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Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency” approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, eventual
consistency promises better availability and performance [17,21]. An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other
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replicas. All updates eventually take effect at all replicas, asynchronously and
possibly in different orders. Concurrent updates may conflict; conflict arbitration
may require a consensus and a roll-back.6

This weaker consistency is considered acceptable for some classes of applica-
tions. However, conflict resolution is hard. The literature offers little guidance on
designing a correct optimistic system. Ad-hoc approaches are brittle and error-
prone; witness for instance the concurrency anomalies of the Amazon Shopping
Cart [3].

We propose a simple, theoretically-sound approach to eventual consistency.
Our system model, Strong Eventual Consistency or SEC, avoids the complex-
ity of conflict resolution and of roll-back. Conflict-freedom ensures safety and
liveness despite any number of failures. It leverages simple mathematical prop-
erties that ensure absence of conflict, i.e., monotonicity in a semi-lattice and/or
commutativity. A trivial example is a replicated counter, which (assuming no
overflow) converges because its increment and decrement operations commute.
In our conflict-free replicated data types (CRDTs), an update does not require
synchronisation, and CRDT replicas provably converge to a correct common
state. CRDTs remain responsive, available and scalable despite high network
latency, faults, or disconnection.

Non-trivial CRDTs are known to exist: for instance, we previously published
Treedoc, a sequence CRDT for co-operative text editing [14]. Our aim here is to
expand our knowledge of the principles and practice of CRDTs. We claim the
following contributions for this paper:

– A solution to the CAP problem, Strong Eventual Consistency (SEC).
– Formal definitions of Strong Eventual Consistency (SEC) and of CRDTs.
– Two sufficient conditions for SEC.
– A strong equivalence between the two conditions.
– We show that SEC is incomparable to sequential consistency.
– Description of basic CRDTs, including integer vectors and counters.
– More advanced CRDTs, including sets and graphs.

We refer the interested reader to a separate technical report [18] for further
detail and for a comprehensive portfolio of CRDT designs.

2 System model

We consider a system of processes interconnected by an asynchronous net-
work. The network can partition and recover. We assume a finite set Π =
{p0, . . . , pn−1} of non-byzantine processes. Processes in Π may crash silently;
a crashed process may remain crashed forever, or may recover with its memory
intact. A non-crashed process is said correct.
6 A conflict is a combination of concurrent updates, which may be individually correct,
but that, taken together, would violate some invariant.
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2.1 State-based object

In this section we specify replicated objects in the so-called state-based style.
The intuition is illustrated in Figure 1. Executing an update modifies the state
of a single replica. Every replica occasionally sends its local state to some other
replica, which merges the state thus received into its own state. In this way,
every update eventually reaches every replica, either directly or indirectly.

With no loss of generality, we consider a single object with one replica at each
process. An object is a tuple (S, s0, q, u,m). The replica at process pi has state
si ∈ S, called its payload; the initial state is s0. A client of the object may read
the state of the object via query method q and modify it via update method u.
Method m serves to merge the state from a remote replica. A method (whether
q, u or m) executes at a single replica.

Systems that deliver every update to every replica eventually in a fault-
tolerant manner are well-known in the literature, for instance gossip or anti-
entropy approaches [5,13]. For simplicity, we will assume hereafter a fully con-
nected communication graph, where every arc is a fair-lossy channel. Infinitely
often, the replica at pi sends (if it is correct) its current state to pj ; replica pj (if
it is correct) merges the received state into its local state by executing method
m.

A method whose precondition is satisfied is said enabled. We assume that an
enabled method executes as soon as it is invoked. Method executions at some
replica are numbered sequentially from 1. The kth method execution at replica
i will be noted fk

i (a), where f is either q, u or m, and a denotes the arguments.
We note Ki(f) the ordinal of execution f at replica i, i.e., Ki(fk

j (a)) = k for
i = j, and is undefined otherwise. (Abusing notation somewhat, we may drop
subscripts, superscripts and/or arguments when there is no ambiguity.)

