
PUTTING CONSISTENCY BACK
INTO EVENTUAL CONSISTENCY

Valter Balegas, Sérgio Duarte, Carla Ferreira,
Rodrigo Rodrigues, Nuno Preguiça
NOVA LINCS / U. Nova de Lisboa

Mahsa Najafzadeh, Marc Shapiro
INRIA, LIP6

INTERNET SERVICES NOWADAYS

• Services operate on a global scale.

• An unprecedented number of people are using
internet services.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 2

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 3

20 ms

150 ms

20 ms

SYNC DC2

DC1

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 4

DC2

DC1

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 5

Tournament

A

B

Player

Sonic

Pac-man

Mario

Tournament

A

B

Player

Sonic

Pac-man

Mario

DC2

DC1

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 6

enroll(Pac-man, A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 7

enroll(Mario, A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 8

removeTournament(A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 9

removeTournament(A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 10

SYNC

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 11

Mario is enrolled in
tournament that was

concurrently removed.

DC2

DC1

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

Tournament

B

Tournament

B

STRONG CONSISTENCY

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 12

DC1

DC2

enroll(Pac-man, A)

SYNC

Ordering of operations:

enroll(Mario, A) removeTournament(A)

enroll(Pac-man, A)

SYNC

enroll(Mario, A)

removeTournament(A)

SYNC

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 13

IS COORDINATION NEEDED?

DC1

DC2

enroll(Pac-man, A)

Ordering of operations:

enroll(Mario, A) removeTournament(A)

enroll(Pac-man, A)

enroll(Mario, A)

removeTournament(A)

SYNC

Local operation
Low latencyJ

OUTLINE

• Background
• Explicit Consistency
• Indigo
• Evaluation
• Conclusion

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 14

EXPLICIT CONSISTENCY

• Programmer specifies application invariant.

• System ensures that every state transition
preserves the invariant.

• Opportunity to improve performance by not
restricting execution ordering.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 15

A METHODOLOGY FOR
EXPLICIT CONSISTENCY

• Identify I-offenders
– Static analysis identifies operations that may break

invariants when executed concurrently.

• Choose reservations
– Efficient mechanism to execute I-offenders avoiding

coordination.

• Instrument application code with selected
mechanism.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 16

A METHODOLOGY FOR
EXPLICIT CONSISTENCY

• Identify I-offenders
– Static analysis identifies operations that may break

invariants when executed concurrently.

• Choose reservations
– Efficient mechanism to execute I-offenders avoiding

coordination.

• Instrument application code with selected
mechanism.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 17

STATIC ANALYSIS: APPLICATION MODEL

• Programmer specifies:
– Invariant:

“Players can only participate in existing tournaments.”

– Operations’ side effects:

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 18

Inv = enrolled(p,t) � player(p) � tournament(t)

{enrolled(p,t) := true } enroll (p,t):

removeTournament(t): { tournament(t) := false}

STATIC ANALYSIS: ALGORITHM

Inv = enrolled(p,t) � player(p) � tournament(t)

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 19

enroll(p,t)

removeTournament(t)

Inv = true Inv = false

Inv = true� player(p) � tournament(t)

Use SMT Solver to
test all pairs of

operations.

Inv = enrolled(p,t) � false

Inv = true� false

A METHODOLOGY FOR
EXPLICIT CONSISTENCY

• Identify I-offenders
– Static analysis identifies operations that may break

invariants when executed concurrently.

• Choose reservations
– Efficient mechanism to execute I-offenders avoiding

coordination.

• Instrument application code with selected
mechanism.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 20

RESERVATIONS
• Mechanisms to control the execution of I-offenders

without breaking invariants.

• Coordination outside the operation flow.

• Different reservations for different invariants:

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 21

Invariant type Reservation
Generic Multi-level Lock

Numeric Escrow

Referential Integrity Multi-level Lock

Uniqueness UID Generator

Disjunction Multi-level Mask

Range partition Partition Lock

RESERVATIONS: MULTI-LEVEL LOCK

• Protects the execution of conflicting
operations.

• Only allow the execution of one type of
operation at a time.

• Operation can be executed by multiple clients
that hold the lock.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 22

ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 23

Tournament

A

B

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

DC1 DC2

ENROLL(*,A) ENROLL(*,A)

DC1 DC2

ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 24

enroll(Pac-man, A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

DC1 DC2

ENROLL(*,A)

DC1 DC2

ENROLL(*,A)ENROLL(*,A) ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 25

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

enroll(Pac-man, A)

DC1 DC2

ENROLL(*,A)

DC1 DC2

ENROLL(*,A)ENROLL(*,A) ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 26

enroll(Mario, A)

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 26

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

DC1 DC2

ENROLL(*,A)

DC1 DC2

ENROLL(*,A)ENROLL(*,A) ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 27

enroll(Mario, A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

DC1 DC2

ENROLL(*,A)

DC1 DC2

ENROLL(*,A)ENROLL(*,A) ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 28

removeTournament(A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

DC1 DC2

ENROLL(*,A)

DC1 DC2

ENROLL(*,A)ENROLL(*,A) ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 29

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

STOP(enroll(*, A))

removeTournament(A)

Waiting…

DC1 DC2

ENROLL(*,A)

DC1 DC2

ENROLL(*,A)ENROLL(*,A) ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 30

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

removeTournament(A)

Waiting…

DC1 DC2

ENROLL(*,A)

DC1 DC2

ENROLL(*,A)--- ENROLL(*,A) ENROLL(*,A)

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 31

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

SYNC DC2

DC1

Tournament

A

B

Tournament

A

B

removeTournament(A)

Waiting…

DC1 DC2 DC1 DC2

ENROLL(*,A)---ENROLL(*,A) REMOVE_TRNMT(A)---

RESERVATIONS: EXAMPLE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 32

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

removeTournament(A)

Waiting…

DC1 DC2 DC1 DC2

DO(removeTournament(A))

ENROLL(*,A)ENROLL(*,A)

REMOVE_TRNMT(A)---

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 33

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

RESERVATIONS: EXAMPLE

DC2

DC1

Tournament

A

B

Tournament

B

removeTournament(A)

DC1 DC2 DC1 DC2

---ENROLL(*,A)

INDIGO

• Middleware that provides Explicit consistency
on top of KV-Stores.

