strong list specification, which we prove is implemented by
an existing protocol, as well as a weak list specification, which ad-
mits additional protocol behaviors.

A major factor determining the efficiency and practical feasibil-
ity of a collaborative text editing protocol is the space overhead of
the metadata that the protocol must maintain to ensure correctness.
We show that for a large class of list protocols, implementing either
the strong or the weak list specification requires a metadata over-
head that is at least linear in the number of elements deleted from
the list. The class of protocols to which this lower bound applies
includes all list protocols that we are aware of, and we show that
one of these protocols almost matches the bound.
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1. INTRODUCTION
Collaborative text editing systems, like Google Docs [6, 7],

Apache Wave [1], or wikis [15], allow users at multiple sites to
concurrently edit the same document. To achieve high responsive-
ness and availability, such systems often replicate the document in
geographically distributed sites or on user devices. A user can mod-
ify the document at a nearby replica, which propagates the modi-
fications to other replicas asynchronously. This propagation can be
done either via a centralized server or peer-to-peer. An essential
feature of a collaborative editing system is that all changes even-
tually propagate to all replicas and get incorporated into the docu-
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Figure 1: Example scenarios of collaborative text editing. Events
are presented in format “operation : return value”. An arrow from
an event e′ to an event e expresses that the effects of e′ get incor-
porated at e’s replica before e executes.

ment in a consistent way. In particular, such systems aim to guar-
antee eventual consistency: if users stop modifying the document,
then the replicas will eventually converge to the same state [28,29].

Figure 1(a) gives an example scenario of a document edited at
several replicas. First, replica R2 inserts x at the first position
(zero-indexed) into the empty list. This insertion then propagates
to replica R1, which inserts a to the left of x, and to R3, which in-
serts b to the right of x. Later the modifications made byR1 andR3

propagate to all other replicas, including R2; when the latter reads
the list, it observes axb. In this scenario, the desired system behav-
ior is straightforward, but sometimes this is not the case. To illus-
trate, consider the scenario in Figure 1(b), whereR2 deletes x from
the list before the insertions of a and b propagate to it. One might
expect the read by R2 to return ab, given the orderings ax and xb
established at other replicas. However, some implementations al-
low ba as a response; e.g., this is the case in a Jupiter protocol [19],
used in public collaboration systems [30].

There have been a number of proposals of highly available col-
laborative editing protocols, using techniques such as operation
transformations [12, 22, 26, 27] and replicated data types (aka
CRDTs) [21, 23, 31]. However, specifications of their desired be-
havior [16,27] have so far been informal and imprecise, and several
of the protocols have been shown not to satisfy even the basic ex-
pectation of eventual consistency [13]. To address this problem, we
introduce a precise specification of a replicated list object, which
allows its clients to insert and delete elements into the list at differ-
ent replicas and thereby captures the core aspects of collaborative
text editing [12] (Section 3). Our specification has two flavors. The
strong specification ensures that orderings relative to deleted ele-
ments hold even after the deletion, thereby disallowing the response
ba for the read in Figure 1(b). The weak specification provides no
such guarantee, while still requiring the ordering between elements



that are not deleted to be consistent across the system. We show
that both of these specifications ensure eventual consistency.

We prove that the strong specification is correctly implemented
by a variant of an existing RGA (Replicated Growable Array) pro-
tocol [23], which is in the style of replicated data types [21] (Sec-
tion 4). The protocol represents the list as a tree, with read opera-
tions traversing the tree in a deterministic order. Inserting an ele-
ment a right after an element x (as in Figure 1(b)) adds a as a child
of x in the tree. Deleting an element x just marks it as such; the
node of x is left in the tree, creating a so-called tombstone. Keeping
the tombstone enables the protocol to correctly incorporate inser-
tions of elements received from other replicas that are ordered right
after x (e.g., that of b in Figure 1(b)).

The simplicity of handling deletions via tombstones in the RGA
protocol comes with a high space overhead. More precisely, the
metadata overhead [4] of a list implementation is the ratio be-
tween the size of a replica’s state (in bits) and the size of the user-
observable content of the state, i.e., the list that will be read in this
state. As we show, the metadata overhead of the RGA protocol is
O(D lg k), where D is the number of deletions issued by clients
and k is the total number of operations (Section 4). The number
of deletions can be high. For example a 2009 study [31] indicates
that the “George W. Bush” Wikipedia page has about 500 lines.
However, since modifications are usually handled as deleting the
original line and then inserting the revised line, the page had accu-
mulated about 1.6 million deletions.1

Our main result is that this overhead is, in some sense, inherent.
We prove that any protocol from a certain class which implements
the list specification for n ≥ 3 replicas incurs a metadata overhead
of Ω(D), where D is the number of deletions. This result holds
even for the weak list specification and even if the network guaran-
tees causal atomic broadcast [9]. The result holds for all push-based
protocols, where each replica propagates list updates to its peers as
soon as possible, and merges remote updates into its state as soon
as they arrive (we give a precise definition in Section 5). This as-
sumption captures the operation of all highly available protocols
that we are aware of.

We establish our lower bound for the peer-to-peer model. How-
ever, using the fact that it holds for a network with causal atomic
broadcast, we extend it to show that, in a push-based client/server
list protocol, the metadata overhead at the clients is still Ω(D).

We prove our lower bound using an information-theoretic argu-
ment. For every d ≈ D/2-bit stringw, we construct a particular ex-
ecution αw of the protocol such that, at its end, the user-observable
state σw of some replica is a list of size O(1) bits. We then show
that, given σw, we can decode w by exercising the protocol in a
black-box manner. This implies that all states σw must be distinct
and, since there are 2d of them, one of these states must take at
least d bits. The procedure that decodes w from σw is nontrivial
and represents the key insight of our proof. It recovers w one bit
at a time using a “feedback loop” between two processes: one per-
forms a black-box experiment on the protocol to recover the next
bit of w, and the other reconstructs the corresponding steps of the
execution αw; the messages sent in the reconstructed part of αw
then form the basis for the experiment to decode the next bit of w.

2. SYSTEM MODEL
We are concerned with highly available implementations of a

replicated object [2, 4], which supports a set of operations Op.
Such an implementation consists of replicas that receive and re-

1Wikipedia stores this information also to track the document’s edit
history.

spond to user operations on the object and use message passing
to communicate changes to the object’s state. The high availabil-
ity property sets this model apart from standard message-passing
models: we require that replicas respond to user operations imme-
diately—without performing any communication—so that user op-
erations complete regardless of network latency and network parti-
tions (e.g., device disconnection).
Replicas. We model a replica as a state machine R =
(Q,M,Σ, σ0, E,∆), where Q is a set of internal states, M is a
set of possible messages, Σ = Q × (M ∪ {⊥}) is a set of replica
states, σ0 = (q0,⊥) ∈ Σ is the initial state, E is a set of possi-
ble events, and ∆ : Σ × E ⇀ Σ is a (partial) transition function.
Note that a replica state explicitly includes a send buffer, contain-
ing the message pending transmission or ⊥, which indicates that
no message is pending. If ∆(σ, e) is defined, we say that event e
is enabled in state σ. Transitions determined by ∆ describe local
steps of a replica in which it interacts with users and other replicas.
These interactions are modeled by three kinds of events:

• do(op, v): a user invokes an operation op ∈ Op on the repli-
cated object and immediately receives a response v from the
replica;

• send(m): the replica broadcasts a message m ∈M ; and

• receive(m): the replica receives a message m ∈M .

A protocol is a collectionR of replicas.
We require that a send(m) event is enabled in state σ if and only

if σ = (q,m) for m 6=⊥, and in this case ∆((q,m), send(m)) =
(q′,⊥) for some q′. We further require that a replica can execute
any operation with its return values computed deterministically: for
any operation op ∈ Op, exactly one do(op, v) event is enabled in
σ. We also require that a replica can accept any message: for any
message m, receive(m) is enabled in σ. We assume that messages
are unique and that a message’s sender is uniquely identifiable (e.g.,
messages are tagged with the sender id and a sequence number).
We also assume that a replica broadcasts messages to all replicas,
including itself2; replicas can implement point-to-point communi-
cation by ignoring messages for which they are not the intended
recipient.
Executions. An execution of a protocol R is a (possibly infinite)
sequence of events occurring at the replicas in R.3 For each event
e, we let repl(e) ∈ R be the replica at which it occurs, and for
each do event e = do(op, v) we let op(e) = op and rval(e) =
v. A (finite or infinite) sequence of events e1, e2, . . . occurring at
a replica R = (Q,M,Σ, σ0, E,∆) is well-formed if there is a
sequence of states σ1, σ2, . . . such that σi = ∆(σi−1, ei) for all i.
If the sequence is of length n, we refer to σn as the state of R at
the end of the sequence.

We consider only well-formed executions, in which for every
replicaR ∈ R: (1) the subsequence of events atR, denoted α|R, is
well-formed; and (2) every receive(m) event at R is preceded by a
send(m) event in α.

Let α be an execution. Event e ∈ α happens before event

e′ ∈ α [14] (written e
hb(α)−−−→ e′, or simply e hb−→ e′ if the con-

text is clear) if one of the following conditions holds: (1) Thread of
execution: repl(e) = repl(e′) and e precedes e′ in α. (2) Message
delivery: e = send(m) and e′ = receive(m). (3) Transitivity:

There is an event f ∈ α such that e hb−→ f and f hb−→ e′.
2The latter is used to support atomic broadcast [9], defined later.
3Formally, an execution consists of events instrumented with
unique event ids and replicas. In the paper we do not use this more
accurate formulation so as to avoid clutter.



