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Limited	boundaries	of	server-side	database	guarantees
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Extended	boundaries	with	SwiftCloud
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Extended	boundaries	with	SwiftCloud

• Consistent,	available and convergent	data	access

• Scalability with	#objects	and	#clients

• Fault-tolerance

Stronger	than	Eventual:	Causal	Consistency
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bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

bob_posts.add(“…	just	do	it!	YOLO”)

replies.add(“Alice:	totally	J”)

client	order

read

Default	on	client-side:	eventual	consistency	� anomalies
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bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

bob_posts.add(“…	just	do	it!	YOLO”)

replies.add(“Alice:	totally	J”)
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read
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Default	on	client-side:	eventual	consistency	� anomalies
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ü

Causal	consistency:	reads	from	causally-closed	snapshot

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

replies.add(“Alice:	totally	J”)

read
read

client	order

Stronger	than	Eventual:	Causal	Consistency

bob_posts.add(“…	just	do	it!	YOLO”)

Default	on	client-side:	eventual	consistency	� anomalies
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bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

replies.add(“Alice:	totally	J”)

read

replies.add(	“Eve:	Bob	�”)

replies:			???

client	order

Convergent	Causal	Consistency:	No	Lost	Updates

bob_posts.add(“…	just	do	it!	YOLO”)
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replies:	{“Alice:	totally	J”,	“Eve:	Bob	�”}

High-level	convergent	objects[CRDTs] resolve	concurrency

bob_posts.add(“don’t	think	of	visiting	Vancouver…”)

replies.add(“Alice:	totally	J”)

client	order

read

replies.add(	“Eve:	Bob	�”)

Convergent	Causal	Consistency:	No	Lost	Updates

bob_posts.add(“…	just	do	it!	YOLO”)
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Challenge:	Causal	Consistency	with	Partial	Replicas
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objB.op

objB.op1 0 2
Inherent	trade-offs	in	the	general	case:
scalability	vs.	availability	vs.	fault-tolerance
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Approach:	Cloud-backed	Partial	Replicas
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DC
geo-replication

Data	Center	full	replicas:

üProvide	consistent	view												Assign	small	metadataü
4 9
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Approach:	Cloud-backed	Partial	Replicas
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Client	reads:	cached	fragment	of	cloud	version	� own	
log

ü High	availability								Consistency		w/read-your-writes
ü

Data	Center	full	replicas:

üProvide	consistent	view												Assign	small	metadataü

read



Potential	of	Cloud-backed	Client	Replicas
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Setup:	DCs	in	3	AWS	EC2 regions,	YCSB	workload,	cache=256	objects
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Potential	of	Cloud-backed	Client	Replicas
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Objects	in	the	cache	� immediate,	consistent	response

Setup:	DCs	in	3	AWS	EC2 regions,	YCSB	workload,	cache=256	objects

Challenge	for	the	Cloud	Approach:	Safe	DC	Failover
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Challenge	for	the	Cloud	Approach:	Safe	DC	Failover
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Supporting	Failover	by	Conservative	Reads
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Foreign	updates:	read	version	replicated	in	K	>	1	DCs
Own	writes:	read	from	the	log,	recover	to	a	new	DC

Supporting	Failover	by	Conservative	Reads
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Foreign	updates:	read	version	replicated	in	K	>	1	DCs
Own	writes:	read	from	the	log,	recover	to	a	new	DC

new	DC	in	compatible	state

Experiment:	Injection	of	Short	DC	Disconnection
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Trade-off	controlled	by	K:	staleness	vs.	availability
• Staleness	negligible	in	most	K=2	setups,	<	1%	reads
• In	cherry-picked	unfavorable	setup,	1.0–2.5%	reads
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Challenge	for	the	Cloud	Approach:	Protocol	Retries
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Challenge	for	the	Cloud	Approach:	Protocol	Retries
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duplicate	delivery!
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Safe	Retries	with	Decoupled	Metadata
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Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary
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safe:	≤	1	delivery

3

x=0 x=0x=0

x.inc()
(x=1) x=1

x=1

x=1

1

Safe	Retries	with	Decoupled	Metadata
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Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

Extension:	log	pruning	independent	of	client	availability
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#	client	replicas

Experiment:	Size	of	Metadata	on	Client-DC	Link
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SwiftCloud’s decoupled	metadata:
const size

Setup:	3DCs,	YCSB	B	uniform	workload

Client-assigned	vectors[PRACTI,	NSDI’06]:
unbounded	overhead

Summary
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SwiftCloud provides	client-side apps:

• Consistent,	available and convergent	object	database

• Scalability:	full	replicas	at	DC	back	partial	at	client
� small	causality	metadata	(<	15B/update)

• Fast	failover	thanks	to	conservative	reads	(<	1%	stale)

• Safe	retry	of	interrupted	transfer	and	safe	log	pruning		
thanks	to	decoupled	metadata

Research	prototype	at	github.com/SyncFree/SwiftCloud

SwiftCloud compared	to	“Lazy	Replication”
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• Assume	client-side	application	logic
• Describe	causal	consistency	support	
• Support	communication	with	multiple	servers
• Use	decoupled	metadata

• DB	=	RDT	objects	+	global	
transactions

• Supports	partial	client	
replicas =>	fast	reads	and	
read-your-writes

• K-stability-driven	trade-off
• GC	independent	of	clients

• Monolithic	DB

• No	client-side	replicas

• Stability	discussion
• Physical-clock-driven	GC
• More	consistency	choices
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Safe	Retries	with	Decoupled	Metadata
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Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

Safe	Retries	with	Decoupled	Metadata
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Safe	Retries	with	Decoupled	Metadata
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Solution:			client-assigned	timestamps	for	safety
+	1..N	DC	timestamps	for	efficient	summary

Extension:	log	pruning	independent	of	client	availability


