

PUTTING CONSISTENCY BACK INTO EVENTUAL CONSISTENCY

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça NOVA LINCS / U. Nova de Lisboa

Mahsa Najafzadeh, Marc Shapiro INRIA, LIP6

NOVALINCS

INTERNET SERVICES NOWADAYS

- Services operate on a global scale.
- An unprecedented number of people are using internet services.

GEO-REPLICATION Tournament Tournament Player Player Sonic А Sonic А В Pac-man в Pac-man Mario Mario Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

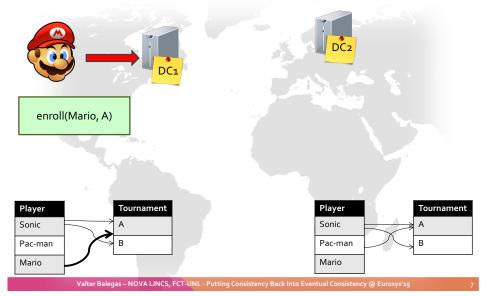
GEO-REPLICATION

enroll(Pac-man, A)

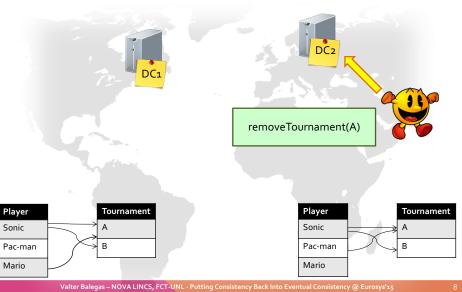
NOVALINCS

NOVALINCS

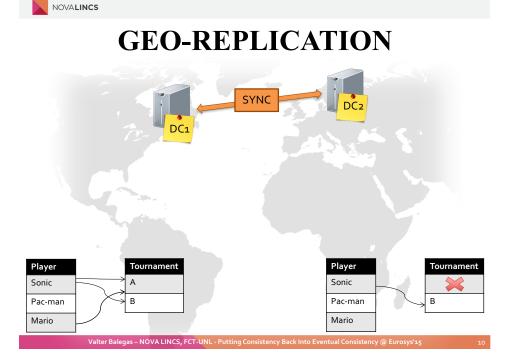
Player


Sonic

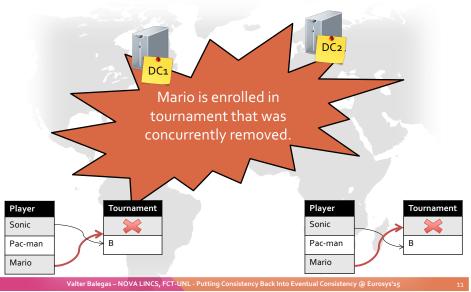
Mario



NOVALINCS

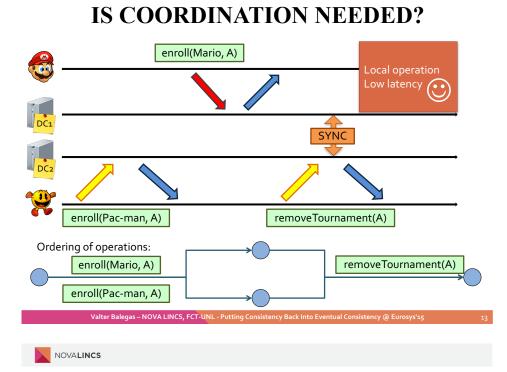

GEO-REPLICATION

GEO-REPLICATION



<section-header><complex-block><complex-block><complex-block><complex-block>

NOVALINCS


GEO-REPLICATION

NOVALINCS

STRONG CONSISTENCY

EXPLICIT CONSISTENCY

- Programmer specifies application invariant.
- System ensures that every state transition preserves the invariant.
- Opportunity to improve performance by not restricting execution ordering.