Network model. To ensure that every operation eventually propa-
gates to all the replicas, we require that the network does not remain
partitioned indefinitely. A replicaR has a message pending in event
e of execution α if R’s has a send(m) event enabled in the state at
the end of α′|R, where α′ is the prefix of α ending with e.

DEFINITION 1. The network is sufficiently connected in an in-
finite well-formed execution α of a protocolR if the following con-
ditions hold for all replicas R ∈ R: (1) Eventual transmission: if
R has a message pending infinitely often in α, then R also sends a
message infinitely often in α, and (2) Eventual delivery: if R sends
a message m, then every replica R′ 6= R eventually receives m.

Collaborative editing protocols generally assume causal message
delivery [23,26]. We model this by considering only executions that
satisfy causal broadcast [5]:

DEFINITION 2. An execution α of a protocolR satisfies causal
broadcast if for any messages m,m′, whenever send(m)

hb−→
send(m′), any replica R can receive m′ only after it receives m.

In fact, our results hold even under a more powerful atomic broad-
cast [9] model, which delivers all messages to all replicas in the
exact same order.

DEFINITION 3. An execution α of protocol R satisfies causal
atomic broadcast if the following conditions hold: (1) Causal broad-
cast: α satisfies causal broadcast. (2) No duplicate delivery: each
send(m) event in α is followed by at most one receive(m) event
per replica R′ ∈ R. (3) Consistent order: if R receives m before
m′, then any other replica R′ receives m before m′.

These broadcast primitives can be implemented when not pro-
vided by the network [5]; by providing them “for free,” we
strengthen our lower bounds and ensure their independence from
the complexity of implementing the broadcast primitive.

3. COLLABORATIVE TEXT EDITING
Following Ellis and Gibbs [12], we model the collaborative text

editing problem (henceforth, simply collaborative editing) as the
problem of implementing a highly available replicated list object
whose elements are from some universe U . Users can insert ele-
ments, remove elements and read the list using the following oper-
ations, which form Op:

• ins(a, k) for a ∈ U and k ∈ N: inserts a at position k in the list
(starting from 0) and returns the updated list. For k exceeding
the list size, we assume an insertion at the end. We assume that
users pass identifiers a that are globally unique.

• del(a) for a ∈ U : deletes the element a and returns the updated
list. We assume that users pass only identifiers a that appear in
the return value of the preceding operation on the same replica.

• read: returns the contents of the list.

The definition above restricts user behavior to simplify our tech-
nical development. Note that these restrictions are insignificant
from a practical viewpoint, because they can be easily enforced:
(1) identifiers can be made unique by attaching replica identifiers
and sequence numbers; and (2) before each deletion, we can read
the state of the list and skip the deletion if the deleted element does
not appear in it.

3.1 Preliminaries: Replicated Data Types
We cannot specify the list object with a standard sequential spec-

ification, since replicas may observe only subsets of operations ex-
ecuted in the system, as a result of remote updates being delayed by
the network. We address this difficulty by specifying the response
of a list operation based on operations that are visible to it. Intu-
itively, these are the prior operations executed at the same replica
and remote operations whose effects have propagated to the replica
through the network. Formally, we use a variant of a framework by
Burckhardt et al. [4] for specifying replicated data types [25]. We
specify the list object by a set of abstract executions, which record
the operations performed by users (represented by do events) and
visibility relationships between them. Since collaborative editing
systems generally preserve causality between operations [26], here
we consider only causal abstract executions, where the visibility
relation is transitive.

DEFINITION 4. A causal abstract execution is a pair (H, vis),
whereH is a sequence of do events4, and vis ⊆ H×H is an acyclic
visibility relation (with (e1, e2) ∈ vis denoted by e1

vis−→ e2) such
that: (1) if e1 precedes e2 in H and repl(e1) = repl(e2), then

e1
vis−→ e2; (2) if e1

vis−→ e2, then e1 precedes e2 in H; and (3) vis
is transitive (if e1

vis−→ e2 and e2
vis−→ e3, then e1

vis−→ e3).

Figure 1 graphically depicts abstract executions, where vis is the
transitive closure of arrows in the figure andH is the result of some
topological sort of vis. An abstract execution A′ = (H ′, vis′) is a
prefix of abstract execution A if: (1) H ′ is a prefix of H; and (2)
vis′ = vis ∩ (H ′ × H ′). A specification of an object is a prefix-
closed set of abstract executions. A protocol correctly implements
a specification when the outcomes of operations that it produces in
any (concrete) execution can be justified by some abstract execu-
tion allowed by the specification.

DEFINITION 5. An execution α of a protocol R complies with
an abstract execution A = (H, vis) if for every replica R ∈ R,
H|R = α|doR , where α|doR denotes the subsequence of do events by
replica R in α.

DEFINITION 6. A protocolR satisfies a specification S if every
execution α ofR complies with some abstract execution A ∈ S.

3.2 Specifying the List Object
We present two list specifications: strong and weak. Concep-

tually, the strong specification ensures that orderings relative to
deleted elements hold even after the deletion, thereby disallowing
the response ba for the read in Figure 1(b). The weak specifica-
tion does not guarantee this property, allowing both ba and ab as
responses.

We denote by elems(A) the set of all elements inserted into the
list in an abstract execution A = (H, vis):

elems(A) = {a | do(ins(a, _), _) ∈ H}.

Recall that we assume all inserted elements to be unique, and so
there is a one-to-one correspondence between inserted elements
and insert operations. For brevity, we write e1 ≤vis e2 for e1 =

e2 ∨ e1
vis−→ e2.

DEFINITION 7. An abstract execution A = (H, vis) belongs to
the strong list specification Astrong if and only if there is a relation
lo ⊆ elems(A)× elems(A), called the list order, such that:
4Formally,H consists of do events instrumented with unique event
ids and replicas, as in the case of an execution α. To avoid clutter,
we do not use this more accurate presentation.



1. Each event e = do(op, w) ∈ H returns a sequence of elements
w = a0 . . . an−1, where ai ∈ elems(A), such that

(a) w contains exactly the elements visible to e that have been
inserted, but not deleted:

∀a. a ∈ w ⇐⇒ (do(ins(a, _), _) ≤vis e) ∧
¬(do(del(a), _) ≤vis e).

(b) The order of the elements is consistent with the list order:
∀i, j. (i < j) =⇒ (ai, aj) ∈ lo.

(c) Elements are inserted at the specified position: if op =
ins(a, k), then a = amin{k,n−1}.

2. The list order lo is transitive, irreflexive and total, and thus de-
termines the order of all insert operations in the execution.

x

&&
a

88

boo

For example, the strong list spec-
ification is satisfied by the abstract
execution in Figure 1(a) and the one
in Figure 1(b) with the read return-
ing ab; this is justified by the list order a → x → b. On the
other hand, the specification is not satisfied by the execution in
Figure 1(b) with the read returning ba: for the outcomes of op-
erations in this execution to be consistent with item 1 of Defini-
tion 7, the list order would have to be as shown above; but this
order contains a cycle, contradicting item 2. In Section 4 we prove
that the strong specification is implemented by an existing proto-
col, RGA [23]. However, some protocols, such as Jupiter [19], pro-
vide weaker guarantees and, in particular, allow the outcome ba in
Figure 1(b). We therefore introduce the following weak list speci-
fication, to which our lower bound result applies (Section 6)5.

DEFINITION 8. An abstract execution A = (H, vis) belongs to
the weak list specificationAweak if and only if there exists a relation
lo ⊆ elems(A)× elems(A) such that:

1. Condition 1 in Definition 7 is satisfied.

2. lo is irreflexive and, for all events e = do(op, w) ∈ H , it is
transitive and total on {a | a ∈ w}.

Unlike the strong specification, the weak one allows the list or-
der lo to have cycles; the order is required to be acyclic only on the
elements returned by some operation. In particular, the weak speci-
fication allows the execution in Figure 1(b) with the read returning
ba, which is justified using the above cyclic list order. Since at the
time of the read, x is deleted from the list, the specification permits
us to decide how to order a and b without taking into account the
orderings involving x: a→ x and x→ b.
Eventual consistency. A desirable property of highly available
replicated objects is eventual consistency. Informally, this guaran-
tees that, if users stop issuing update requests, then the replicas will
eventually converge to the same state [28, 29]. Our specifications
imply a related convergence property: in an abstract execution sat-
isfyingAstrong orAweak, two read operations that see the same sets
of list updates return the same response. This is because such oper-
ations will return the same elements (Definition 7, item 1a) and in
the same order (Definition 7, item 1b). From the convergence prop-
erty we can establish that our specifications imply eventual consis-
tency for a class of protocols that guarantee the following property
of eventual visibility.

DEFINITION 9. An abstract execution A = (H, vis) satisfies
eventual visibility if for every event e ∈ H , there are only finitely
many events e′ ∈ H such that ¬(e

vis−→ e′).
5We conjecture that Jupiter satisfies the weak specification.

DEFINITION 10. A protocol R satisfying the weak (resp.,
strong) list specification guarantees eventual visibility if every ex-
ecution α of R complies with some abstract execution A ∈ Aweak

(respectively, A ∈ Astrong) that satisfies eventual visibility.

Informally, eventual consistency holds for a protocol guarantee-
ing eventual visibility because: in an abstract execution with finitely
many list updates, eventual visibility ensures that all but finitely
many reads will see all the updates; then convergence ensures that
they will return the same list. To guarantee eventual visibility, a
protocol would rely on the network being sufficiently connected
(Definition 1).