The states of a replica are numbered sequentially incrementing with each
method execution. Thus, replica i has initial state s0

i = s0. Before its kth exe-
cution of a method it has state sk−1

i , and sk
i afterwards. We note the transition

sk−1
i • fk

i (a) = sk
i .

We define state equivalence s ≡ s′ if all queries return the same result for s
and s′. A query has no side-effects, i.e., (s • q) ≡ s.

Definition 1 (Causal History (state-based)). We define the object’s
causal history C = [c1, . . . , cn] (where ci goes through a sequence of states
c0

i , . . . , c
k
i , . . . ) as follows. Initially, c0

i = ∅, for all i. If the kth method execution
at i is: (i) a query q: the causal history does not change, i.e., ck

i = ck−1
i ; (ii) an



4

update (noted uk
i (a)): it is added to the causal history, i.e., ck

i = ck−1
i ∪{uk

i (a)};
(iii) a merge mk

i (sk′

i′ ), then the local and remote histories are unioned together:
ck

i = ck−1
i ∪ ck′

i′ .
We say that an update is delivered at some replica when it is included in the
causal history at that replica. An update u happened-before u′ iff u is deliv-
ered when u′ executes: u→ u′

def= u ∈ ck−1
j , where u′ executes at replica pj

and Kj(u′) = k. Updates are concurrent if neither happened-before the other:
u ‖ u′ def= u 6→ u′ ∧ u′ 6→ u. Note that the causal history is a formal reasoning
device, which is normally not needed in a concrete implementation.

Given our communication assumptions, we can conclude that, in a state-
based object, every update is eventually delivered to all replicas. However, this is
not sufficient to ensure that replicas converge. For instance, if the merge method
m is a no-op, an update executed at some replica has no effect on other replicas,
and they will never converge.

2.2 Strong Eventual Consistency
Informally, eventual consistency means that replicas eventually reach the same
final value if clients stop submitting updates. We capture this intuition as follows:

Definition 2 (Eventual Consistency (EC)).
Eventual delivery: An update delivered at some correct replica is eventually

delivered to all correct replicas: ∀i, j : f ∈ ci ⇒ ♦f ∈ cj.
Convergence: Correct replicas that have delivered the same updates eventually

reach equivalent state: ∀i, j : �ci = cj ⇒ ♦�si ≡ sj.
Termination: All method executions terminate.

Several EC systems will execute an update immediately, only to discover later
that it conflicts with another, and to roll back to resolve this conflict [20]. This
constitutes a waste of resources, and in general requires a consensus to ensure
that all replicas arbitrate conflicts in the same way. To avoid this, we require a
stronger condition:
Definition 3 (Strong eventual consistency (SEC)). An object is Strongly
Eventually Consistent if it is Eventually Consistent and:
Strong Convergence: Correct replicas that have delivered the same updates

have equivalent state: ∀i, j : ci = cj ⇒ si ≡ sj.

2.3 State-based Convergent Replicated Data Type (CvRDT)
We now propose a sufficient condition for strong convergence in state-based
objects. A join semilattice (or just semilattice hereafter) is a partial order ≤
equipped with a least upper bound (LUB) t for all pairs: m = x t y is a Least
Upper Bound of {x, y} under ≤ iff ∀m′, x ≤ m′∧y ≤ m′ ⇒ x ≤ m∧y ≤ m∧m ≤
m′. It follows that t is: commutative: xt y = y t x; idempotent: xt x = x; and
associative: (x t y) t z = x t (y t z).
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Definition 4 (Monotonic semilattice object). A state-based object,
equipped with partial order ≤, noted (S,≤, s0, q, u,m), that has the following
properties, is called a monotonic semi-lattice: (i) Set S of payload values forms
a semilattice ordered by ≤. (ii) Merging state s with remote state s′ computes
the LUB of the two states, i.e., s •m(s′) = s t s′. (iii) State is monotonically
non-decreasing across updates, i.e., s ≤ s • u.

Theorem 1 (Convergent Replicated Data Type (CvRDT)). Assuming
eventual delivery and termination, any state-based object that satisfies the mono-
tonic semilattice property is SEC.