OUTLINE

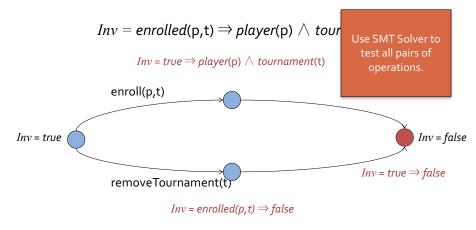
- Background
- Explicit Consistency
- Indigo
- Evaluation
- Conclusion

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

NOVALINCS

A METHODOLOGY FOR EXPLICIT CONSISTENCY

- Identify *I-offenders*
 - Static analysis identifies operations that may break invariants when executed concurrently.
- Choose reservations
 - Efficient mechanism to execute *I-offenders* avoiding coordination.
- Instrument application code with selected mechanism.


A METHODOLOGY FOR EXPLICIT CONSISTENCY

- Identify *I-offenders*
 - Static analysis identifies operations that may break invariants when executed concurrently.
- Choose reservations
 - Efficient mechanism to execute *I-offenders* avoiding coordination.
- Instrument application code with selected mechanism.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

NOVALINCS

STATIC ANALYSIS: ALGORITHM

STATIC ANALYSIS: APPLICATION MODEL

- Programmer specifies:
 - Invariant:

"Players can only participate in existing tournaments."

Inv = enrolled(p,t) \Rightarrow player(p) \land tournament(t)

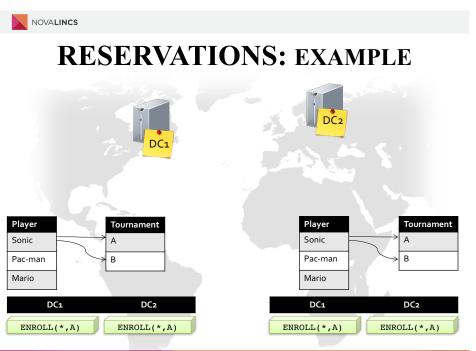
- Operations' side effects:

- enroll (p,t): {enrolled(p,t) := true }
- removeTournament(t): { tournament(t) := false}

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

NOVALINCS

A METHODOLOGY FOR EXPLICIT CONSISTENCY

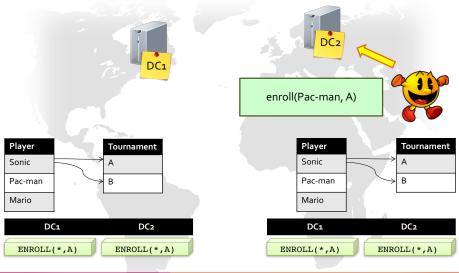

- Identify *I-offenders*
 - Static analysis identifies operations that may break invariants when executed concurrently.
- Choose reservations
 - Efficient mechanism to execute *I-offenders* avoiding coordination.
- Instrument application code with selected mechanism.

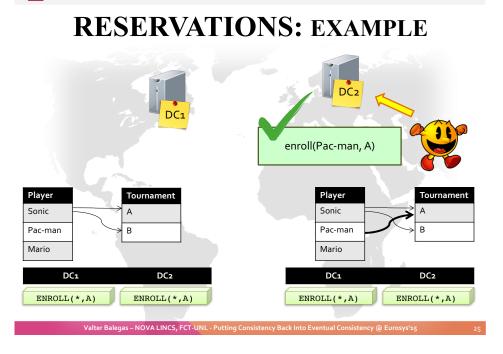
RESERVATIONS

- Mechanisms to control the execution of *I-offenders* without breaking invariants.
- Coordination outside the operation flow.
- Different reservations for different invariants:

Invariant type	Reservation
Generic	Multi-level Lock
Numeric	Escrow
Referential Integrity	Multi-level Lock
Uniqueness	UID Generator
Disjunction	Multi-level Mask
Range partition	Partition Lock

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15


RESERVATIONS: MULTI-LEVEL LOCK


- Protects the execution of conflicting operations.
- Only allow the execution of one type of operation at a time.
- Operation can be executed by multiple clients that hold the lock.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