3.3 Metadata Overhead
In addition to the user-observable list contents, the replica state

in a list protocol typically contains user-unobservable metadata that
is used internally to provide correct behavior. The metadata over-
head is the proportion of metadata relative to the user-observable
list content.

Formally, let the size of an internal replica state q or a list
w ∈ U∗ be the number of bits required to represent it in a stan-
dard encoding; we denote the size of x by |x|. The metadata over-
head [4] of a state σ = (q,m) is |q|/|w| for the unique w such that
do(read, w) is enabled in σ; here w represents the user-observable
contents of σ. Note that the contents of the send buffer is not part
of the metadata.

DEFINITION 11 ([4]). The worst-case metadata overhead of
a protocol over a given subset of its executions is the largest meta-
data overhead of the state of any replica in any of these executions.

4. AN IMPLEMENTATION OF THE
STRONG LIST SPECIFICATION

We now present an implementation of the list object, which is
a reformulation of the RGA (Replicated Growable Array) proto-
col [23], and prove that it implements the strong list specification.

4.1 Timestamped Insertion Trees
Our representation of the list at a replica uses a timestamped in-

sertion (TI) tree data structure. It stores both the list content and
timestamp metadata used for deterministically resolving the order
between elements concurrently inserted at the same position.

Formally, a tree is a finite set N of nodes, each corresponding to
an element inserted into the list. A node is a tuple n = (a, t, p),
where a ∈ U is the element, t ∈ C is a timestamp for the insertion,
and p ∈ (C∪{◦}) is either the parent node (identified by its times-
tamp) or the symbol ◦ representing the tree root. We define the set
C of timestamps and a total order on them later (Section 4.2). For a
node n = (a, t, p) we let n.a = a, n.t = t, and n.p = p. For two
nodes n, n′ with n′.p = n.t, we say n is the parent of n′ and write
n

pa−→ n′.

DEFINITION 12. A set of nodes N is a TI tree if (1) timestamps
uniquely identify nodes: ∀n, n′ ∈ N : n.t = n′.t =⇒ n = n′;
(2) all parents are present: if n ∈ N and n.p 6= ◦, then n′

pa−→ n
for some n′ ∈ N ; and (3) parents are older than their children:
n

pa−→ n′ =⇒ n.t < n′.t.

Figure 2 shows an example of a TI tree and illustrates the read and
insert operations explained below.
Read. To read the list, we traverse the treeN by depth-first search,
starting at the root. We assemble the visited elements into a se-
quence s(N) using prefix order (the parent precedes its children)
and visit the children in decreasing timestamp order.



(a,t3)
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(x,t1)

s(N1) = a x c

(c,t2)

N1= {(x,t1,o),(c,t2,x),(a,t3,o)}  

(a,t3)
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(b,t4)

s(N2) = a x b c
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N2=N1 ∪ {(b,t4,x)}  

ins(b,2)

Figure 2: Illustration of TI trees. Each box shows a tree, with the
set of nodes that define it, its graphical representation, and the se-
quence of elements it denotes. The tree on the right results from
an insert operation for element b at position 2. The order on the
timestamps is t1 < t2 < t3 < t4.

Insert. To insert a new element a at position k into the list, let
s(N) = a0 . . . an−1 and pick a new timestamp t that is larger than
any of the timestamps appearing in N . Then let p be the element to
the left of the insertion position: p = ak−1 (if k > 0) or p = ◦ (if
k = 0). We now add a new node (a, t, p) to N . Note that a newly
inserted node is the child of the immediately preceding element
with the highest timestamp. Thus, it is visited immediately after
that element during a read, which makes it appear at the correct
position in the list.

4.2 The RGA Protocol
We now define the RGA protocol Rnrga for n replicas. Each

replica stores a TI tree, as well as a set of elements that repre-
sent tombstones, used to handle deletions (Section 1). Insertions
and deletions are recorded in a send buffer, which is periodically
transmitted to other replicas by causal broadcast.
State and messages. Timestamps are pairs (x, i), where x ∈ N
and i ∈ {1, . . . , n} is a replica identifier. They are ordered lexico-
graphically:

(x, i) < (x′, i′) ⇐⇒ (x < x′) ∨ ((x = x′) ∧ (i < i′)).

Messages are of the form (A,K), where A is a set of nodes (repre-
senting insert operations) and K is a set of elements (representing
delete operations), and either A or K is non-empty. The state of a
replica is (N,T, (A,K)), where: N is a TI tree, representing the
replica-local view of the list; T ⊆ U is the set of tombstones; and
(A,K) is a send buffer, containing the message to send next. A pair
(∅, ∅) indicates that no message is pending (thus corresponding to
⊥ in Section 2). The initial state is (∅, ∅, (∅, ∅)).
do transitions. To execute an insert operation at a replica i
in a state (N,T, (A,K)), we construct a node as described
in the “Insert” procedure of Section 4.1 and add it to both
N and A. As the timestamp of the node we take ((1 +
(the largest timestamp in N)), i), or (1, i) if N = ∅. This times-
tamp is guaranteed to be globally unique. To execute a delete oper-
ation, we add the deleted element to both T and K. All operations
return the local view of the list, which is obtained by traversing
N as described in the “Read” procedure of Section 4.1, and then
removing all elements belonging to T .
send transition is enabled whenever either A or K is nonempty.
It sends (A,K) as the message and sets both A and K to empty.
receive transition for a message (Am,Km) adds Am to N and
Km to T . The protocol relies on causal delivery of messages, which
ensures that no parents can be missing from N . In particular, N
stays well-formed after adding Am.

send

R1 R2 R3

do ins(x,0)

N={(x,t1,o)}

N={(x,t1,o)}N={(x,t1,o)}
do del(x)

do ins(b,1)
N={(x,t1,o),(b,t2,x)}N={(x,t1,o),(a,t3,o)}

do ins(a,0)

N={(x,t1,o),(b,t2,x),(a,t3,o)}
T={x}  
s(N)= a x b

sendreceive

send receive
receive

receive

do rd() returns “a b”

N={(x,t1,o)}
T={x} 

Figure 3: Illustration of an RGA execution, with time proceeding
from top to bottom. Bullets show the transitions of the replicas
R1, R2, andR3, and in some places we indicate the current state of
the tree N and the tombstone set T . The order on the timestamps
is t1 < t2 < t3.

We show an example execution in Figure 3, which matches the
example in Figure 1(b) and complies with the strong list specifica-
tion.

4.3 Guarantees
The following theorems state the correctness and asymptotic

complexity bounds of RGA. We provide full proofs in Appendix A
and discuss the key insights (convergence and stability) below.

THEOREM 1. The protocol Rnrga satisfies the strong list speci-
fication.

THEOREM 2. The worst-case metadata overhead ofRnrga over
executions with k operations and D deletions is O(D lg k).

Convergence. Each replica maintains a TI tree that grows over
time, meaning that nodes are added to the set, but never modified or
removed. Because set union is associative and commutative, the or-
der in which nodes are added does not matter. For example, chang-
ing the order of message delivery toR2 in Figure 3 does not change
the final tree. As a consequence, if the same set of nodes is deliv-
ered to any two replicas in any order, their trees are guaranteed to
match, which ensures convergence.
Stability. The following lemma (proved in Appendix A) shows
that when we add more elements to a TI tree, the order of existing
elements remains stable. This implies the strong list specification,
because all replicas order all insertions the same way at all times.

LEMMA 3. Let A,B be two TI trees such that A ⊆ B. Then
s(A) is a subsequence of s(B).

Trees vs. Lists. In the standard RGA implementation [24], TI trees
are represented as lists (corresponding to the tree traversal). We
show in Appendix A.1 that these representations are functionally
equivalent. Lists are convenient to implement, but offer little insight
as to why the algorithm guarantees convergence. Not surprisingly,
the reason why RGA actually works has been a bit of a mystery,
and we are not aware of any prior correctness proofs.

5. PUSH-BASED PROTOCOLS
Our lower bound results hold for push-based protocols, a class of

protocols that contains the protocols of several collaborative editing



systems [19, 21, 23, 26], including the RGA protocol of Section 4.
Informally, a replica in a push-based protocol propagates list up-
dates to its peers as soon as possible and merges remote updates
into its state as soon as they arrive (as opposed to using a more so-
phisticated mechanism, such as a consensus protocol). We define
this class of protocols assuming that the network provides causal
broadcast; when this is not the case, a protocol may need to delay
merging arriving updates to enforce casuality. Formally, we require
that in a push-based protocol, every operation observe all opera-
tions that happen before it, that list insertions always generate a
message, and that a deletion—which, unlike an insertion, may not
be unique—generates a message if it does not already observe an-
other deletion of the same element.

DEFINITION 13. A protocolR satisfying the weak (strong) list
specification is push-based if the following hold:

• For any execution α ofR and e = do(ins(a, _), _) ∈ α, replica
repl(e) has a message pending after e.

• For any execution α of R and e = do(del(a), _) ∈ α, if there
does not exist event e′ = do(del(a), _) ∈ α that happens before
e, then replica repl(e) has a message pending after e.

• For every execution α of R there exists an abstract execution
A = (H, vis) ∈ Aweak (A ∈ Astrong) that α complies with, such

that ∀e′, e ∈ H. e′ vis−→ e ⇐⇒ e′
hb−→ e.

