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Abstract
Transactional Web Applications need to perform fast inter-
active reads while ensuring reasonable isolation guarantees.
This paper studies the problem of taking consistent snap-
shots for transactions with interactive reads. We introduce
four levels of freshness, and solutions to guarantee them. We
also explore trade-offs between the space complexity and the
freshness levels.

Categories and Subject Descriptors C.2.4 [Computer-

Communication Networks]: Distributed Systems—Distributed
applications;Distributed databases; H.3.4 [Information Stor-

age and Retrieval]: Systems and Software—Distributed sys-
tems

General Terms Algorithms, Performance

Keywords Transactional Processing, Consistent Snapshot,
Cloud Computing, Data Freshness, Key-Value Stores

1. Introduction
The cloud is a new paradigm for the dynamic provisioning
of computing services usually supported by state-of-the-art
data-centers containing ensembles of networked virtual ma-
chines. Among classical cloud-based applications, Transac-
tional Web Applications (TWA) are data intensive and re-
quire a high level of availability and scalability. Several re-
cent works have studied the inherent limitations of current
cloud infrastructures [3, 5, 11] to support TWA applications,
and novel solutions have been proposed [6, 7, 10].

Typical TWA applications need to perform interactive
reads [7], i.e., the read set of the transaction changes over
time, spanning multiple machines while ensuring reasonable
isolation. Freshness of versions read by transaction matters.
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Beside of potential value for applications, freshness helps to
reduce the abort rate of transactions and simplifies load bal-
ancing. In order to scale well, interactive reads are executed
optimistically without relying on an expensive protocol. The
usual approach is to timestamp transactions and use snap-
shots: a transaction reads the snapshot consisting of all the
transactions that committed prior to it. Timestamping how-
ever requires a central server which is subject to failure and
may become a bottleneck. To deal with this problem, recent
transactional infrastructures [6, 10] propose instead to use
distributed protocols. We observe that these protocols offer
different guarantees with various space complexity (mem-
ory and network usage). For instance, a conservative pro-
tocol offers possibly stale values at low cost, while a more
permissive system returns fresher snapshots at higher cost.

This paper studies the problem of reading consistent
snapshots in a distributed transactional system and the rela-
tion between space complexity and freshness. We introduce
four levels of freshness, and we study the cost of different
solutions to attain each of these levels. In more detail, our
contributions are the following:
• We define four freshness levels. Under maximum fresh-

ness, read operations observe the most recent committed
versions of objects. Base freshness is the level offered by
the timestamp-based protocol. Positive freshness is inter-
mediate between maximum and base freshness. Negative
freshness does not guarantee progress of transactions.

• We present four algorithms, matching the freshness lev-
els. We compare their space complexity, and argue infor-
mally that higher freshness increases space complexity.
The remainder of the paper is organized as follows. In

Section 2, we describe our transactional system model. In
Section 3, we give a specification of the interactive read
problem, define freshness levels and present a generic algo-
rithm for interactive reads. In Section 4, we study solutions
to the problem of taking consistent snapshots, and assess the
space complexity of each freshness level. We compare to re-
lated works in Section 5 and conclude in Section 6.

2. Model
In this section, we formally introduce the model used to rep-
resent histories, transactions, and the transactional system.



Objects & transactions Let Objects be a set of objects,
and T be a set of transaction identifiers. Given an object
x, and a transaction identifier i, xi denotes version i of x.
Initially every object x has version x0. A transaction Ti∈T
is a finite sequence of read and write operations followed by
a terminating operation, which can be either a commit (ci) or
an abort (ai). In a history (defined shortly), wi(xi) denotes
that transaction Ti writes version i of object x, and ri(xj)
means that Ti reads version j of object x. In a transaction,
every object is read or written at most once, and every write
is preceded by a read of the same object. We consider the first
operation of a transaction to be its starting point (denoted si).

We denote by WS (Ti) the write set of Ti, i.e., the set of
objects written by transaction Ti. Similarly, RS (Ti) denotes
the read set of transaction Ti.

