
Co-design and Verification of
an Available File System

Mahsa Najafzadeh, Marc Shapiro, and Patrick Eugster

File System Replication

Mahsa Najafzadeh 2

Tool

Pictures

Tool

Pictures

Tool

Pictures

–Low latency
–High availability
–Fault tolerance

POSIX File Systems vs. Distribution

Mahsa Najafzadeh

POSIX:

• Assumes operations occur in a total order

• Requires a synchronous, strong consistency model

• Synchronisation is costly and not available under partition

• In practice, concurrency conflicts are rare

Distribution:

• No synchronisation: processes an update locally, propagates
effects to other replicas later.

• Weakens consistency and causes conflicts

3

Pictures

Tools

Tools

Pictures

4

IMG_1234.jpg

Add Photo

Remove PicturesPictures

Tools

Pictures

Tools

Update/Remove Conflict

IMG_1234.jpg

Tools

Conflict Example= removing a directory
while adding a file into the directory

Safety

Mahsa Najafzadeh

• Convergent: do replicas that delivered the same
updates have the same state?

• Is the invariant preserved?
• Sequential: single operation in isolation maintains

the invariant
• Concurrent execution maintains the invariant

5

Tree Invariant

• Has a fixed root node

• Root is an ancestor of every node in the tree
(reachability)

• Every node, which has a name has exactly one parent,
except the root

• No cycle in the directory structure
• Unique names within a directory

Mahsa Najafzadeh 6

Mahsa Najafzadeh

Example= sequential move operation
fails

7

 uC

BA

root

 ueff

mvDir(C,A)
I I

C

BA

root

✘

Mahsa Najafzadeh

Example= do not move directory
under self

8

 uC

BA

root mvDir(C,A)
I ✘ I

C is NOT ancestor of A

 ¬ (C ↓* A)

uPRE

C ↓* A : C is reachable from A

Example= concurrent moves fails

Mahsa Najafzadeh 9

mvDir(B,A)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

mvDirPRE: ¬ (B ↓* A)

B ↓* A : A is reachable from B

uPRE

Mahsa Najafzadeh 10

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root

BA

root

mvDirPRE: ¬ (B ↓* A)

root

BA

B ↓* A : A is reachable from B

Example= concurrent moves fails

uPRE

mvDir(B,A)

Mahsa Najafzadeh 11

mvDir(A,B)

B is NOT ancestor of A

r1

r2
BA

root
root

BA

BA

root

mvDirPRE: ¬ (B ↓* A)

I ✘

Example= concurrent moves fails

mvDir(B,A)
uPRE

root

BA

Concurrency Control

 Mahsa Najafzadeh 12

Tokens≈ concurrency control abstractions
Tokens = {τ, …}

Conflict relation ⋈ ⊆ Tokens × Tokens
 Example - mutual exclusion tokens:
 Tokens = {τ}; τ ⋈ τ
An operation’s generator may acquire a set of tokens

Operations associated with conflicting tokens cannot
be concurrent

Mahsa Najafzadeh 13

 mvDir(B, A)
r1

r2
BA

root

A B

root

Example= moving a directory while
updating its content is safe

uPRE

Mahsa Najafzadeh 14

 mvDir(B, A)
r1

r2

addFile(f,B)

BA

root

A B

root

BA

root

f

Example= moving a directory while
updating its content is ok

uPRE

Mahsa Najafzadeh 15

 mvDir(B, A)
r1

r2

addFile(f,B)

BA

root

A B

root

A B

root

f

BA

root

f

A B

root

f

Example= moving a directory while
updating its content is ok

uPRE

uPRE

16

• CAP theorem: Either (Strong) Consistency or
Availability, not both, when Partitions occur

• This is a design trade-off

When is Synchronization Necessary?

Our approach:
• Synchronize (CP) only operations where strictly

necessary for safety
• Other operations are asynchronous (AP)

Safety = convergent + invariants
Mahsa Najafzadeh

Model

Mahsa Najafzadeh 17

Effects: ueff ∈ State ➞ (State ➞ State)

Return value: uval ∈ State ➞ Value

Generator (@origin) reads state from one copy and
maps operation u to:

ueff
r1

uval

r2

origin replica

other replica
ueff

uPRE

client

Precondition
Safety

r3other replica
ueff

u

Mahsa Najafzadeh Mahsa Najafzadeh 18

Deliver(@all replicas): causally dependent messages
delivered in order

Model

Mahsa Najafzadeh

ueff
r1

uval

r2

origin replica

other replica
ueff

uPRE

Precondition
Safety

r3other replica
ueff

veff

veff

u

v

client

A Mostly-Available, Convergent and
Correct File System Design

• Allows common file system operations can run without
synchronization except for moves