The class of push-based protocols contains both op-based proto-
cols [4], in which a message carries a description of the latest opera-
tions that the sender has performed (e.g., RGA), and state-based [4]
protocols, in which a message describes all operations the sender
knows about (i.e., its state). We also show (Appendix B) that the
class of push-based protocols contains eventually consistent write-
propagating protocols [2]—which model many deployed highly
available eventually consistent protocols [3,4,8,10,11,17,25,33]—
under the natural assumption that sending a message does not affect
the state of the list at the sending replica.

6. LOWER BOUNDS ON METADATA
OVERHEAD

Here we show a lower bound on the worst-case metadata over-
head (Definition 11) of a push-based protocol satisfying the weak
or strong list specification.

THEOREM 4. LetR be a push-based protocol that satisfies the
weak or strong list specification for n ≥ 3 replicas. Then the worst-
case metadata overhead of R over executions with D deletions
is Ω(D).

This follows from the following theorem, because any execution
consistent with the strong list specification is also consistent with
the weak one.

THEOREM 5. LetR be a push-based protocol that satisfies the
weak list specification for n ≥ 3 replicas. Then for every integer
D ≥ 4, there exists an execution αD of R with D deletions such
that: (1) the metadata overhead of some state σ of some replica R
in αD is Ω(D); (2) αD satisfies causal atomic broadcast; and (3)
R does not receive any message before σ in αD .

PROOF. Let d = b(D−2)/2c. We show that there exists an ex-
ecution ofR with D deletions that satisfies the desired conditions,
in which the user-observable contents of some internal state is a list

with a single element, and yet the size of this state is at least d bits.
It follows that the metadata overhead of this state is Ω(D).

We show the existence of this execution using an information-
theoretic argument. Namely, for every d-bit string w we con-
struct an execution αw that satisfies causal atomic broadcast and in
which: (1) replica R1 performs D deletions and receives no mes-
sages; (2) at the end of αw, the user-observable list at R1 contains
the single element “∗” and R1 has no messages pending; and yet
(3) we can decode w given only σw, the state of R1 at the end of
αw (this decoding process exercises the protocolR in a black-box
manner). Hence, all states σw must be distinct. Since there are 2d

of them, one of these states σw0 must take at least d bits. Since this
state has no messages pending, its metadata overhead is Ω(D), and
thus, αw0 is the desired execution.
Encoding w. Given a d-bit string w = w1 . . . wd, we construct
an execution αw of R that builds a list encoding the path from
the root of a binary tree of height d to the w-th leaf (when w is
interpreted as the binary representation of an integer). Figure 4(a)
details the construction: it shows pseudocode which, as it executes,
constructs the execution; instructions of the form ei correspond to
a state transition e at replica Ri. We abuse notation by writing op
instead of do(op, _), by specifying inserts of whole strings instead
of element by element, and by specifying positions relative to prior
insertions rather than with integers. Figure 5(a) depicts αw forw =
10.

Only replica R1 participates in the encoding execution αw. We
start by inserting the string [0 ]0 (i.e., the root). BecauseR is a push-
based protocol, R1 has a message m1 pending following these in-
sertions. We then proceed with a series of steps, for i = 1, . . . , d.
Each step i begins with R1 in state σi having a message mi pend-
ing. R1 first broadcasts mi. We then insert the string [i ]i immedi-
ately to the left or to the right of [i−1 ]i−1, depending on whether
the i-th bit ofw is set. BecauseR is a push-based protocol,R1 has a
message pending following these insertions, and we proceed to step
i+1. When we are done, we broadcast the current pending message
and insert the element ∗ between [d and ]d, and broadcast the mes-
sage md+2 that is pending following this insertion. For example, if
w = 10, the state of the list atR1 at this point is [0 ]0 [2 ∗ ]2 [1 ]1. We
then delete all the [i and ]i elements, for i = 0, . . . , d, and if D is
odd, we insert and delete an additional element, so that the number
of deletions in αw is exactly D. Because R is a push-based pro-
tocol, R1 has a message pending following these deletions, which
we broadcast to empty R1’s send buffer. Finally, we read the list
at R1, observing that it is ∗. This follows because for any abstract
execution A = (H, vis) that the encoding execution αw complies
with, all ins and del events are visible to the read, due to Condition
(1) of Definition 4. The read’s response must thus be ∗, since by
assumption one of such executions A is consistent with the weak
list specification.

The output of the encoding procedure is σw, the state of R1 at
the end of the encoding execution αw. It is easy to check that αw
is well-formed; furthermore, it vacuously satisfies causal atomic
broadcast.
Decoding w from σw. We reconstruct w one bit at a time by “re-
playing” the execution αw. To replay iteration i of αw, we rely on
a procedure Recover() that recovers wi from σw and m1, . . . ,mi.
(We describe Recover() in the next paragraph; for now, assume it is
an oracle.) Knowing wi, in turn, determines the next event ofR1 in
αw, and hence provides us with mi+1. The decoding process thus
only uses messages from R1 that it reconstructs with the bits of
w already known. Figure 4(b) shows the pseudocode which, as it
executes, decodes w. We start with R1 in its initial state and recon-



Input: w = w1, . . . , wd
// R1 starts in its initial state σ0.
ins1([0 ]0, 0)
for i = 1, . . . , d

// The state of R1 here is σi.
send1(mi)
if wi = 1 then
ins1([i ]i just after ]i−1)

else
ins1([i ]i just before [i−1)

// The state of R1 here is σi+1.
send1(md+1)
ins1(∗ between [d and ]d)
send1(md+2)
for i = 0, . . . , d
del1([i)
del1(]i)

if D = 2(d+ 1) + 1 then
ins1(b, 0)
del1(b)

send1(md+3)
read1 = ∗
// The state of R1 here is σw .

(a) Execution αw, at the end of which the
state of R1 encodes w

Input: σw
// R1 starts in its initial state σ0,
// which does not depend on w.
ins1([0 ]0, 0)
for i = 1, . . . , d

// We now know σi,
// so can generate mi.
send1(mi)
wi ← Recover(σw,m1, . . . ,mi)
if wi = 1 then
ins1([i ]i just after ]i−1)

else
ins1([i ]i just before [i−1)

// We now know σi+1.
output w

(b) Decoding w given σw

Input: σw,m1, . . . ,mi
// We perform the state transitions
// below on copies of the state
// machines, with R2 starting in its
// initial state and R1 in state σw .
// The replica state in the outer
// decoding procedure is unaffected .
for j = 1, . . . , i
receive2(mj)
receive1(mj)

read2 = . . . [i−1 ]i−1 . . .
ins2(x between [i−1 and ]i−1)
send2(mx)
receive2(mx)
receive1(mx)
if read1 = x ∗

return 1
else // read1 = ∗x

return 0

(c) Recover(σw,m1, . . . ,mi)

Figure 4: Encoding and decoding procedures. Events are subscripted with the id of their replica.

struct m1, which does not depend on w. We then proceed in steps,
for i = 1, . . . , d. In step iwe knowm1, . . . ,mi, and we recover bit
wi from σw and m1, . . . ,mi. Having recovered wi, we replay the
insertion thatR1 performs at step i of the encoding and reconstruct
mi+1.
Recovering wi from σw and m1, . . . ,mi. The Recover() proce-
dure determines wi by performing state transitions on fresh copies
of R1 and R2; the transitions that an execution of Recover() per-
forms have no effect on the state of the replicas in the “replayed”
execution constructed by the decoding process, or on other Re-
cover() executions. Figure 4(c) shows these state transitions, and
Figures 5(b)–5(c) illustrate the overall decoding ofw = 10 (the use
of the replicaR3 is explained below). We start off withR2 in its ini-
tial state and R1 in state σw. We deliver the messages m1, . . . ,mi

to both replicas in the same order. We then read at R2 and receive
response viw; we will show that [i−1 ]i−1 ∈ viw. Next, R2 inserts
element x between [i−1 and ]i−1 and broadcasts a message mx,
which we deliver to both replicas. Finally, we read at R1 and ob-
serve the list in state yiw. We will show that yiw contains only x and
∗, and if x precedes ∗ then wi = 1; otherwise, wi = 0.
Validity of Recover(σw,m1, . . . ,mi) state transitions. Assum-
ing that m1, . . . ,mi are the first i messages sent by R1 in αw,
we show that the state transitions performed by an execution of
Recover(σw,m1, . . . ,mi) in Figure 4(c) occur in an extension βiw
of αw of the form:

βiw =αw

receive2(m1) receive1(m1) . . . receive2(mi) receive1(mi)

do2(read2, v
i
w) do2(ins2(x, kiw), _) send2(mx)

receive2(mx) receive1(mx) do1(read1, y
i
w),

where kiw is the position at which R2 inserts x into the list. In
the following, we prove that the execution βiw is well-formed
(Claim 6), that it satisfies causal atomic broadcast (Claim 7), that
[i−1 ]i−1 ∈ viw (Claim 8), and that yiw = x ∗ or yiw = ∗x

(Claim 9). To this end, we exploit the fact that σw is R1’s state
at the end of αw, which allows Recover() to perform the same state
transitions at R1 that occur in βiw, without having access to the
entire execution αw that leads R1 to state σw.

CLAIM 6. Execution βiw is well-formed.

PROOF. By assumption, Recover() is passed the first imessages
sent by R1 in αw. The claim thus follows from the following: (1)
αw is well-formed; (2) at the end of αw, R1 is in state σw; (3)
because R2 does not participate in αw, the state ofR2 at the end of
αw is its initial state; (4) a replica always accepts any sent message
(by definition); and (5) R is push-based, and so R2 has a message
pending following its ins operation.

