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INTERNET SERVICES NOWADAYS

• Services operate on a global scale.

• An unprecedented number of people are using 
internet services.

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 2

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 3

20 ms

150 ms

20 ms

SYNC DC2

DC1

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 4

DC2

DC1



GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 5

Tournament

A

B

Player

Sonic

Pac-man

Mario

Tournament

A

B

Player

Sonic

Pac-man

Mario

DC2

DC1

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 6

enroll(Pac-man, A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 7

enroll(Mario, A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 8

removeTournament(A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

A

B



GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 9

removeTournament(A)

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 10

SYNC

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

DC2

DC1

Tournament

A

B

Tournament

B

GEO-REPLICATION

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 11

Mario is enrolled in 
tournament that was 

concurrently removed.

DC2

DC1

Player

Sonic

Pac-man

Mario

Player

Sonic

Pac-man

Mario

Tournament

B

Tournament

B

STRONG CONSISTENCY

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 12

DC1

DC2

enroll(Pac-man, A)

SYNC

Ordering of operations:

enroll(Mario, A) removeTournament(A)

enroll(Pac-man, A)

SYNC

enroll(Mario, A)

removeTournament(A)

SYNC



Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 13

IS COORDINATION NEEDED?

DC1

DC2

enroll(Pac-man, A)

Ordering of operations:

enroll(Mario, A) removeTournament(A)

enroll(Pac-man, A)

enroll(Mario, A)

removeTournament(A)

SYNC

Local operation
Low latencyJ

OUTLINE

• Background
• Explicit Consistency
• Indigo
• Evaluation
• Conclusion
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EXPLICIT CONSISTENCY

• Programmer specifies application invariant.

• System ensures that every state transition 
preserves the invariant.

• Opportunity to improve performance by not 
restricting execution ordering.
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A METHODOLOGY FOR 
EXPLICIT CONSISTENCY

• Identify I-offenders
– Static analysis identifies operations that may break 

invariants when executed concurrently.

• Choose reservations
– Efficient mechanism to execute I-offenders avoiding 

coordination.

• Instrument application code with selected 
mechanism.
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STATIC ANALYSIS: APPLICATION MODEL

• Programmer specifies:
– Invariant:

“Players can only participate in existing tournaments.”

– Operations’ side effects:
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Inv = enrolled(p,t) � player(p) � tournament(t)

{enrolled(p,t) := true } enroll (p,t):

removeTournament(t): { tournament(t) := false}

STATIC ANALYSIS: ALGORITHM

Inv = enrolled(p,t) � player(p) � tournament(t)
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enroll(p,t)

removeTournament(t)

Inv = true Inv = false

Inv = true� player(p) � tournament(t)

Use SMT Solver to 
test all pairs of 

operations.

Inv = enrolled(p,t) � false

Inv = true� false
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RESERVATIONS
• Mechanisms to control the execution of I-offenders 

without breaking invariants.

• Coordination outside the operation flow.

• Different reservations for different invariants:
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Invariant type Reservation
Generic Multi-level Lock

Numeric Escrow

Referential Integrity Multi-level Lock

Uniqueness UID Generator

Disjunction Multi-level Mask

Range partition Partition Lock

RESERVATIONS: MULTI-LEVEL LOCK

• Protects the execution of conflicting 
operations.

• Only allow the execution of one type of 
operation at a time.

• Operation can be executed by multiple clients 
that hold the lock.
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ENROLL(*,A)

RESERVATIONS: EXAMPLE
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RESERVATIONS: EXAMPLE
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enroll(Mario, A)
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RESERVATIONS: EXAMPLE
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REMOVE_TRNMT(A)---
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INDIGO

• Middleware that provides Explicit consistency
on top of KV-Stores.

• Requires only properties that are known to be 
efficient.

• Can be extended with new reservations.
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EVALUATION

• How well does the system scale?

• What is the latency of operations?

• Behavior with more reservations per 
operation?

• Applicability of the solution.
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DEPLOYMENT
• Data-centers deployed in AWS:

– 3 Regions (EU, US-EAST/WEST);
– N app-servers connect to local DBs;
– Clients submit operations to the app-server in close loop.

• Compare performance:
– Causal Consistency
– Strong Consistency (Writes to single server)

– Red-Blue Consistency (Causal + Writes to single server)

– Explicit Consistency (Causal + Reservations)
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AD-SERVICE
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1000 ads; 100% I-offenders

TOURNAMENT
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82% reads; 4% safe writes; 14% I-offenders

TOURNAMENT: OPERATIONS LATENCY
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Detailed Operations Latency

CONCLUSIONS

• Explicit Consistency successfully reduces 
coordination:
– Programmers provide simple annotations;
– Static analysis detects conflicting operations;
– Low-latency operations with reservations.

• Performance comparable to Causal consistency.
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QUESTIONS?
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Adding more reservations
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Figure 2. Peak throughput (ad
counter application).
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Figure 3. Peak throughput (tourna-
ment application).
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Figure 4. Average latency per op.
type - Indigo (tournament app.).
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Figure 5. Micro-benchmarks.

datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.

Latency over time
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datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.

Overhead with increasing contention
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datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.


