
Write	Fast,	Read	in	the	Past:
Causal	Consistency	for	Client-side	Apps

with	SwiftCloud

Presented	by	Marek	Zawirski
Inria	/	UPMC-LIP6,	Paris

(now	at	Google,	Zürich)

Marek	Zawirski,	Nuno	Preguiça,	Sérgio	Duarte,
Annette	Bieniusa,	Valter	Balegas,	Marc	Shapiro

Challenge:	Database	Access	for	Client-side Apps

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 1

App

App

App

App

Challenge:	Database	Access	for	Client-side Apps

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 2

App

App

App

App

A
P
I

A
P
I

Limited	boundaries	of	server-side	database	guarantees

Challenge:	Database	Access	for	Client-side Apps

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 3

App

App

App

App

� ad-hoc	on	the	client-side

A
P
I

A
P
I

Limited	boundaries	of	server-side	database	guarantees

Challenge:	Database	Access	for	Client-side Apps

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 4

A
P
I

App

App

A
P
I

App

App

A
P
I

A
P
I

Extended	boundaries	with	SwiftCloud

Challenge:	Database	Access	for	Client-side Apps

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 5

A
P
I

App

App

A
P
I

App

App

A
P
I

A
P
I

Extended	boundaries	with	SwiftCloud

• Consistent,	available and convergent	data	access

• Scalability with	#objects	and	#clients

• Fault-tolerance

Stronger	than	Eventual:	Causal	Consistency

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 6

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

bob_posts.add(“…	just	do	it!	YOLO”)

replies.add(“Alice:	totally	J”)

client	order

read

Default	on	client-side:	eventual	consistency	� anomalies

Stronger	than	Eventual:	Causal	Consistency

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 7

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

bob_posts.add(“…	just	do	it!	YOLO”)

replies.add(“Alice:	totally	J”)

client	order

read

Default	on	client-side:	eventual	consistency	� anomalies

read

Stronger	than	Eventual:	Causal	Consistency

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 8

!?!

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

bob_posts.add(“…	just	do	it!	YOLO”)

replies.add(“Alice:	totally	J”)

client	order

read
read

Default	on	client-side:	eventual	consistency	� anomalies

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 9

ü

Causal	consistency:	reads	from	causally-closed	snapshot

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

replies.add(“Alice:	totally	J”)

read
read

client	order

Stronger	than	Eventual:	Causal	Consistency

bob_posts.add(“…	just	do	it!	YOLO”)

Default	on	client-side:	eventual	consistency	� anomalies

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 10

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

replies.add(“Alice:	totally	J”)

read

replies.add(“Eve:	Bob	�”)

replies:			???

client	order

Convergent	Causal	Consistency:	No	Lost	Updates

bob_posts.add(“…	just	do	it!	YOLO”)

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 11

replies:	{“Alice:	totally	J”,	“Eve:	Bob	�”}

High-level	convergent	objects[CRDTs] resolve	concurrency

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

replies.add(“Alice:	totally	J”)

client	order

read

replies.add(“Eve:	Bob	�”)

Convergent	Causal	Consistency:	No	Lost	Updates

bob_posts.add(“…	just	do	it!	YOLO”)

Challenge:	Causal	Consistency	with	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 12

objB.op

objB.op

objA.op

objC.op

[PRACTI,	NSDI’06]
Challenge:	Causal	Consistency	with	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 13

objB.op

objB.op

objA.op

objC.op
objA
objB

[PRACTI,	NSDI’06]

current	state

Challenge:	Causal	Consistency	with	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 14

objB.op

objB.op

objA.op

objC.op
objA
objB

objB
objC

[PRACTI,	NSDI’06]
Challenge:	Causal	Consistency	with	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 15

objB.op

objB.op

objA.op

objC.op

objA
objC

objA
objB

objB
objC

[PRACTI,	NSDI’06]

Challenge:	Causal	Consistency	with	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 16

objB.op

objB.op

objA.op

objC.op
objA
objB

objB
objC

[PRACTI,	NSDI’06]

objA
objC

Challenge:	Causal	Consistency	with	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 17

objB.op

objB.op

objA.op

objC.op
objA
objB

objB
objCdependencies

[PRACTI,	NSDI’06]

objB.op

objA.op

objC.op

objB.op

objA
objC

dependencies

Challenge:	Causal	Consistency	with	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 18

objB.op

objB.op

objA.op

objC.op
objA
objB

objB
objC

[PRACTI,	NSDI’06]

objB.op

objB.op1 0 2
Inherent	trade-offs	in	the	general	case:
scalability	vs.	availability	vs.	fault-tolerance

objA
objC

Approach:	Cloud-backed	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 19

DC
geo-replication

Data	Center	full	replicas:

üProvide	consistent	view												Assign	small	metadataü
4 9

DC

Approach:	Cloud-backed	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 20

DC
geo-replication

4 9

DC

lo
gcache

App

Data	Center	full	replicas:

üProvide	consistent	view												Assign	small	metadataü

Approach:	Cloud-backed	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 21

DC
geo-replication

4 9

DC

lo
gcache

App

update

Data	Center	full	replicas:

üProvide	consistent	view												Assign	small	metadataü

Approach:	Cloud-backed	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 22

DC
geo-replication

4 9

DC

lo
gcache

App

update

4 9

Data	Center	full	replicas:

üProvide	consistent	view												Assign	small	metadataü

5

Approach:	Cloud-backed	Partial	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 23

DC
geo-replication

4 9

DC

lo
gcache

App

Client	reads:	cached	fragment	of	cloud	version	� own	
log

ü High	availability								Consistency		w/read-your-writes
ü

Data	Center	full	replicas:

üProvide	consistent	view												Assign	small	metadataü

read

Potential	of	Cloud-backed	Client	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 24

Setup:	DCs	in	3	AWS	EC2 regions,	YCSB	workload,	cache=256	objects

Response	time	of	operation	[ms]

CD
F	
fo
r	
10

00
	c
lie
nt
s

Potential	of	Cloud-backed	Client	Replicas

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 25

Response	time	of	operation	[ms]

CD
F	
fo
r	
10

00
	c
lie
nt
s

Objects	in	the	cache	� immediate,	consistent	response

Setup:	DCs	in	3	AWS	EC2 regions,	YCSB	workload,	cache=256	objects

Challenge	for	the	Cloud	Approach:	Safe	DC	Failover

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 26

cache

log

Challenge	for	the	Cloud	Approach:	Safe	DC	Failover

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 27

cache

log

risky	read

Challenge	for	the	Cloud	Approach:	Safe	DC	Failover

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 28

cache

log

risky	read

operations	with
risky	dependencies

Challenge	for	the	Cloud	Approach:	Safe	DC	Failover

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 29

cache

log

risky	read

operations	with
risky	dependencies

new	DC	in	incompatible	state

Supporting	Failover	by	Conservative	Reads

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 30

cache
K=2

log

Foreign	updates:	read	version	replicated	in	K	>	1	DCs
Own	writes:	read	from	the	log,	recover	to	a	new	DC

Supporting	Failover	by	Conservative	Reads

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 31

cache
K=2

log

Foreign	updates:	read	version	replicated	in	K	>	1	DCs
Own	writes:	read	from	the	log,	recover	to	a	new	DC

conservative	read

Supporting	Failover	by	Conservative	Reads

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 32

cache
K=2

log

ü

Foreign	updates:	read	version	replicated	in	K	>	1	DCs
Own	writes:	read	from	the	log,	recover	to	a	new	DC

new	DC	in	compatible	state

Experiment:	Injection	of	Short	DC	Disconnection

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 33

re
sp
on

se
	t
im

e	
[m

s]

Experiment:	Injection	of	Short	DC	Disconnection

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 34

remote	reads

fast	conservative	reads

re
sp
on

se
	t
im

e	
[m

s]

Experiment:	Injection	of	Short	DC	Disconnection

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 35

remote	reads

fast	conservative	reads

remote	ops:	smooth	failover

…	unaffected	…

re
sp
on

se
	t
im

e	
[m

s]

Experiment:	Injection	of	Short	DC	Disconnection

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 36

Trade-off	controlled	by	K:	staleness	vs.	availability
• Staleness	negligible	in	most	K=2	setups,	<	1%	reads
• In	cherry-picked	unfavorable	setup,	1.0–2.5%	reads

remote	reads

fast	conservative	reads

remote	ops:	smooth	failover

…	unaffected	…

re
sp
on

se
	t
im

e	
[m

s]
Challenge	for	the	Cloud	Approach:	Protocol	Retries

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 37

inc() 44

x=0 x=0x=0

x=1

time

x.inc()
(x=1)