CLAIM 7. Execution βiw satisfies causal atomic broadcast.

PROOF. Immediate from inspection of the message delivery or-
der in βiw.

CLAIM 8. [i−1 ]i−1 ∈ viw.

PROOF. For j = 1, . . . , d+ 1, let ej , fj ∈ αw be the do events
in which R1 inserts [j−1 and ]j−1 into the list. Let r ∈ βiw be the
do event at which R2 reads viw. BecauseR is a correct push-based
protocol and βiw satisfies causal atomic broadcast, by Definition 13,
βiw complies with some abstract execution A = (H, vis) ∈ Aweak

such that ej
vis−→ r and fj

vis−→ r if and only if j ≤ i, and
no del operation is visible to r. This holds because in βiw, R2

receives only the messages m1, . . . ,mi before r, and each mj

is the first message sent by R1 after ej and fj . It thus follows
from the definition of the weak list specification (Definition 8) that
viw = . . . [i−1 ]i−1 . . . .

CLAIM 9. yiw = x ∗ or yiw = ∗x.

PROOF. Let f ∈ βiw be the do event at which R2 inserts x into
the list, and r ∈ βiw be the do event at whichR1 reads yiw. Because
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(b) Decoding w1 = 1 given σw and m1. (We do
not show replicas receiving their own messages.)
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(c) Decoding w2 = 0 given σw, m1 and
m2. (We do not show replicas receiving their
own messages.)

Figure 5: Examples of the encoding and decoding procedures from Theorem 5 applied to w = 10. Figure 5(a) shows the execution αw
constructed by the encoding procedure, whose output is σw, the state of R1 at the end of αw. Figure 5(b) shows the first step of decoding
w from σw. The decoding procedure performs the state transitions of the events at R1 that are outside of the dashed rectangle and of the
events at R2; these transitions are valid because they occur in the depicted execution, in which the events inside the dashed rectangle lead
R1 to state σw. The relative order of x and ∗ read at R1 therefore recovers bit w1 = 1. Figure 5(c) shows the second step of decoding w:
Recovering w1 = 1 allows the decoding procedure to perform the state transitions by R1 in αw that depend on w1.

R is a correct push-based protocol, βiw compiles with some abstract
execution A = (H, vis) ∈ Aweak such that f vis−→ r. Now, let e ∈
βiw be the do event at whichR1 inserts ∗ into the list. Then e vis−→ r
by definition of an abstract execution (Definition 4). Because all
other elements inserted in βiw are deleted byR1 before r, but x and
∗ are not deleted in βiw, the claim follows.

Correctness of recovering wi. Having shown that the state transi-
tions performed by Recover() yield the lists yiw = x ∗ or yiw = ∗x,
it remains to show that we correctly recover wi from yiw: (yiw =
x ∗) ⇐⇒ (wi = 1).

In principle, the weak list specification allows R1’s read to order
x and ∗ arbitrarily, since [i−1 and ]i−1 are deleted from the list
by the time the read occurs. We show, however, that R1 cannot do
this, because it cannot rule out the possibility that another replica
has already observed [i−1 x ]i−1 and ∗ together, and therefore their
order is fixed. Consider the following extension of βiw, in whichR3

receives the messages generated after each insertion and then reads
the list (it is easy to see that this execution satisfies causal atomic
broadcast):

γiw = βiw receive3(m1) . . . receive3(mi) receive3(mx)

receive3(mi+1) . . . receive3(md+2) do3(read3, z
i
w).

We show that the list ziw contains ∗ after x if and only wi = 1. In-
formally, this follows because every element inserted from iteration
i onwards in the encoding procedure (and hence in γiw), including
∗, goes after ]i−1 if and only ifwi = 1, and no del events are visible
to R3, so its read response must order x before ]i−1 before ∗.

Formally, consider the following events in γiw: w∗, the ins of ∗
by R1; wx, the ins of x by R2; and rz , the read by R3, whose
response is ziw. Because R is a correct push-based protocol and
γiw satisfies causal broadcast, by Definition 13, γiw complies with
some abstract execution A = (H, vis) ∈ Aweak such that for any

e, e′ ∈ H , e′ vis−→ e if and only if e′ hb−→ e. Therefore, no del event

is visible to w∗, wx or rz . Let lo be a list order that A is consistent
with (Definition 8). We proceed to show that (x, ∗) ∈ lo if and only
if wi = 1. Observe that if wi = 1, every element inserted from
iteration i onwards of the encoding process is inserted after ]i−1,
and if wi = 0, every element inserted from iteration i onwards is
inserted before [i−1. Therefore, the response of w∗ establishes that
(]i−1, ∗) ∈ lo if and only ifwi = 1. The response ofwx establishes
that ([i−1, x) ∈ lo and (x, ]i−1) ∈ lo. It follows that (x, ∗) ∈ lo if
and only if wi = 1, since [i−1, x, ]i−1, ∗ ∈ ziw and lo is total and
transitive on {a | a ∈ rval(rz) = ziw}.

We conclude by noting that yiw = x ∗ or yiw = ∗x (Claim 9);
recall that yiw is the response to the read at R1 performed by Re-
cover(). Since (x, ∗) ∈ lo if and only if wi = 1, then yiw = x ∗ if
and only if wi = 1.

6.1 Extension to a Client/Server Model
In a client/server protocol, replicas communicate only with a

central server and not directly with each other. (The motivation is
to maintain state on the server instead of on the replicas, and so
the server usually does more than merely relay messages between
replicas [19].) To model such protocols in our framework, which
assumes a broadcast transport, we require replicas to process only
messages to/from the server:

DEFINITION 14. A protocol R = {R1, . . . , Rn, S} is a clien-
t/server protocol if for every replica Ri = (Qi,M,Σi, σi0, E,∆

i),
and σ ∈ Σi, if ∆i(σ, receive(m)) 6= σ, then m was sent by S. We
call S the server.

In practice, users do not interact directly with the server, and so
we consider only executions in which do events do not occur at the
server.

Assuming atomic broadcast, a broadcast protocol can simulate a
client/server protocol using state machine replication [14].

PROPOSITION 10. Let R = {R1, . . . , Rn, S} be a clien-
t/server protocol. Then there exists a protocolR′ = {R′1, . . . , R′n}



State Event e New state
((r, s),m) do(op, v) ((r′, s),m′), where

(r′,m′) = ∆i((r,m), e)
((r, s),m) send(m) ((r′, s),⊥), where

(r′,⊥) = ∆i((r,m), e)
((r, s),m) receive(m) ((r′, s′),m′), where if

∆S((s,⊥), e) = (s∗,⊥), then
s′ = s∗ and (r′,m′) = (r,m) =
∆i((r,m), receive(m)); and if
∆S((s,⊥), e) = (s∗,m∗), then
(s′,⊥) = ∆S((s∗,m∗), send(m∗)),
(r′,m′) = ∆i((r̂, m̂), receive(m∗)),
where (r̂, m̂) = (r,m) =
∆i((r,m), receive(m))

Figure 6: State machine of replica R′i ∈ R′ simulating replica
Ri = (Qi,M,Σi, σi0, E,Σ

i) ∈ R. The initial internal state is
(qi0, q

S
0 ), where qi0 and qS0 are the initial internal states ofRi and of

S, respectively.

that simulatesR in the following sense: (1) for any execution α′ of
R′ that satisfies causal atomic broadcast, there exists an execution
α ofR such that α|doRi

= α′|doR′
i

for i = 1..n; (2) the set of internal

states of each R′i is Qi × QS , where Qi and QS are respective
sets of Ri and S; and (3) until R′i receives a message, its state is(
_, qS0

)
, where (qS0 ,⊥) is the initial state of S.

PROOF. For 1 = 1..n, replica R′i ∈ R′ maintains two state ma-
chines, of Ri and of S. R′i broadcasts exactly the messages broad-
cast by the replicaRi it is simulating. We use the fact that messages
are delivered to all replicas inR′ in the same order to simulate the
server S using state machine replication.

Figure 6 shows the state machine of replica R′i ∈ R′. Upon a
do event, R′i performs the corresponding transition on Ri’s state
machine and broadcasts any message m′ that Ri would send to S.
Upon receiving a message m, R′i delivers m to the two state ma-
chines it maintains. (However, becausem corresponds to a message
sent by someRj , theRi state machine ignores it, by Definition 14.)
If, as a result of receiving m, S broadcasts a message m∗, then
R′i (locally) delivers m∗ to Ri’s state machine and broadcasts any
message m′ that Ri sends as a result of receiving m∗.

In any execution α′ ofR′ that satisfies causal atomic broadcast,
all messages are delivered to all replicas in the same order. There-
fore, each replica R′i performs the same state transitions at S, and
(locally) delivers the same messages from S to itsRi state machine.
The claim follows.

Client/server lower bound. Since the executions constructed in
the proof of Theorem 5 satisfy causal atomic broadcast, they can
also be viewed as executions of a protocol simulating a push-based
client/server protocol (Proposition 10). We therefore obtain

COROLLARY 11. LetR be a push-based client/server protocol
that satisfies the weak or strong list specification for n ≥ 3 repli-
cas. Then the worst-case metadata overhead of R on the clients
over executions with D deletions is Ω(D).