For lack of space, we omit the proof that is presented in a companion technical
report [19]. A CvRDT converges towards the LUB of the most recent updates.
We require that x ≤ y ∧ y ≤ x⇒ x ≡ y.

2.4 Op-based Commutative Replicated Data Type (CmRDT)

Alternatively to the state-based style, a replicated object may be specified
in the operation-based (or op-based) style. An op-based object is a tuple
(S, s0, q, t, u, P ), where S, s0 and q have the same meaning as above (respectively
state domain, initial state and query method). An op-based object has no merge
method; instead an update is split into a pair (t, u), where t is a side-effect-free
prepare-update method and u is an effect-update method. The prepare-update
executes at the single replica where the operation is invoked (its source). At
the source, prepare-update method t is followed immediately by effect-update
method u, i.e., fk−1

i = t ⇒ fk
i = u. (If this were not true, there would be no

causality between successive updates.)
The effect-update method executes at all replicas (said downstream). The

source replica delivers the effect-update to downstream replicas using a commu-
nication protocol specified by the delivery relation P , explained below.

We use the same notations for states and causal history as above, except that
now f can refer to any of q, t or u. Both queries and prepare-update methods
are side-effect-free, i.e., s • q ≡ s • t ≡ s.

Definition 5 (Causal History (op-based)). An object’s causal history C =
{c1, . . . , cn} is defined as follows. Initially, c0

i = ∅, for all i. If the kth method
execution at i is: (i) a query q or a prepare-update t, the causal history does not
change, i.e., ck

i = ck−1
i ; (ii) an effect-update uk

i (a), then ck
i = ck−1

i ∪ {uk
i (a)}.

An update is said delivered at a replica when the update is included in the
replica’s causal history. Update (t, u) happened-before (t′, u′) iff the former is
delivered when the latter executes: (t, u)→ (t′, u′)⇔ u ∈ ck−1

j , where t′ executes
at pj and k = Kj(t′). The definition of concurrent updates remains as above.

We assume an underlying reliable causally-ordered broadcast communication
protocol, i.e., one that delivers every message to every recipient exactly once
and in an order consistent with happened-before. Such protocols are a standard
feature of distributed systems; they do not require consensus and they deliver
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to all correct processes as long as any network partition eventually recovers (as
we assumed earlier). It follows that two updates that are related by happened-
before execute at all replicas in the same sequential order: (t, u) → (t′, u′) ⇒
∀i,Ki(u) < Ki(u′). However, concurrent updates may be delivered in any order.

Definition 6 (Commutativity). Updates (t, u) and (t′, u′) commute, iff for
any reachable replica state s where both u and u′ are enabled, u (resp. u′) remains
enabled in state s • u′ (resp. s • u), and s • u • u′ ≡ s • u′ • u.

Clearly, a sufficient condition for convergence of an op-based object is that all
its concurrent operations commute. An object satisfying this condition is called
a Commutative Replicated Data Type (CmRDT).

P is a delivery precondition, i.e., effect-update method u is enabled only if
the precondition is satisfied. We interpret this temporally, i.e., delivery of u at
replica i may delayed, until P (si, u) is true. Therefore, for liveness, we now have
the added obligation to prove that delivery is eventually enabled. Therefore
we restrict our scope to preconditions for which causally-ordered broadcast is
sufficient to ensure P .

Theorem 2 (Commutative Replicated Data Type (CmRDT)). Assum-
ing causal delivery of updates and method termination, any op-based object that
satisfies the commutativity property for all concurrent updates, and whose deliv-
ery precondition is satisfied by causal delivery, is SEC.

The proof is presented in [19].

3 Some results

3.1 Fault-tolerance and the CAP theorem

The CAP theorem states that it is impossible to simultaneously ensure strong
consistency (C), availability (A) and tolerate network partition (P) [8]. As, net-
work faults unavoidably occur in a large-scale environment, a real system must
sacrifice either consistency or availability. Availability is often the top priority in
practice [3]: does this mean giving up all consistency guarantees?