NOVALINCS

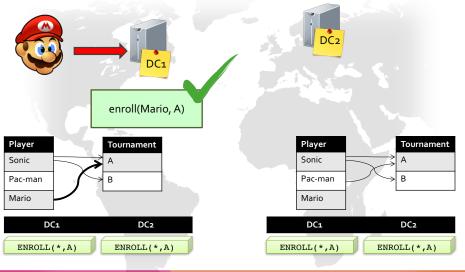
RESERVATIONS: EXAMPLE

RESERVATIONS: EXAMPLE enroll(Mario, A) Player Tournament Player Tournament Sonic Sonic А А Pac-man Pac-man В В Mario Mario

NOVALINCS

DC1

ENROLL(*,A)


NOVALINCS

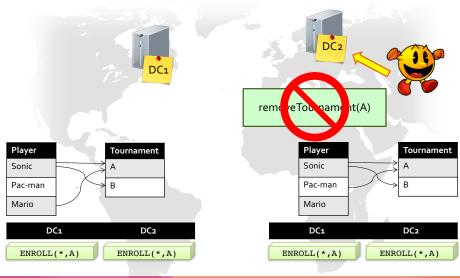
DC2

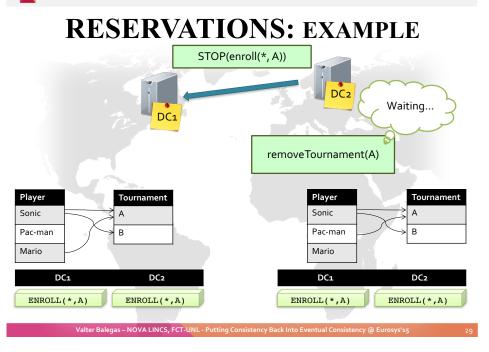
ENROLL(*,A)

NOVALINCS

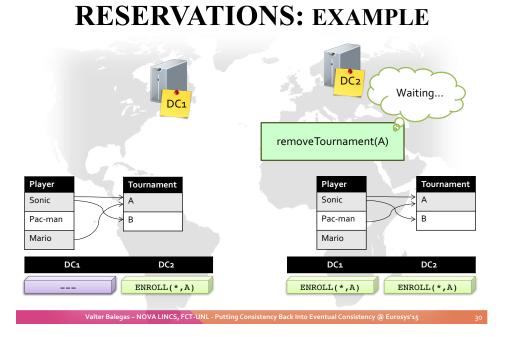
RESERVATIONS: EXAMPLE

RESERVATIONS: EXAMPLE

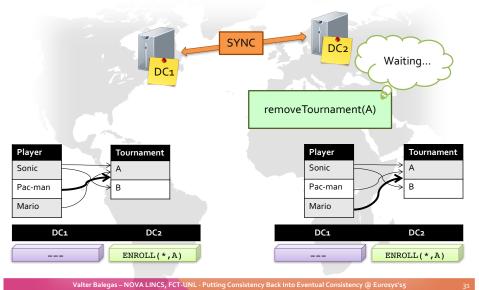

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15


DC1

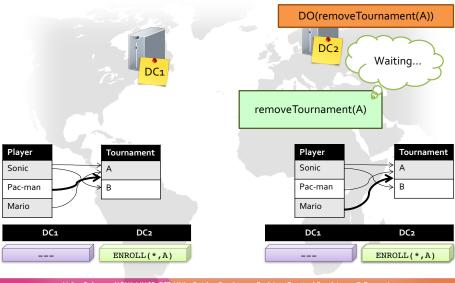
ENROLL(*,A)


DC2

ENROLL(*,A)