PROOF. Let R be a push-based client/server protocol that sat-
isfies the weak or strong list specification. Let R′ be the proto-
col simulating R from Proposition 10. Take D ≥ 4. By Theo-
rem 5, there exists an execution αD of R′ with D deletions such
that: (1) the metadata overhead of some state σ of some replica
R′ ∈ R′ is Ω(D); (2) αD satisfies causal atomic broadcast; and

(3) R′ does not receive any message before σ. Because R′ sim-
ulates R, we have that σ = ((qR, qS), _), where qR and qS

are, respectively, internal states of the replica R ∈ R that R′ is
simulating and of the server. Moreover, it follows from Proposi-
tion 10 that qS is the initial internal state of the server. Therefore,
|(qR, qS)| = O(|qR| + |qS |) = O(|qR|), because |qS | is a con-
stant. Since the user-observable content at R′ and R is the same, it
follows that the metadata overhead at R is Ω(D).

7. RELATED WORK
Previous attempts at specifying the behavior of replicated list ob-

jects [16, 27] have been informal and imprecise: they typically re-
quired the execution of an operation at a remote replica to preserve
the effect of the operation at its original replica, but they have not
formally defined the notions of the effect and its preservation.

Burckhardt et al. [4] have previously proposed a framework for
specifying replicated data types (on which we base our list spec-
ifications) and proved lower bounds on the metadata overhead of
several data types. In contrast to us, they handle much simpler data
types than a list. Thus, our specifications have to extend theirs with
an additional relation, defining the order of elements in the list.
Similarly, their proof strategy (and its extension in [2]) for estab-
lishing lower bounds would not be applicable to lists; obtaining a
lower bound in this case requires a more delicate decoding argu-
ment, recovering information incrementally.

There are more protocols implementing a highly available repli-
cated list than the RGA protocol we considered. Treedoc [21] and
Logoot [31] are other implementations of the strong list specifica-
tion using the approach of replicated data types [25]. As in RGA,
the state of a replica can be viewed as a tree, where a deterministic
traversal defines the order of the list. The replication protocol rep-
resents position of a node in the tree as a sequence of edge labels on
the path from the root of the tree (in RGA, it is a relative position
to an existing node). Like RGA, these protocols have worst-case
metadata overhead linear in the number of deletions. WOOT [20]
is a graph-based list implementation: its main component is a repre-
sentation of a partial list order, i.e., ordering restrictions inferred at
the time user performs operations. The total list order is computed
as a view of the graph based on a non-declarative specification of
intended ordering.

Another class of protocols is based on operational transforma-
tions (OT) [12], which apply certain transformation functions to
pairs of concurrent updates. If applying the transformation func-
tion allows commuting two operations (TP1) and three operations
(TP2) then OT ensures that the list state converges, regardless of
the order in which the operations are received [22]. However, it
was shown [13] that several OT protocols do not satisfy TP1 and
TP2 and do not converge. OT protocols store a log of updates at
each replica, so their metadata overhead is also at least linear in
the number of updates.

8. CONCLUSION
This paper provides a precise specification of the list replicated

object, which models the core functionality of collaborative text
editing systems. We define a strong list—and show that it is imple-
mented by an existing system [23]—as well as a weak list, which
we conjecture describes the behavior of the Jupiter protocol [19],
underlying public collaboration systems [30].

We prove a lower bound of Ω(D), where D is the number of
deletions, on the metadata overhead of push-based list protocols,
which model the implementation of all highly available list proto-
cols that we are aware of. Our lower bound applies for both weak



and strong semantics. Exploring client/server systems in future re-
search is therefore of practical interest, as some client/server sys-
tems do not implement the strong semantics, and our results suggest
that this might not offer a complexity advantage.

We also show a simple list protocol whose metadata overhead is
O(D lg k), where k is the number of operations. Closing the gap
between the upper and lower bound is left for future work, as is the
question of relaxing the restriction to push-based protocols.

Our work is a first step towards specifying and analyzing general
collaborative editing systems, providing more features than those
captured by the list object. This includes systems for sharing struc-
tured documents, such as XML [18]. While our lower bound would
hold for more general systems, it is possible that the additional fea-
tures induce additional complexity.
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APPENDIX
A. PROOFS FOR LIST IMPLEMENTA-

TION
Proof of Lemma 3.

This is easy to see for the special case where B = A ∪ (a, t, p):
since a has no children (because A,B are TI trees), the depth-first
traversal of B takes the same course as the one for A except for
visiting the node a and then immediately returning to its parent,
thus s(B) is equal to s(A) with a inserted at some position. From
this special case we get to the general case by induction, adding one
node at a time (there always exists at least one node in B whose
parent is in A or is ◦, and can thus be added to A without breaking
the conditions for TI trees).
Proof of Theorem 1. First, note that Rnrga does satisfy the basic
requirements for a protocol: all replicas accept any operation or
message, and deterministically transition. It also satisfies the first
condition for a push-based protocol: the send transition is enabled
right after an insertion operation.

Let α be a concrete execution ofRnrga that satisfies causal broad-
cast. We define a replica order relation ro on the events in α by let-
ting e ro−→ e′ denote that e and e′ are events by the same replica, and
e precedes e′ in α. Also, for two events e, e′ ∈ α, we define the de-
livery relation to indicate that the first message sent by repl(e) after
e is received by repl(e′) before e′ :

(e
deliv−−→ e′) ⇐⇒ ∃m :

(e ≤ro send(m)) ∧ (receive(m) ≤ro e
′)

∧ ¬(∃m′. e ≤ro send(m′)) <ro send(m).

Without loss of generality, in the following we only consider ex-
ecutions α of the protocol that deliver all operations to all repli-
cas: for each insertion or deletion operation e, and each replica R,
there exists an event e′ at R such that e deliv−−→ e′. If α is infinite,
this already follows from our definition of sufficiently connected
networks. Otherwise, we can simply append some additional send
and/or receive events to α.

To prove correctness and the second condition of push-based
protocols, we construct an abstract execution (H, vis) that satisfies
all of the following conditions:

(O1) α complies with H: for all replicas R, H|R = α|doR ;

(O2) for e, e′ ∈ H , e′ vis−→ e if and only if e′ hb−→ e.

(O3) (H, vis) is an element of the strong list specification:
(H, vis) ∈ Astrong.

Construction of (H, vis). Let H be the subsequence of all do
events in α. For the purpose of enabling induction proofs later on,
we define the visibility relation vis not just on H , but on all events
in α. We define visibility as the transitive closure of replica and
delivery order: vis = (ro ∪ deliv)+.

CLAIM 12. (H, vis) is an abstract execution.

PROOF. Following Def. 4, we need to check that vis is acyclic.
This is obvious because either e deliv−−→ e′ or e ro−→ e′ implies that
e <α e

′, thus e vis−→ e′ also implies e <α e′, thus it is acyclic. Con-
dition (1) is satisfied because ro ⊆ vis. Condition (2) is satisfied
because e vis−→ e′ implies e <α e′ and thus e <H e′. Condition (3)
is satisfied because vis is transitive by definition.

Clearly, obligation (O1) is satisfied: α complies with H since the
order of events in H matches their order in α. Also, obligation
(O2) is satisfied by definition of vis and hb. The nontrivial part
is obligation (O3), which requires us to show that H satisfies the
strong list specification (Def. 7).
In the remainder of this section, we prove the conditions of Def. 7
in the order (1c),(1a),(1b),(2). Condition (1c) follows directly from
the properties of the data structure. To prove (1a), we need to show
that what is stored in N and T corresponds to the insertion and
deletion operations that are visible. The following two claims do
just that, and together imply condition (1a).
For each inserted element a ∈ elems(H), let ea be the event of the
insert operation, and let (a, ta, pa) be the tuple constructed during
insertion.

LEMMA 13. Let e be an event in α, and let (N ′, _, _) be state
of the replica repl(e) after executing e. Then N ′ contains all nodes
that were inserted by e or insertion operations visible to e: N ′ =
{(a, ta, pa) | ea ≤vis e}.

PROOF. By induction over α and case distinction on e.
Insert. By the induction hypothesis (or initial state definition, if e
is the first event of the replica), N in the prestate matches visible
insertion operations not counting e itself. Then e happens and its
tuple is also added to N , thus preserving the invariant.
Receive. vis−1(e) contains the union of visible operations
vis−1(e′) of the sending event e′ and the predecessor event on the
same replica. Symmetrically, E is updated to contain the delivered
insertion tuples, which capture all insertions between the last send
event e′′ of the sender preceding e′, and e′. Because of the causal
broadcast guarantee, and by the induction hypothesis, any inser-
tions visible to e′′ must have already been delivered to replica exe-
cuting e, so the updates correspond.
Others. Neither the visible insertion operations nor N are up-
dated.

LEMMA 14. Let e be an event of α, and let (_, T ′, _) be the
state of the replica repl(e) after executing e. Then, T ′ contains all
elements that were deleted by e or deletion operations visible to e:
T ′ = {a | do(del(a)) ≤vis e}.

PROOF. By induction over α and case distinction on e.
Delete. By the induction hypothesis (or initial state definition, if e
is the first event of the replica), T in the prestate matches visible
deletion operations not counting e itself. Then e happens and its
element is also added to T , thus preserving the invariant.
Receive. vis−1(e) contains the union of visible deletions in
vis−1(e′) of the sending event e′ and the predecessor event on the
same replica. Symmetrically, T is updated to contain the delivered
tombstones, which capture all deletions between the last send event
e′′ of the sender preceding e′, and e′. Because of the causal broad-
cast guarantee, and by the induction hypothesis, any insertions vis-
ible to e′′ must have already been delivered to replica executing e,
so the updates correspond.
Others. Neither the visible deletion operations nor T are up-
dated.