Histories A history h is a partially ordered set of opera-
tions such that (1) for every operation oi appearing in h,
transaction Ti terminates in h, (2) for every two operations oi
and o�i appearing in h, if oi precedes o�i in Ti, then oi <h o�i,
(3) for every read ri(xj) in h, there exists a write operation
wj(xj) such that wj(xj) <h ri(xj), and (4) any two write
operations over the same objects are ordered by <h. We note
�h the version order induced by h between the different
versions of an object, i.e., �h= {(xi, xj) : ∃x,wi(xi) <h

wj(xj)}.

System A database D is a finite set of tuples (x, v, i) where
x is an object (data item), v a value, and i ∈ T a ver-
sion. We consider a message-passing distributed system of
n processes Π = {p1, . . . , pn}. Each process holds a copy
of a subset of D as its local database. For some object
x, Replicas(x ) denotes the set of processes (or replicas)
that hold a copy of x. The coordinator of Ti, denoted by
coord(Ti), is in charge of executing Ti on behalf of some
client (not modeled). The coordinator does not know the read
set nor the write set of Ti in advance, hence the system sup-
ports interactive reads.

In our model, every update transaction that writes x must
read it previously. This implies that every update transaction
depends on a previous update transaction, or the initial trans-
action T0. More formally:

Definition (Dependency). Consider a history h, and two

transactions Ti and Tj in h. We note Tj � Ti when ri(xj)
is in h. By extension over transitive closure, transaction Ti

depends on transaction Tj when Tj �∗ Ti holds.

3. Problem Specification
This paper studies the space complexity needed for taking a
consistent snapshot in the presence of interactive reads, and
under different freshness levels.

To illustrate the problem, we consider the execution de-
picted in Figure 1. In this execution, processes P1, P2 and P3

replicate objects x, y and z respectively. Transactions T1 and
T2 write new values to object x and z respectively. Transac-
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Figure 1: Sample execution. Dashed line: start of read-only trans-
action Ta. Dotted line: execution of transaction Ta in real-time.

tion T3 reads version z2 (installed by T2) and writes to object
y. Transactions T4 and T5 modify objects y and z. We focus
on the read-only transaction Ta that first reads version x1 of
object x, then tries to read objects y and z. Its read opera-
tions are delivered in real time according to the dotted line.
Using this execution, we introduce consistent snapshots as
well as our different freshness levels.

3.1 Consistent Snapshot
Roughly speaking, a transaction that would miss some ef-
fect of another transaction upon which it depends, observes
a non-consistent snapshot [2]. For example, consider trans-
action Ta in Figure 1. It observes a non-consistent snapshot
if it reads versions {x1, y3, z0}, {x1, y4, z2} or {x1, y4, z5}.

Definition (Consistent snapshot). A transaction Ti in a his-

tory h observes a consistent snapshot when for every object

x, if ri(xj) and wk(xk) both belong to h and Ti depends on

Tk , then xk � xj holds. By extension, history h is consis-

tent if all the transactions in h observe a consistent snapshot.

3.2 Freshness
We consider the following four levels of freshness:

Negative freshness is the weakest freshness level. A his-
tory has negative freshness if it is consistent and a read
operation of a transaction can arbitrarily read an old ver-
sion. Since solutions that ensure negative freshness are triv-
ial (e.g., always returning the initial version) and undesir-
able, we do not consider this property in this paper.

Base freshness guarantees that every transaction Ti ob-
serves the most recent and consistent versions of all objects
committed before the first operation of the transaction. We
recall that the first operation of transaction Ti is considered
to be the start operation si. For instance, Ta has base fresh-
ness when it reads versions {x1, y0, z2} (dashed line).

Definition (Base Freshness). A consistent history h has base

freshness iff for every read operation ri(xj), cj is before si

and there is no version xk such that cj <h ck <h si holds.

Despite the fact that most of the existing storage systems
offer base freshness, as we mentioned in Section 1, some
applications may favor higher level of freshness.

Maximum freshness is the highest freshness level a his-
tory can ensure. It guarantees that each read observes the



most recent consistent version of an object. For example, the
history depicted in Figure 1 has maximum freshness when
transaction Ta reads versions {x1, y4, z4} (notice that read-
ing {x1, y4, z5} is not consistent).

Definition (Maximum Freshness). A consistent history h

has maximum freshness iff for every read operation ri(xj),
if wj(xj) <h wk(xk) <h ri(xj) holds for some write

wk(xk), then replacing ri(xj) by ri(xk) in h leads to a non-

consistent snapshot.