NOVALINCS



NOVALINCS

RESERVATIONS: EXAMPLE

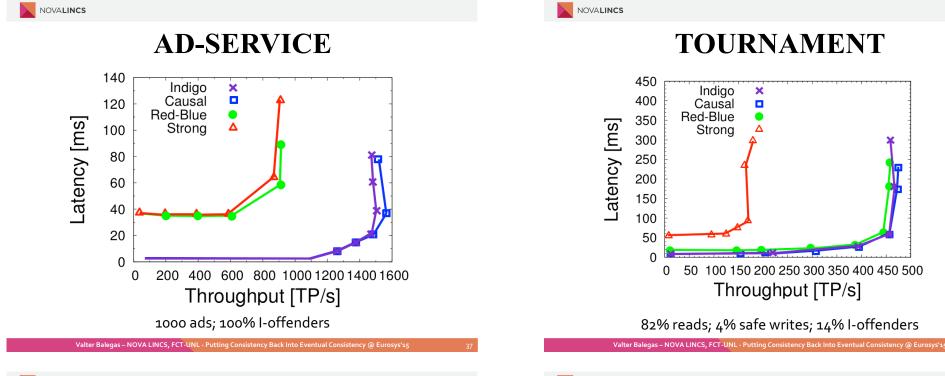
RESERVATIONS: EXAMPLE

RESERVATIONS: EXAMPLE	
DC1	DC2
	removeTournament(A)
Player Tournament Sonic A	Player Tournament Sonic
Pac-man B Mario	Pac-man B Mario
DC1 DC2	DC1 DC2
ENROLL(*, A)	REMOVE_TRNMT (A)
Valter Balegas – NOVA LINCS, FCT-UNL - Putting Cor	sistency Back Into Eventual Consistency @ Eurosys'15 33
NOVALINCS	

EVALUATION

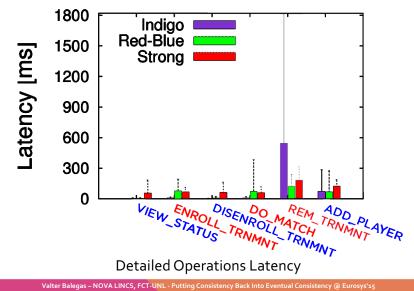
- How well does the system scale?
- What is the latency of operations?
- Behavior with more reservations per operation?
- Applicability of the solution.

INDIGO


- Middleware that provides Explicit consistency on top of KV-Stores.
- Requires only properties that are known to be efficient.
- Can be extended with new reservations.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

NOVALINCS

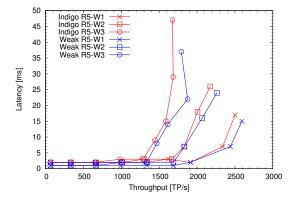

DEPLOYMENT

- Data-centers deployed in AWS:
 - 3 Regions (EU, US-EAST/WEST);
 - N app-servers connect to local DBs;
 - Clients submit operations to the app-server in close loop.
- Compare performance:
 - Causal Consistency
 - Strong Consistency (Writes to single server)
 - Red-Blue Consistency (Causal + Writes to single server)
 - Explicit Consistency (Causal + Reservations)

NOVALINCS

TOURNAMENT: OPERATIONS LATENCY

CONCLUSIONS

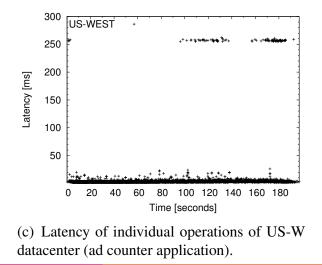

• Explicit Consistency successfully reduces coordination:

NOVALINCS

- Programmers provide simple annotations;
- Static analysis detects conflicting operations;
- Low-latency operations with reservations.
- Performance comparable to Causal consistency.

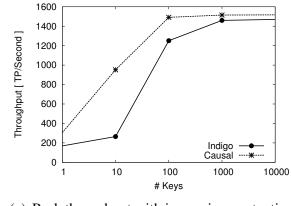
Adding more reservations

(b) Peak throughput with an increasing number of invariants (ad counter application).


Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15

NOVALINCS


Latency over time

QUESTIONS?

NOVALINCS

Overhead with increasing contention

(a) Peak throughput with increasing contention (ad counter application).