• Requires only properties that are known to be
efficient.

• Can be extended with new reservations.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 34

EVALUATION

• How well does the system scale?

• What is the latency of operations?

• Behavior with more reservations per
operation?

• Applicability of the solution.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 35

DEPLOYMENT
• Data-centers deployed in AWS:

– 3 Regions (EU, US-EAST/WEST);
– N app-servers connect to local DBs;
– Clients submit operations to the app-server in close loop.

• Compare performance:
– Causal Consistency
– Strong Consistency (Writes to single server)

– Red-Blue Consistency (Causal + Writes to single server)

– Explicit Consistency (Causal + Reservations)

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 36

AD-SERVICE

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 37

1000 ads; 100% I-offenders

TOURNAMENT

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 38

82% reads; 4% safe writes; 14% I-offenders

TOURNAMENT: OPERATIONS LATENCY

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 39

Detailed Operations Latency

CONCLUSIONS

• Explicit Consistency successfully reduces
coordination:
– Programmers provide simple annotations;
– Static analysis detects conflicting operations;
– Low-latency operations with reservations.

• Performance comparable to Causal consistency.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 40

QUESTIONS?

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 41

Adding more reservations

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 42

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 2. Peak throughput (ad
counter application).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 3. Peak throughput (tourna-
ment application).

 0

 300

 600

 900

 1200

 1500

 1800

VIEW_STATUS

ENROLL_TOURNAMENT

DISENROLL_TOURNAMENT

DO_MATCH

REM_TOURNAMENT

ADD_PLAYER

L
a
te

n
cy

 [
m

s]

Indigo
Red-Blue

Strong

Figure 4. Average latency per op.
type - Indigo (tournament app.).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000 10000

T
h

ro
u

g
h

p
u

t
[

T
P

/S
e

co
n

d
]

Keys

Indigo
Causal

(a) Peak throughput with increasing contention
(ad counter application).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo R5-W1
Indigo R5-W2
Indigo R5-W3
Weak R5-W1
Weak R5-W2
Weak R5-W3

(b) Peak throughput with an increasing number
of invariants (ad counter application).

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

L
a

te
n

cy
 [

m
s]

Time [seconds]

US-WEST

(c) Latency of individual operations of US-W
datacenter (ad counter application).

Figure 5. Micro-benchmarks.

datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.

Latency over time

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 43

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

L
a
te

n
cy

 [
m

s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 2. Peak throughput (ad
counter application).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

L
a
te

n
cy

 [
m

s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 3. Peak throughput (tourna-
ment application).

 0

 300

 600

 900

 1200

 1500

 1800

VIEW_STATUS

ENROLL_TOURNAMENT

DISENROLL_TOURNAMENT

DO_MATCH

REM_TOURNAMENT

ADD_PLAYER

L
a
te

n
cy

 [
m

s]

Indigo
Red-Blue

Strong

Figure 4. Average latency per op.
type - Indigo (tournament app.).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000 10000

T
h
ro

u
g
h
p
u
t
[
T

P
/S

e
co

n
d
]

Keys

Indigo
Causal

(a) Peak throughput with increasing contention
(ad counter application).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

L
a
te

n
cy

 [
m

s]

Throughput [TP/s]

Indigo R5-W1
Indigo R5-W2
Indigo R5-W3
Weak R5-W1
Weak R5-W2
Weak R5-W3

(b) Peak throughput with an increasing number
of invariants (ad counter application).

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

L
a
te

n
cy

 [
m

s]

Time [seconds]

US-WEST

(c) Latency of individual operations of US-W
datacenter (ad counter application).

Figure 5. Micro-benchmarks.

datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.

Overhead with increasing contention

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 44

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 2. Peak throughput (ad
counter application).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

L
a
te

n
cy

 [
m

s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 3. Peak throughput (tourna-
ment application).

 0

 300

 600

 900

 1200

 1500

 1800

VIEW_STATUS

ENROLL_TOURNAMENT

DISENROLL_TOURNAMENT

DO_MATCH

REM_TOURNAMENT

ADD_PLAYER

L
a

te
n

cy
 [

m
s]

Indigo
Red-Blue

Strong

Figure 4. Average latency per op.
type - Indigo (tournament app.).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000 10000

T
h
ro

u
g
h
p
u
t
[
T

P
/S

e
co

n
d
]

Keys

Indigo
Causal

(a) Peak throughput with increasing contention
(ad counter application).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

L
a
te

n
cy

 [
m

s]

Throughput [TP/s]

Indigo R5-W1
Indigo R5-W2
Indigo R5-W3
Weak R5-W1
Weak R5-W2
Weak R5-W3

(b) Peak throughput with an increasing number
of invariants (ad counter application).

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

L
a
te

n
cy

 [
m

s]

Time [seconds]

US-WEST

(c) Latency of individual operations of US-W
datacenter (ad counter application).

Figure 5. Micro-benchmarks.

datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.