No: SEC provides a solution. A SEC replica is always available for both reads
and writes, independently of network conditions. Any communicating subset of
replicas of a SEC object eventually converges, even if partitioned from the rest
of the network. SEC is weaker than strong consistency but nonetheless provides
the well-defined guarantee of strong eventual convergence.

SEC provides an extreme form of fault tolerance, as a SEC object tolerates
up to n − 1 simultaneous crashes. Remarkably, SEC does not require to solve
consensus.
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3.2 CvRDTs and CmRDTs are equivalent

Operation-based emulation of a state-based object

Theorem 3 (CmRDT emulation). Any SEC state-based object can be emu-
lated by a SEC op-based object of a corresponding interface.

Proof. Given a CvRDT represented by tuple (S,≤, s0, q, u,m), we emulate it by
a CmRDT object (S, s0, q, t, u′, P ), which we specify hereby.

State and query of CvRDT can be directly stored and processed by emulating
CmRDT using the same definitions. A prepare-update t(a) has the same interface
(accepts the same domain of arguments and returns the same domain of value)
as an update u(a). It records the result of applying update u(a) on a copy of
current replica state s: s′ = s • u(a); return value of u(a) is passed to the client.
Recorded state s′ is used as an argument of an actual effect-update u′(s′), which
is delivered to all replicas by the underlying protocol of CmRDT. Precondition
P is unrestricted and enables delivery at any time. Effect-update u′(s′) merges
received state using original CvRDT method: s • u′(s′) def= s •m(s′).

Since merge always commutes, then updates u′(s′) commute and since the
communication is reliable, we have a CmRDT with strong eventual consistency,
which propagates all updates of emulated CvRDT.

State-based emulation of an operation-based object State-based emu-
lation of an operation-based object essentially formalises the mechanics of an
epidemic reliable causal broadcast.

Theorem 4 (CvRDT emulation). Any SEC op-based object can be emulated
by a SEC state-based object of a corresponding interface.

Proof. Given a CmRDT represented by tuple (S, s0, q, t, u, P ), we emulate it by
a CvRDT object ((S ×U ×U),≤, (s0,∅,∅), q′, u′,m), which we specify hereby.

Without loss of generality, we assume that each invocation uk
i is unique across

replicas and set U denotes all possible updates. CvRDT’s state is then defined
as a triple (sm,M,D), where sm is a state of emulated CmRDT, M and D are
two add-only sets of, respectively, known and delivered updates. A relation ≤ is
defined as following: (sm,M,D) ≤ (s′m,M ′, D′)

def= M ⊆M ′ ∧D ⊆ D′.
A query q′(a) has the same interface as q(a); we define it as a trivial delegation

to q(a) on the CmRDT, sm • q(a). An update u′(a) has the same interface as
prepare-update t(a). It first delegates the invocation to prepare-update t(a) of
the CmRDT that in turn triggers effect-update u(a), which becomes a locally
known update. Finally, u′(a) uses a recursive function d to process updates:

d(sm,M,D) def=
{
d(sm • u(a),M,D ∪ {u(a)}) if ∃u(a) ∈M \D : P (sm, u(a))
(sm,M,D) otherwise

Hence, u′(a) is defined as: (sm,M,D) • u′(a) def= d(sm • t(a),M ∪ {u(a)}, D).
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Finally, merge m takes a union of known messages and processes available
updates: (sm,M,D) •m(s′m,M ′, D′)

def= d(sm,M ∪M ′, D).
Since the emulation ensures that messages are delivered exactly once to each

replica’s embedded object, in the appropriate order, and since the CvRDT con-
forms to SEC criteria, the embedded CmRDT instance is also SEC.

Note that the emulating object forms a monotonic semilattice over domain
S × U × U . Calling or delivering an operation adds it to the relevant message
set, and therefore advances the state in the partial order. The merge method m
is defined to take the union of the M sets and (possibly) updating D, and is
thus a LUB operation. This construction is similar to Wuu and Bernstein’s log
covered in Section 4.2.