Although desirable, maximum freshness is very demand-
ing, and as we will see in Section 4, few systems can ensure
this property. Therefore, we introduce an intermediate level
which is stronger than base freshness, yet cheaper than max-
imum freshness called positive freshness. In positive fresh-
ness, a transaction can read a version installed after the trans-
action has started. For instance, the history depicted in Fig-
ure 1 has positive freshness if transaction Ta reads versions
{x1, y3, z2}.

Definition (Positive Freshness). A consistent history h has

positive freshness iff for every read operation ri(xj), there

is no a version xk such that cj <h ck <h si holds.

3.3 Generic Algorithm
Algorithm 1 shows a generic certification-based algorithm
Agen independent of freshness levels. The algorithm is
generic in the sense that by final modifications of the func-
tions whose names are underlined, different freshness levels
can be achieved. In Section 4, we will consider different im-
plementations of these functions, and how they can affect
freshness and space complexity.

Upon receiving a begin operation, Agen calls the initial-
ization function (line 5). Write operations are executed and
stored locally (line 8). To read an object x, the transaction
coordinator coord(Ti) first checks to see if x has been pre-
viously updated. If so, it returns the corresponding value
(line 11), otherwise, coord(Ti) sends a READ RESOLVE re-
quest to a process that replicates object x (line 13).

When a process receives the READ RESOLVE from a co-
ordinator, it calls a function choose in order to select a ver-
sion of the object such that it reads a consistent snapshot of
the system (line 19), and returns the result back to coord(Ti).

We assume that, upon receiving a request for committing
transaction Ti, a certification test is performed to guarantee
that committing Ti ensures the consistency criterion of the
system (line 23). The consistency criterion should at least
ensure that no two concurrent write-conflicting transaction
both commit (e.g. snapshot isolation). If the certification
outcome is positive, then Ti is applied at all processes, as
defined by concrete algorithms in the next section.

4. The Spectrum of Solutions
In this section we present implementations of the generic al-
gorithm Agen using different object versioning mechanisms

Algorithm 1 Generic Algorithm Agen

1: Variables:
2: db // committed object versions
3:
4: execute(BEGIN, Ti)
5: act: initialize(Ti) // 1
6:
7: execute(WRITE, x, v, Ti)
8: act: updates(Ti) ← updates(Ti) ∪ {x, v, i}
9:

10: execute(READ, x, Ti)
11: act: if ∃(x, v, i) ∈ updates(Ti) then return v
12: else
13: send �READ RESOLVE, Ti, x� to Replicas(x )
14: wait untilreceived �READ RESOLVED, Ti, x, v�
15: return v
16:
17: readResolve(x, Ti)
18: pre: received �READ RESOLVE, Ti, x� from q
19: act: (x, v, l) ← choose �Ti, x� // 2
20: send �READ RESOLVED, Ti, x, v� to q
21:
22: execute(COMMIT, Ti)
23: pre: certify(Ti)
24: act: apply(Ti) // 3

and read algorithms. All of these algorithms produce con-
sitent histories. We also classify the algorithms by offered
level of freshness, and study their space complexity.

4.1 Maximum Freshness Algorithm
In order to guarantee maximum freshness, an algorithm must
allow reading the latest version that is consistent with the
set of reads previously executed. Since in some cases this
version might not exist at the time the transaction starts,
this property is expensive to verify locally. It requires each
process to locally compute dependency relation �∗ between
pairs of committed transactions, and to determine the set
of objects modified between dependent transactions. Saeida
Ardekani et al. [9] developed the dependence vector (DV)
which represents this information compactly.

A dependence vector is a vector with the size of the num-
ber of objects in the system. Dependence vector is assigned
to every version of an object and all objects written by the
same transaction have the same dependence vector. Thus for
simplicity, we present them as vectors assigned to transac-
tions, i.e. DV (Ti) denotes a dependence vector assigned to
new versions of objects modified by Ti. For version xi writ-
ten by Ti, the object’s own entry DV (Ti)[x] represents its
version number, i.e. number of committed transactions that
modified object x prior to Ti, inclusive. Other entries of a
dependence vector, DV (Ti)[y] for y �∈ WS (Ti) identify the
versions of objects that Ti depends upon.