To prove conditions (1b) and (2) of Def. 7, we need to first define
the list order relation. To prepare for this definition, we first observe
the following:

LEMMA 15. Let (N, _, _) be the state of a replica. Then N is a
TI tree.

PROOF. By construction, each inserted node has a unique times-
tamp (because the timestamp contains the replica identifier and is



larger than all previous timestamps by the same replica). Thus,
any of the nodes appearing anywhere in the execution satisfy TI
tree conditions (1) and (3). To prove condition (2), note first that
(a, ta, _)

pa−→ (b, tb, _) implies ea
vis−→ eb by Lemma 13, because

the parent is in the set N of the replica that performs the insertion.
Now, consider the tree N in the post-state of some event e. Using
Lemma 13, we see that if (b, tb, ta) is in N , then ea

vis−→ eb
vis−→ e,

thus by transitivity of vis also ea
vis−→ e, thus (a, ta, _) ∈ N .

List Order. Now we can define the list order relation: for a, b ∈
elems(H), we let a lo−→ b if and only if there exists an e ∈ α
with post-state (N, _, _) such that a appears before b in s(N). It
may appear at first that the various N could lead to contradictory
orderings. However, this is not so: this list order satisfies condition
(2) of Def. 7:

LEMMA 16. lo defines a total order on elems(H).

PROOF. Irreflexive. All N are TI trees by Lemma 15, and thus
contain no duplicate elements. Total. Let a, b ∈ elems(H), inserted
by events ea and eb, respectively. Since ea enables a send event,
repl(ea) must eventually send a message containing (a, _, _), and
repl(eb) must receive it (recall that we only consider executions
where every message is delivered), either before or after eb. Af-
ter both of those, the replica state on repl(eb) contains in N nodes
for both a and b, thus s(N) orders them. Transitive. Let a, b, c ∈
elems(H). Assume that s(N1) orders a before b and s(N2) or-
ders b before c. Since all insertions are eventually propagated to all
replicas, there exists a N3 in some replica state such that N1 ⊆ N3

and N2 ⊆ N3. By Lemma 3 and Lemma 15, in s(N3), a appears
before b and b before c. Thus a appears before c in s(N3).

Finally, because returned lists are ordered by s(N), the list order
also satisfies (1b) of Def. 7, which concludes the proof.
Proof of Theorem 2. Since timestamps grow with the number of
operations performed, and we assume the number n of replicas is
fixed, they can be encoded in O(lg k). Also, for simplicity, we as-
sume that elements inA can be encoded inO(lg k) (if the elements
in A are larger than that, we can modify the algorithm to affix an
O(lg k) identifier to each inserted element, and only keep those
identifiers around after elements are deleted).

We consider a replica with state (N,T, (A,K)). Let w =
a1 . . . an be the list represented (i.e. the list returned by a read oper-
ation), and let si be the size of ai. Then, the size of the represented
data is sw =

∑
i si. To obtain the metadata overhead, we need to

divide the size of the replica state by the size of the represented
data. To compute the size of the data in the replica state, observe
the following:

• for each element ai in the list, N stores a triple of size si +
O(lg k) +O(lg k).

• for each element deleted from the list,N stores a triple of size
O(lg k) +O(lg k) +O(lg k).

• always A ⊆ N and K ⊆ T (follows easily from transition
rules)

Thus, the respective sizes are

sN =
∑
i

(si +O(lg k)) = O(lg k)(
∑
i

si)

sT = d ·O(lg k)

sA ≤ sN

sK ≤ sT

And we get

sN + sT + sA + sK
sw

≤ 2sN + 2sT
sw

≤ 2
O(lg k)(

∑
i si) + d ·O(lg k)

(
∑
i si)

≤ 2(O(lg k) + d ·O(lg k))

= O((lg k)(1 + d)).

A.1 Tree/List Equivalence
In the standard RGA implementation [24], TI trees are repre-

sented as lists, and insertion of nodes follows a splicing procedure.
On the other hand, our formulation represents TI trees as sets, and
insertion of nodes is set union. We now show equivalence of these
representation: each TI tree corresponds to an ordered list of pairs
(elements, timestamps), in such a way that node insertions into the
tree correspond to splicing insertions into the list.
Tree to List To obtain a corresponding list from the tree, we use
the same traversal as before (depth-first, parents before children,
children in order of descending timestamps). Formally, for a TI tree
N , and for a parent p ∈ N , we define a visitor function `N (p) that
visits the subtree containing p and all its descendants, and returns
a sequence `N (p) ∈ (U × C)∗ of element/timestamp pairs, as
follows:

`N (p) = (p.a, p.t) `N (c1) . . . `N (cn)

where {c1, . . . , cn} are the children of p in N , enumerated in the
order satisfying i < j ⇒ ci.t > cj .t. We generalize this notation
to allow p = ◦, that is, naming the root as a parent, and let ◦.a = ε,
and ◦.t = 0 for some timestamp 0 that is smaller than any other
timestamp. So, `N (◦) is the list representing the whole tree N , and
always starts with a dummy element (ε, 0).
Splicing The splicing insertion inserts a tuple (a′, t′) after a parent
p′ and after any entries following the parent that have larger times-
tamp than t′. Formally, we express this using a pattern matching
definition

splice(w, a′, t′, p′) = w1 (a, p′) w2 (a′, t′) w3

where w = w1 (a, p′) w2 w3 is a decomposition that satisfies (1)
all timestamps appearing in w2 are larger than t′, and (2) either w3

is empty, or the first timestamp appearing in w3 is smaller than t′.
Representation Equivalence The following proposition implies
that the two representations are equivalent: splicing an element into
a list always produces the same result as adding a node to the set.

PROPOSITION 17. Let N and N ′ be TI trees such that N ′ =
N ∪ (a′, t′, p′). Then: splice(`N (◦), a′, t′, p′) = `N′(◦).

The proposition follows directly from the following inductive
formulation.

LEMMA 18. Let N and N ′ be TI trees such that N ′ = N ∪
(a′, t′, p′). Then, for all p ∈ N ∪ {◦} that are ancestors of
(a′, t′, p′) in N ′, we have splice(`N (p), a′, t′, p′) = `N′(p).

PROOF. We use induction over the number of descendants of p
in N ′, and do a case distinction.
Case p.t = p′. Let {c1, . . . , cn} be the children of p in N , enu-
merated in the order satisfying i < j ⇒ ci.t > cj .t. Then

splice((`N (p), a′, t′, p′)

= splice(((p.a, p.t) `N (c1) . . . `N (cn), a′, t′, p′)

= splice(((p.a, p′) w2 w3, a
′, t′, p′)



where w2 = `N (c1) . . . `N (ci) and w3 = `N (ci+1) . . . `N (cn)
with i chosen such that ci.t > t′ > ci+1.t (or at least on of those
inequalities for the border cases i = 0 or i = N ). Then, (1) either
w2 is empty or all timestamps in w2 are larger than t’ (because all
descendants of the ci have larger timestamps than their ancestor,
and all the ci are larger than t′), and (2) either w3 is empty, or the
first timestamp in it is ci+1.t, which is smaller than t′. Therefore,
this matches the pattern for the splice definition, and we get

= (p.a, p′) w2 (a′, t′) w3

= (p.a, p.t) `N (c1) . . . `N (ci) (a′, t′) `N (ci+1) . . . `N (cn)

Now, because in N ′, the children of p, in descending timestamp
order, are {c1, . . . , ci, (a′, p′, t′), ci+1, . . . , cn}, we can conclude

= `N′(p)

Case p 6= p′. Let {c1, . . . , cn} be the children of p in N, enumer-
ated in the order satisfying i < j ⇒ ci.t > cj .t. Then

`N′(p) = (p.a, p.t) `N′(c1) . . . `N′(cn)

Let ci be the child whose subtree contains (a′, p′, t′). There must
be exactly one such child because N ′ is a TI tree, and by the as-
sumption that (a′, p′, t′) is a descendant of p in N ′. Then

= (p.a, p.t) `N (c1) . . . `N (ci−1) `N′(ci) `N (ci+1) . . . `N (cn)

because the subtrees of N ′ not containing the new element are the
same as in N , thus the visit function returns the same result. Ap-
plying the induction hypothesis to `N′(ci), we get

= (p.a, p.t) `N (c1) . . . `N (ci−1)

splice(`N (ci), a
′, t′, p′) `N (ci+1) . . . `N (cn)

and expanding the pattern in splice gives us

= (p.a, p.t) `N (c1) . . . `N (ci−1)

w1 (a, p′) w2 (a′, t′) w3 `N (ci+1) . . . `N (cn)

where w1, w2, w3 satisfy `N (ci) = w1 (a, p′) w2 w3, and (1)
all timestamps appearing in w2 are larger than t′, and (2) the first
timestamp appearing in w3 is smaller than t′, or w3 is empty. But
now we can regroup this sequence, obtaining

= (p.a, p.t) w′1 (a, p′) w2 (a′, t′) w′3

where we define w′1 = `N (c1) . . . `N (ci−1) w1, and we define
w′3 = w3 `N (ci+1) . . . `N (cn). Note that either w′3 is empty, or
its first timestamp is smaller than t′ (because if not empty, the first
element of `N (ci+1) is ci+1.t which is smaller than ci.t, which is
smaller than t′ because it is an ancestor of t′). Therefore,

= splice((`N (p), a′, t′, p′)

B. STRICTLY WRITE-PROPAGATING
PROTOCOLS ARE PUSH-BASED

Many highly available eventually consistent protocols [3,4,8,10,
11, 17, 25, 32] are write-propagating [2]: they have invisible reads,
which complete without changing the replica state, and op-driven
messages, which means that replicas generate messages only as a
result of user operations and not in response to a received message.
We repeat the definition here, adapted to our model:

DEFINITION 15. A protocol R is write-propagating if it satis-
fies eventual consistency and the following hold for every replica
R = (Q,M,Σ, σ0, E,∆):

• User reads do not change the state of a replica: if
∆(σ1, do(op, v)) = σ2 and op(e) = read, then σ1 = σ2.
• R generates messages only as a result of user operations,

and not in response to received messages: R does not have a
message pending in σ0, and if σ2 = ∆(σ1, receive(m)) and
R does not have a message pending in σ1, then R does not
have a message pending in σ2.