3.3 SEC is incomparable to sequential consistency

A state-based replica executes a sequence of query, update, and merge methods.
In addition to its sequential behaviour, a CRDT specifies concurrent behaviours
that must satisfy the strong convergence property. As we show now, this permits
executions that would be impossible in a sequentially-consistent system.

Consider a Set CRDT S with operations add(e) and remove(e). Immediately
after add(e), the state will satisfy e ∈ S; after remove(e) the state satisfies e /∈ S.
In a sequential execution, the last update wins, e.g., after remove(e) → add(e)
the state satisfies e ∈ S. Concurrent adds or removes of different elements are
independent, e.g., after add(e) ‖ remove(e′) the state satisfies e ∈ S ∧ e′ /∈ S.

There is a choice of alternative semantics for concurrent updates of the same
element. When concurrently adding and removing the same element, the add
could win, or the remove could win, or the update of the replica with the highest
IP address could win, or the state might be reset to a distinguished state ⊥, and
so on. All these alternatives satisfy the strong convergence condition, and any
of them may be reasonable for some application.

Let us consider the add-wins alternative: after add(e) ‖ remove(e) the state
satisfies e ∈ S. Now consider the following scenario. Replica p0 executes the se-
quence add(e); remove(e′). Concurrently, replica p1 executes add(e′); remove(e).
Then, replica p3 merges the state from p0 and p1. According to the concurrent
specification, the final state at p3 satisfies e ∈ S ∧ e′ ∈ S. Such a state would
never occur in a sequentially-consistent execution, in which either remove(e) or
remove(e′) must be last. Thus, there is a SEC object that is not sequentially
consistent.

Now consider the converse. In the absence of crashes, a sequentially-consistent
object is SEC. Indeed, sequential consistency is defined by a single order of
operations, after which all replicas must terminate with the same state. However,
in the general case, sequential consistency requires consensus, which cannot be
solved in the presence of n − 1 crashes. Therefore, SEC is incomparable with
sequential consistency.
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4 Example CRDTs

We now recall some basic CRDTs that are known in the existing literature,
which we will later compose to build higher-level objects. We will use state- or
op-based specifications as most convenient. Generally, we find the state-based
style more compact and easier to reason about formally, whereas the op-based
style is often convenient for implementation.

4.1 Integer vectors and counters

Consider the state-oriented specification of a vector-of-integers object:
(Nn, [0, . . . , 0],≤n, [0, . . . , 0], value, inc,maxn). Vectors v, v′ ∈ Nn are (partially)
ordered by v ≤n v′ ⇔ ∀j ∈ [0..n − 1], v[i] ≤ v′[i]. A query invocation value()
returns a copy of the local payload. An update inc(i) increments the payload
entry at index i, that is, s • inc(i) = [s′[0], . . . , s′[n− 1]] where s′[j] = s[j] + 1 if
i = j and s′[j] = s[j] otherwise. Merging two vectors takes the per-index maxi-
mum, i.e., s •maxn(s′) = [max(s[0], s′[0]), . . . ,max(s[n− 1], s′[n− 1])]. We omit
the proof that it is a CRDT.

If each process pi is restricted to incrementing its own index inc(i), this is
the well-known vector clock [11].

An increment-only integer counter is very similar; the only difference being
that query invocation value() of a vector in state v returns |v| def=

∑
j v[j]. We

construct an integer counter that can be both incremented and decremented, by
basically associating two increment-only counters I and D, where incrementing
increments I and decrementing increments D, whereas value() returns |I| − |D|.
The ordering method ≤ is defined as (I,D) ≤ (I ′, D′) def= I ≤n I ′ ∧D ≤n D′.

4.2 U-Set, map and log

Another simple CRDT construct is an add-only set object (S,⊆
,∅, value, add(e),∪). The payload is any set; sets are ordered by inclu-
sion. A query value() returns a copy of the local payload. Update add(e) adds
element e to the set, i.e., s • add(e) = s∪ {e}. It is well-known that sets ordered
by ⊆ form a semi-lattice with ∪ as the LUB operator. It is clearly monotonic
by the definition of add. Therefore, the add-only set is a CRDT.