Algorithm 2 presents maximum freshness implementa-
tion of Agen denoted by Amax . The algorithm keeps track
of versions read by a transaction and maintains transaction’s



Algorithm 2 Maximum Freshness Algorithm Amax

1: initialize(Ti) // no initialization necessary
2:
3: choose �Ti, x�
4: pre: ∃(x, v, l) ∈ db : ∀yk ∈ RS(Ti) :
5: DV (Tl)[x] ≥ DV (Tk)[x] ∧
6: DV (Tl)[y] ≤ DV (Tk)[y]
7: act: return max (x, v, l) // the latest according to �h

8:
9: apply(Ti)

10: act: DV (Ti) ← max {DV (Tl) : xl ∈ RS(Ti)}
11: +

�
yi∈WS(Ti)

ŷ // ŷ is a unit vector
12: send �APPLY, Ti� to Π
13:
14: performApply(Ti)
15: pre: (received �APPLY, Ti� from q)
16: act: db ← db ∪ {(x, v, l) ∈ updates(Ti) :
17: pj ∈ Replicas(x )}

dependence vectors as previously described. The read rules
ensure that selected object version does not miss any depen-
dency induced by previous reads (line 5) and does not inval-
idate any version previously read (line 6).

Upon committing Ti, its DV is computed by taking the
maximum of DVs of objects read by Ti (line 10) and incre-
menting the entries of modified objects (line 11). The trans-
action is then applied at all processes.

Theorem 1. Every history with maximum freshness is ad-

missible by algorithm Amax.

Algorithm Amax guarantees maximum freshness, and its
space complexity is O(m) where m is the number of objects
in the system. We conjecture that this is optimal:

Conjecture 1. Any implementation of algorithm Agen that

admits all the histories with maximum freshness has a space

complexity of Ω(m).

4.2 Positive Freshness Algorithms
Since keeping track of the dependence relations and of mod-
ified objects accurately is expensive, it is reasonable to con-
sider their safe approximations and require only positive
freshness.

One way to achieve this is by partitioning objects and
serializing updates within every partition to represent ver-
sions more compactly. Consider algorithm A++, a variant of
Amax using coarser grained vectors with entry only per each
partition. Formally, let equivalence relation ∼ divide objects
into classes (partitions) according to the set of processes
where they are replicated, i.e. x ∼ y

�
= (Replicas(x ) =

Replicas(y)). We denote by [x] the equivalence class (par-
tition) of object x. Each partition of objects can then use its
own entry in DV, i.e. commit of transaction Ti increases only
entries of modified partitions {[xi] : xi ∈ WS (Ti)}.

The resulting vector, with the size number of partitions,
represents a strengthening of the order induced by the orig-

Algorithm 3 Positive Freshness Algorithm A+ at process pj
1: Variables:
2: currVV // vector of processes, initially [0, . . . , 0]
3:
4: initialize(Ti)
5: act: initVV (Ti) ← currVV
6:
7: choose �Ti, x�
8: pre: currVV ≥ initVV (Ti)
9: ∀yk ∈ RS(Ti) : currVV ≥ VV (Tk)

10: act: V1 ← {(x, v, l) ∈ db : VV (Tl) ≤ initVV (Ti)}
11: V2 ← {(x, v, l) ∈ db : VV (Tl) �≥ initVV (Ti) ∧
12: ∀yk ∈ RS(Ti) : VV (Tl) �≥ VV (Tk)}
13: return max V1 ∪ V2 // the latest according to �h

14:
15: apply(Ti)
16: pre: currVV ≥ initVV (Ti)
17: ∀yk ∈ RS(Ti) : currVV ≥ VV (Tk)
18: act: VV (Ti) ← currVV + ĵ
19: performApply(Ti)
20: send �APPLY, Ti� to Π \ pj
21:
22: performApply(Ti)
23: pre: (pj = coord(Ti) ∨ received �APPLY, Ti� from q)
24: ∃k : currVV + k̂ ≥ VV (Ti)
25: act: db ← db ∪ {(x, v, l) ∈ updates(Ti) :
26: pj ∈ Replicas(x )}
27: currVV ← max(currVV ,VV (Ti))

inal DV. Thus, it approximates the dependence relation and
represents the set of objects possibly modified between the
two transactions. The optimization, however, requires extra
input from the certification to enforce uniqueness of DVs.