Write-propagating protocols have an unintended property:
whether a message is pending or not can affect the response of high-
level operations. We define a class of strictly write-propagating pro-
tocols to rule this out.

DEFINITION 16. A protocol R is strictly write-propagating if
it is a write-propagating protocol and for every replica R =
(Q,M,Σ, σ0, E,∆), if ∆(σ1, send(m)) = σ2, then do(op, v) is
an enabled transition in σ1 if and only if do(op, v) is an enabled
transition in σ2.

Here, we show that an eventually consistent strictly write-
propagating list protocol is necessarily push-based. They are not,
however, equivalent. For example, a strictly write-propagating pro-
tocol cannot implement a subprotocol to garbage collect metadata
entries [23], since this requires sending and responding to messages
“spontaneously” and not as a result of a user operation.

THEOREM 19. Let R be an eventually consistent write-
propagating protocol satisfying the weak (respectively, strong) list
specification. ThenR is a push-based protocol.

PROOF. We show that R satisfies the two properties of a push-
based protocol: list insertions and deletions of elements not already
deleted cause message generation (Lemma 22) and happens-before
being equivalent to visibility in executions satisfying causal broad-
cast (Lemma 23). Our proof relies on some basic properties, stated
in Proposition 20 and Proposition 21 below.

PROPOSITION 20 ( [2]). Let α be a well-formed execution of
R and let e be an event in α. Then the following sequences of events
are well-formed executions ofR:

1. β, the subsequence of α consisting of all events e′ such that
e 6 hb−→ e′.

2. γ, the subsequence of α consisting of all events e′ such that
e′

hb−→ e.

Further, for any replica R, β|R and γ|R are prefixes of α|R.

PROPOSITION 21. Let α be an execution of R. Let A =
(H, vis) an abstract execution that α complies with. Let o be a
do(op, v) event and e be a do(ins(a, _), _) event such that a ∈ v.

Then e hb−→ o.

PROOF. Suppose the claim is false. We will show that R does
not satisfy the weak (respectively, strong) list specification, which
is a contradiction, as follows: Let α′ be the subsequence of α con-
sisting of all events e′ such that e′ hb−→ o. By Proposition 20, α′ is
a well-formed execution, and α′|R = α|R, where R = repl(o).
However, because inserted elements are unique, there is no insert
of a in α′. The claim follows.

LEMMA 22. Let α be of R and e ∈ α. Then (1) if op(e) =
ins(a, _), repl(e) has a message pending after e; and (2) if op(e) =

del(a) and there does not exist e′ hb−→ e with op(e′) = del(a), then
repl(e) has a message pending after e.



PROOF. Suppose the claim is false. Let σ be the state of R =
repl(e) after e (in which R does not have a message pending). Let
α1 be the subsequence of α consisting of all events e′ such that
e′

hb−→ e. By Proposition 20, α1 is a well-formed execution, and
α1|R if a prefix of α|R. Thus, R’s state at the end of α1 is also σ.

Let β = α1 α2 be an execution of R obtained by appending
receive events to α1 in some arbitrary order, so that in β every
replica receives every message sent by another replica in α1. Be-
cause R has op-driven messages, it follows that R does not have
a message pending at the end of β. Moreover, no replica R′ 6= R
has a message pending at the end of β: If there are no events at R′

in α1, then it does not have a message pending at the end of α1.
Otherwise, consider the last event e′ at R′ in α1. Then e′ hb−→ e, by
definition of α1, and so R′ sent a message at or after e′. But e′ is
the last event at R′, so e′ is a send event.

Consider the infinite execution of R, β∞ = β r1 r2 . . . , where
the ri events are reads at some R′ 6= R. Let A = (H, vis) be an
abstract execution satisfying eventual visibility that β∞ complies
with. Then there exists some rj such that e vis−→ rj . We now con-
sider the two possible cases.

(1) op(e) = ins(a, _) Because e 6 hb−→ rj , by Proposition 21,
a 6∈ rval(rj). It follows from the weak list specification that there
exists a del(a) event, d ∈ H , such that d vis−→ rj . It follows
from our assumption that users delete only elements that appear
in the response of a preceding operation on the same replica that
a ∈ rval(e′) for some e′ hb−→ d. By Proposition 21, e hb−→ e′. But

this is a contradiction, since e′ hb−→ e.
(2) op(e) = del(a) It follows from our assumption that users
delete only elements that appear in the response of a preceding op-
eration on the same replica that a ∈ rval(f) for some f vis−→ e.
Therefore, there exists an event d = ins(a, _) ∈ H such that
d

vis−→ e, and so d vis−→ e
vis−→ rj . It follows from the weak list

specification that a 6∈ rval(ri) for every i ≥ j. Observe, however,
that the execution β′∞ obtained by removing e from β∞ is a well-
formed execution of R, because the only events at R after e are
message receipts. Now, letA′ = (H ′, vis′) be an abstract execution
satisfying eventual visibility that β′∞ complies with. Then there ex-
ists some ri, i ≥ j, such that d vis−→ ri. Since a 6∈ rval(ri), there

exists a del(a) event, e′ ∈ H , such that d vis′−−→ e′
vis′−−→ rval(ri).

Thus, e′ ∈ β∞ and so e′ hb−→ e, a contradiction.

LEMMA 23. Let α be an execution of R that satisfies causal
broadcast. Then there exists an abstract execution A = (H, vis) ∈
Aweak (respectively, A ∈ Astrong) that α complies with, such that

for all e′, e ∈ H , e′ vis−→ e if and only if e′ hb−→ e.

PROOF. It is immediate that there exists an abstract execution
A = (H, vis) that α complies with such that for all e′, e ∈ H ,

e′
vis−→ e if and only if e′ hb−→ e. To show that A ∈ Aweak (re-

spectively, A ∈ Astrong), we must show is satisfies all conditions
in Definition 8 (respectively, Definition 7). Conditions 1b and 1c
in Definition 7, as well as Condition 2 in Definition 8 (respectively,
Definition 7) are satisfied because, by assumption, R satisfies the
weak (respectively, strong) list specification, and these conditions
depend only on the operations and their responses, and not on the
visibility relation.

It remains to show that for every do event e ∈ α, rval(e) =
L(e, vis), where

L(e, vis) = {a | (do(ins(a, _), _) ≤vis e) ∧ ¬(do(del(a), _) ≤vis e)}.

Let e be an do event in α, let R = repl(e), and let σ be the state of
R when the e transition occurs. Without loss of generality, R does
not have a message pending in σ. (If R has a message m pending
in σ, we can first send it; because R is strictly write-propagating, e
will remain an enabled transition.) Let α′ be the subsequence of α
consisting of all events e′ such that e′ hb−→ e. By Proposition 20, α′

is a well-formed execution ofR, and since α satisfies causal broad-
cast, so does α′. Therefore, any message sent in α′ is received by
R before e. Let β be an extension of α′ that satisfied causal broad-
cast, in which every replica receives every message sent by another
replica in α′. Because R has op-driven messages, no replica has a
message pending at the end of β. Moreover, by construction of α′,
R does not receive any messages after e in β.
L(e, vis) ⊆ rval(e): Consider a ∈ L(e, vis). Then del(a) 6 hb−→ e,
by definition of L(e, vis), and so del(a) 6∈ β, by construction of
β. Consider the execution β′ of R obtained by removing e and
executing infinitely many reads r1, . . . at R. It follows from even-
tual consistency and the fact thatR satisfies the weak (respectively,
strong) list specification, that there exists some abstract execution
satisfying eventual visibility A′ = (H ′, vis′) ∈ Aweak (respec-
tively, A′ ∈ Astrong) that β′ complies with. Therefore, for some ri,

ins(a, _)
vis′−−→ ri. Since del(a) 6∈ H ′, it follows that a ∈ rval(ri).

Since R has invisible reads, the state of R at ri is σ, the state in
which the e transition occurs. It follows that a ∈ rval(e).
L(e, vis) ⊇ rval(e): Consider a ∈ rval(e). By Proposition 21,

ins(a, _)
hb−→ e, and so ins(a, _)

vis−→ e. Suppose that del(a)
hb−→ e,

and consider the execution β′ of R obtained by removing e and
executing infinitely many reads r1, . . . at R. It follows from even-
tual consistency and the fact thatR satisfies the weak (respectively,
strong) list specification, that there exists some abstract execution
satisfying eventual visibility A′ = (H ′, vis′) ∈ Aweak (respec-
tively, A′ ∈ Astrong) that β′ complies with. Therefore, for some ri,

del(a)
vis′−−→ ri. It follows that a 6∈ rval(ri). Since R has invis-

ible reads, the state of R at ri is σ, the state in which the e tran-
sition occurs. Therefore, a 6∈ rval(e), which is impossible. Thus,
a ∈ L(e, vis).

This concludes the proof.