Wuu and Bernstein build further CRDTs by combination of these basic com-
ponents [23]. They propose a set with both add and remove operations by asso-
ciating two add-only sets A and R; adding an element adds it to A, removing it
adds it to R; query value() returns the set difference A\R. (R is often called the
tombstone set. A client is allowed to remove only an element that is currently in
A). Note that they assume that every element is unique and added only once;
we call their construct U-Set [18]. Wuu and Bernstein derive their Dictionary
data type from U-Set in the obvious way.

A Log is a replicated object, whose payload contains a set (initially empty) of
(event, timestamp) pairs. It assumes that each process maintains a vector clock
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in the usual manner [11]. When an event e occurs at process i, the process invokes
update add(e); the update method updates the vector clock (say, to state v) and
adds the pair (e, v) to the set. The timestamp ensures that each entry is unique.
The merge method takes the union of the local and a remote set.

To avoid unbounded growth, Wuu and Bernstein propose a distributed
garbage collection algorithm that discards unneeded entries. In order to tol-
erate n − 1 crashes, only an entry that has been delivered to all processes may
be discarded. If vector clock entry vi[j] = k, this implies that process i has
delivered all k first events of process pj . Each replica maintains in its payload
a copy of all remote vector clocks; for each remote site, the merge procedure
keeps the largest version. Then, a replica may discard a log entry as soon as
its timestamp is less than all the remote vector clocks. This algorithm does not
require a consensus, but it is live only if no process is crashed. However, this
may be acceptable, since the liveness of garbage collection does not impact the
correctness of the main algorithm.

This algorithm may be adapted to other data types, for instance to discarding
the A and R entries of a removed element in the U-Set.

5 Directed Graph CRDT

Now let us examine how one would design a more complex data type: a Directed
Graph CRDT. Graphs are an important general-purpose data structure. Some
important applications and algorithms work on graphs, e.g., shortest-path or
web page-rank.

5.1 Thought experiment

To motivate our graph design, consider the “thought experiment” of designing
a web search engine. The search engine uses a directed graph representing the
web structure. This graph may be used, among other things, to compute page
rank. Such an application processes large amounts of data and performs many
updates. For efficiency and scalability, processing should be asynchronous; for
responsiveness, processing should be incremental, as fast as each page is crawled.
Processing should not require any synchronisation, e.g., transactions. A CRDT
could be ideal.

We start with a Set CRDT containing some initial URLs to be crawled. A
number of crawler processes run in parallel; each one removes some URL from
the set and downloads it. (It might happen that the same page is downloaded
twice but this does not impact correctness.)

When a crawler finds a new page, it executes the corresponding addVertex.
For every page, it parses the links that it contains, comparing it with the page’s
previous version, if any, and executes the corresponding addArc and removeArc
invocations. Finally, the URLs of the linked pages are added to the set to be
crawled. Note that addArc must work even if the page at the tail of the arc has
not yet been found (it might not even exist), but such an arc is not functional; a
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payload set V , A -- sets of pairs { (element e, unique-tag w), . . . }
initial ∅,∅ -- V : vertices; A: arcs

query lookup (vertex v) : boolean b
let b = (∃w : (v, w) ∈ V )

query lookup (arc (v′, v′′)) : boolean b
let b = (lookup(v′) ∧ lookup(v′′) ∧ (∃w : ((v′, v′′), w) ∈ A)

update addVertex (vertex v)
prepare (v) : w

let w = unique() -- unique() returns a unique value
effect (v, w)