Challenge	for	the	Cloud	Approach:	Protocol	Retries

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 38

inc() 44

inc() 3

x=0 x=0x=0

x=1

x=1

x.inc()
(x=1)

Challenge	for	the	Cloud	Approach:	Protocol	Retries

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 39

inc() 44

inc() 33

x=0 x=0x=0

x=1

x=1

x.inc()
(x=1)

Challenge	for	the	Cloud	Approach:	Protocol	Retries

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 40

inc() 44

inc() 33

inc() 3inc()4geo-replication

x.inc()
(x=1)

x=0 x=0x=0

x=1

x=1

x=2

Challenge	for	the	Cloud	Approach:	Protocol	Retries

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 41

duplicate	delivery!

inc() 44

inc() 33

inc() 3inc()4geo-replication

x.inc()
(x=1)

x=0 x=0x=0

x=1

x=1

x=2

Safe	Retries	with	Decoupled	Metadata

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 42

geo-replication

inc() 44

inc() 33

3inc()4

1

1

4

1
~

1 ~

Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

ü

safe:	≤	1	delivery

3

x=0 x=0x=0

x.inc()
(x=1) x=1

x=1

x=1

1

Safe	Retries	with	Decoupled	Metadata

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 43

geo-replication

inc() 44

inc() 33

3inc()4

1

1

4

1
~

1 ~

Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

ü

safe:	≤	1	delivery

3

x=0 x=0x=0

x.inc()
(x=1) x=1

x=1

x=1

1

Safe	Retries	with	Decoupled	Metadata

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 44

geo-replication

inc() 44

inc() 33

3inc()4

1

1

4

1
~

1 ~

Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

Extension:	log	pruning	independent	of	client	availability

ü

safe:	≤	1	delivery

3

x=0 x=0x=0

x.inc()
(x=1) x=1

x=1

x=1

1

#	client	replicas

Experiment:	Size	of	Metadata	on	Client-DC	Link

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 45

1

10

100

1K

m
et
ad
at
a	
/	
up

da
te
	[B

]

SwiftCloud’s decoupled	metadata:
const size

Setup:	3DCs,	YCSB	B	uniform	workload

Client-assigned	vectors[PRACTI,	NSDI’06]:
unbounded	overhead

Summary

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 46

SwiftCloud provides	client-side apps:

• Consistent,	available and convergent	object	database

• Scalability:	full	replicas	at	DC	back	partial	at	client
� small	causality	metadata	(<	15B/update)

• Fast	failover	thanks	to	conservative	reads	(<	1%	stale)

• Safe	retry	of	interrupted	transfer	and	safe	log	pruning		
thanks	to	decoupled	metadata

Research	prototype	at	github.com/SyncFree/SwiftCloud

SwiftCloud compared	to	“Lazy	Replication”

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 47

• Assume	client-side	application	logic
• Describe	causal	consistency	support	
• Support	communication	with	multiple	servers
• Use	decoupled	metadata

• DB	=	RDT	objects	+	global	
transactions

• Supports	partial	client	
replicas =>	fast	reads	and	
read-your-writes

• K-stability-driven	trade-off
• GC	independent	of	clients

• Monolithic	DB

• No	client-side	replicas

• Stability	discussion
• Physical-clock-driven	GC
• More	consistency	choices

Challenge	for	the	Cloud	Approach:	Protocol	Retries

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 48

cache

log

inc 3

inc 4

duplicate	delivery!

inc 4

Safe	Retries	with	Decoupled	Metadata

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 49

cache

log

inc 4

inc 3

1

1
4 ü

safe:	≤	1	delivery

Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

Safe	Retries	with	Decoupled	Metadata

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 50

cache

log

inc 4

inc 3

1

1
4 ü

safe:	≤	1	delivery

Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

Safe	Retries	with	Decoupled	Metadata

Zawirski et	al.,	Write	Fast,	Read	in	the	Past:	Causal	Consistency	for	Client-side	Applications	with	SwiftCloud 51

cache

log

inc 4

inc 3

1

1
4 ü

safe:	≤	1	delivery

Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

Extension:	log	pruning	independent	of	client	availability