Another natural choice to approximate dependence is to
use the happened-before order. Our new Algorithm 3, noted
A+, extends the algorithm given by Sovran et al. [10], us-
ing version vectors to capture the happened-before order be-
tween transactions. A version vector (VV) is a vector with
one entry per process, defined for each committed transac-
tion. The algorithm maintains the following invariant used
during reads: Ti �∗ Tj ⇒ VV (Ti) < VV (Tj).

Every process in A+ maintains the vector currVV iden-
tifying locally committed transactions. At the beginning of
transaction Ti, this vector becomes the snapshot point of the
transaction (initVV (Ti)). As in the Sovran’s algorithm, the
transaction may read versions that were visible at the begin-
ning of the transaction (line 10). Considering this rule alone,
it offers only base freshness.

To allow extending snapshots after the transaction has be-
gun (positive freshness), the algorithm also reads from trans-
actions that were committed concurrently to the transactions
included in the current snapshot (lines 11 to 12).

Upon a successful certification of transaction Ti, the co-
ordinator assigns the transaction a vector VV (Ti) that domi-
nates both all transactions in the snapshot of Ti and the coor-
dinator’s local currVV (line 18). This construction ensures



that the partial order over version vectors is compatible with
the transaction dependence order.

We now state two results regarding freshness of histories
admissible by variants of A+ algorithm.

Conjecture 2. Every history admissible by algorithm A+

has positive freshness.

Let algorithm A0 be similar to the algorithm A+ without
reading concurrent transactions (V2 = ∅ in line 11) [10].

Theorem 2. Every history admissible by algorithm A0 has

base freshness.

The space complexity of Algorithm A+ is O(n), where
n is the number of processes in the system. It is interesting
to consider why this algorithm does not always offer maxi-
mum freshness: A+ extends the initial snapshot to transac-
tions that are not ordered by happened-before and indepen-
dent with the transactions included in the initial snapshot.
However, (1) it does not admit snapshots including indepen-
dent transactions ordered by VV, and (2) it does not allow
to extend snapshot with transactions depending on the ini-
tial snapshot (ordered by VV) that did not modify the ob-
jects previously read by transaction Ti. These two cases re-
quire more accurate dependence tracking. This is an inherent
trade-off between the freshness of interactive reads and the
space-complexity of the algorithm.

5. Related Work
Several papers study the freshness problem in the context of
key-value stores. Wada et al. [11] investigate the probability
of observing stale data in different cloud systems. More re-
cently, Bailis et al. [1] have developed a probabilistic model
to quantify staleness in quorum-replicated data stores. These
works study the relation between the freshness of reads and
the protocol used by key value stores, such as a read-write
quorums. However, they do not consider transactions and
consistency across different keys.

Golab et al. [4] provide an online algorithm for atomicity
verification of individual keys in a key-value store. They
define the staleness of observed read values as the number
of missed writes (k-atomicity) or the amount of time (∆-
atomicity). These definitions prove to deliver measurable
metrics in practice. We plan to extend these metrics into the
transactional context in order to measure more fine grained
freshness levels.

A0 was introduced by Sovran et al. [10] and guaran-
tees only base freshness. Raynal et al. [8] used a similar
pessimistic algorithm which makes it less practical. Saeida
Ardekani et al. [9] proposed Amax using DVs.

6. Conclusions and Future Work
In this paper, we define negative, base, positive and max-
imum freshness levels. We present an optimal, but costly,
maximum freshness algorithm, and a cheap base freshness

Algorithm Freshness Space Complexity
Amax [9] maximum O(m)
A++ positive O(p)
A+ positive O(n)
A0 [10] base O(n)

Table 1: Space complexity w.r.t. freshness level for each of the
presented algorithms - variables n, m and p denote respectively
the number of processes, objects and partitions in the system.

algorithm. We explore the trade-off between space complex-
ity and freshness, and introduced two novel algorithms (A+

and A++). They ensure positive freshness for transactional
interactive reads at lower cost than Amax . Table 1 summa-
rizes our results by relating freshness to space complexity.

For the future work, we plan to compare the four algo-
rithms experimentally, as well as studying in more details
the relation between space complexity and freshness.
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