V := V ∪ {(v, w)} -- v + unique tag
update removeVertex (vertex v)

prepare (v) : R
pre lookup(v) -- precondition
pre 6 ∃v′ : lookup((v, v′)) -- v is not the head of an existing arc
let R = {(v, w)|∃w : (v, w) ∈ V } -- Collect all unique pairs in V containing v

effect (R)
V := V \ R

update addArc (vertex v′, vertex v′′)
prepare (v′, v′′) : w

pre lookup(v′) -- head node must exist
let w = unique() -- unique() returns a unique value

effect (v′, v′′, w)
A := A ∪ {((v′, v′′), w)} -- (v′, v′′) + unique tag

update removeArc (vertex v′, vertex v′′)
prepare (v′, v′′) : R

pre lookup((v′, v′′)) -- arc(v′, v′′) exists
let R = {((v′, v′′), w)|∃w : ((v′, v′′), w) ∈ A}

effect (R) -- Collect all unique pairs in A containing arc (v′, v′′)
A := A \ R

Fig. 3. Directed Graph Specification (op-based)

lookup of the corresponding arc should fail. Similarly if a node has been removed,
all arcs incident to the node disappear. In this way, the behaviour of our CRDT
will be consistent with that of web pages, which are allowed to contain non-
functional URLs. Once the linked page is created, the link become relevant, e.g.,
for navigation and for page-rank computation.

In the web application, the graph is very large; sending the state between
replicas and merging would be very costly. Therefore, we choose an op-based
approach.

5.2 Design alternatives for arc removal

A directed graph is a pair of sets (V,A), called vertices and arcs respectively,
such that A ⊆ V × V . Updates must maintain the invariant that the head and
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tail vertices of an arc both exist. Therefore, adding an arc to A has the precon-
dition that its two vertices are in V ; conversely, a vertex may be removed only
if it supports no arc; these are preconditions to prepare-update. Furthermore,
the system must ensure that concurrent addArc(v′, v′′) ‖ removeVertex(v′) do
not violate the invariant. Several alternatives may be considered: (i) Give prece-
dence to removeVertex(v′): all edges to or from v′ are removed as a side effect.
This is easy to implement, by hiding any arc that includes a removed vertex.
(ii) Give precedence to addArc(v′, v′′): if either v′ or v′′ has been removed, it
is restored. This requires recreating nodes that have being explicitly deleted.
(iii) removeVertex(v′) is delayed until all concurrent addArc operations have
executed. This requires synchronisation which violates the goals of asynchrony
and fault tolerance. There is no perfect choice. Hereafter, we choose Option (i)
because it is adequate in our application scenario.

5.3 Graph specification

Figure 3 shows our specification for a Directed-Graph CRDT. We prove that
this object is indeed a CmRDT in [19].

This CRDT maintains two sets internally, one for the vertices and one for the
arcs. To add a vertex v, the prepare-update method creates a unique identifier,
w, and the effect-update method adds the pair (v, w) to the set of vertices.
With this approach, each vertex has an unique internal identifier. If the same
vertex is added twice, the two additions will be distinguished by their two unique
identifiers. A lookup will mask the duplicates.

To remove vertex v, the prepare-update computes the set R of pairs that
contain v, i.e., all copies known in the source replica; the effect-update method
removes this same set R from the set of vertices in all replicas. As operations
are delivered in causal order, when the effect-update method executes in some
replica, for each pair in R, the correspondent addVertex operations has already
executed. Thus, unlike the state-based solution of Section 4.2, a set need not
keep tombstones.

If the same vertex is removed and added concurrently, the addVertex wins,
as the new unique identifier is not included in the set computed by the remove’s
prepare-update. This approach is consistent with a sequential execution, as the
a vertex can removed only if it is observed. The same approach is used for arcs.

To remove a vertex, the source replica checks that the vertex is observed,
and also that it is not the head of any existing arc. Conversely, to add an arc, its
head node must exist, but there is no check for existence of the tail. The lookup
method will mask the existence of such an arc. However, if the tail is added
later, then the arc becomes visible. Similarly, concurrent updates may remove a
vertex that is the head of an arc. However, the lookup method will mask such
an arc.
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6 Comparison with previous work

Eventual consistency has been an active topic of research in highly-available,
large-scale asynchronous systems [17,21]. Contrary to much previous work [3, for
instance], we take a formal approach grounded in the theory of commutativity
and semilattices.

The state-based approach was invented for register-like objects, where the
only update operation is assignment. It is in wide use in file systems such as
NFS, AFS or Coda, and in key-value stores such as Dynamo [3] and Riak. Op-
based approaches are used when the cost of transferring state is too high, e.g.,
databases, and when operation semantics are important, e.g., cooperative sys-
tems such as Bayou [13] or IceCube [15].

Although the CRDT concept was identified only recently, related designs
have been published before. Johnson et. al. invented the LWW-Register [9]. They
propose a database of registers that can be created, updated and deleted, using
the last-writer-wins (LWW) rule to arbitrate between concurrent changes. LWW
ensures a total order of operations, at the cost of losing concurrent updates.

Concurrent editing uses the related concept of Operational Transformation
(OT), due to Ellis and Gibbs [7]. To ensure responsiveness, a local operation ex-
ecutes immediately. Operations are not designed to commute; however, a replica
receiving an update transforms it against previously-executed concurrent up-
dates to achieve a similar result. OT algorithms for a decentralised architecture
have been proposed; Oster et al. show that most of them are incorrect [12]. We
believe that designing for commutativity from the start is cleaner and simpler.

The foundations of CvRDTs were introduced by Baquero and Moura [1]. We
extend their work with CmRDTs and with a number of new results. The CRDT
concept was invented by Shapiro and Preguiça on their work on Treedoc, a
Sequence CRDT for concurrent editing [14]. Logoot is another Sequence CRDT
that supports an undo mechanism based on a CRDT Counter [22].

Roh et al. [16] independently developed the related concept of Replicated
Abstract Data Type. They generalise LWW to a partial order of updates, which
they leverage to build several LWW-style classes.

Burckhardt and Leijen propose the Concurrent Revisions programming
model for shared abstract data types, in which a forked revision runs in iso-
lation until it joins again. Join is based on a three-way merge function [2]. They
show that simple sequential merge functions exist for ADTs built upon Abelian
groups. We have also demonstrated the relation between CRDTs and sequential
consistency in a similar, but more loosely-coupled, replication model.

Ducourthial et al. study algebraic structures with specific properties in order
to solve self-stabilisation problems [6]. They propose the so-called r-operator for
“silent” tasks [4]. Strong convergence can be seen as as a silent task, given a
limited number of disturbing updates. However, there are differences between
the two approaches. Whereas a self-stabilising system must tolerate arbitrary
memory corruption, a shared mutable object should change state durably only
by executing update operations. Furthermore, whereas CvRDT states constitute
a monotonic semi-lattice, the r-operator requries a total order.
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7 Conclusion

We presented the concept of a CRDT, a replicated data type for which some sim-
ple mathematical properties guarantee eventual consistency. In the state-based
style, the successive states of an object should form a monotonic semilattice,
with merge computing a least upper bound. In the op-based style, concurrent
operations should commute. Assuming only that the communication subsystem
ensures eventual delivery (in causal order for op-based objects), CRDTs are
guaranteed to converge towards a common, correct state, without requiring any
synchronisation.

We presented some simple CRDT examples, such as sets, and detailed how
to create a directed Graph CRDT, which might be used in a large-scale web
search engine. Our data types have a clean and deterministic semantics in the
presence of concurrent updates.

Eventual consistency is a critical technique in many large-scale distributed
systems, including delay-tolerant networks, sensor networks, peer-to-peer net-
works, collaborative computing, cloud computing, and so on. However, work on
eventual consistency was mostly ad-hoc so far. Although some of our CRDTs
were known before in the literature or in the folklore, this is the first work to
engage in a systematic study. We believe this is required if eventual consistency
is to gain a solid theoretical and practical foundation.

Future work is both theoretical and practical. On the theory side, this will
include understanding the class of computations that can be accomplished by
CRDTs, the complexity classes of CRDTs, the classes of invariants that can
be supported by a CRDT, the relations between CRDTs and concepts such as
self-stabilisation and aggregation, and so on. On the practical side, we plan to
implement the data types specified herein as a library, to use them in practical
applications, and to evaluate their performance analytically and experimentally.
Another direction is to support infrequent, non-critical synchronous operations,
such as committing a state or performing a global reset. We will also look into
stronger global invariants, possibly using probabilistic or heuristic techniques.
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