• Maintains the tree invariant

• Guarantees convergence using replicated data types
[Shapiro+ 2011]
• Name conflicts:

• Merge directories
• Rename files

• Update/Remove conflicts: add-wins directory
Mahsa Najafzadeh 19

Pictures

Tools

Tools

Pictures

20

IMG_1234.jpg

Add Photo

Remove PicturesPictures

Tools

Pictures

Tools

Add-wins directory= removing a directory
while adding a file into the directory

Update/Remove Conflict
IMG_1234.jpg

Pictures

Tools

CISE Analysis: Proves Application is Correct

• Rely-Guarantee reasoning for a causally-consistent system with
only polynomial complexity

• Consists of three analysis rules:
Effector Safety:
Every effect in isolation execution maintains the invariant I (sequential
safety)

Commutativity:
Concurrent operations commute (convergence)
Stability:
Preconditions are stable under concurrency (concurrent safety)

If satisfied: the invariant I is guaranteed in every possible execution

[Gotsman et al. POPL 2016 ’Cause I’m Strong Enough: Reasoning about
Consistency Choices in Distributed Systems]

Mahsa Najafzadeh 21 Mahsa Najafzadeh

Effector Safety:
Example= move requires precondition

• do not move directory under self

22

 uC

BA

root

 ueff

mvdir(C,A)
I uPRE I

C

BA

root

invariant invariant

Mahsa Najafzadeh 23

Stability Rule:
precondition is stable under concurrent effect

precondition of u holds
ueff

σ

σ I u

I

r1

r2

uPRE

1. Effector Safety: ueff preserves I when executed
in any state satisfying uPRE

Mahsa Najafzadeh

precondition of u holds
ueff

σ

σ

veff

I u

I ?ueffI

r1

r2
veff

uPRE

24

1. Effector Safety: ueff preserves I when executed
in any state satisfying uPRE

Stability Rule:
precondition is stable under concurrent effect

Mahsa Najafzadeh 25

uPRE?

Is it preserved
after executing v?

ueff

σ

σ

veff

I u

I ?ueffI

r1

r2
veff

uPRE

Stability Rule:
precondition is stable under concurrent effect

1. Effector Safety: ueff preserves I when executed
in any state satisfying uPRE

2. Precondition Stability: uPRE will hold when ueff is
applied at any replica

1. Effector Safety: ueff preserves I when executed
in any state satisfying uPRE

2. Precondition Stability: uPRE will hold when ueff is
applied at any replica

Mahsa Najafzadeh 26

ueff

σ

σ

veff

I u

IueffI

r1

r2
veff

uPRE

Stability Rule:
precondition is stable under concurrent effect

uPRE

Necessary and Sufficient Concurrency
Controls for Move

Mahsa Najafzadeh 27

(τ(d) ⋈ τ(d))

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

T
T

T

• Add tokens, avoid mvDir || mvDir
• A mutually exclusive token for each

directory d ∈ Dir:

T

Example: avoid conflicting moves

Mahsa Najafzadeh 28

mvDir(B,A)

mvDir(A,B)

r1

BA

root

{τ(B), τ(A)}

{τ(A), τ(B)}(τ(A) ⋈ τ(A))
(τ(B) ⋈ τ(B))

✘

✔

r2

BA

root

Mahsa Najafzadeh

Verification Results

29

Applications #O
P #Tokens #Invarian

ts Anomaly Average
Time(ms)

Sequential 7 7 1 NO 278

Concurrent 7 0 1 safety
violation 1297

Fully-Asynchronous 7 0 1 duplication 2350

Mostly-Asynchronous 7 2 1 NO 1570

Mahsa Najafzadeh

Conclusion

• A rigorous approach for modeling file system
behavior for both centralized/synchronous and
replicated asynchronous semantics

• Common operations except move to run without
concurrency controls

• A hierarchical least-common ancestor concurrency
control mechanism is necessary and sufficient for
move operations

30

Mahsa Najafzadeh

• Translate the move concurrency controls into an
efficient implementation

• Integrate hard links, devices, and mounts into model

• Reason about the file system behavior in the
presence of failures

31
Q/A

Future Work

Backup Slides

Mahsa Najafzadeh22/04/16 33

Removing Token Over Source
Directory

mvDir(A,B)

r1

{τ(B), τ(C)}

r2

root

FD

B

A C

H

Mahsa Najafzadeh 34

Removing Token Over Source
Directory

root

FD

B

A C

H

mvDir(A,B)

mvDir(A,F)

r1

{τ(F)}

{τ(B), τ(C)}

r2

root

F

B

A C

H

root

FD

B

AC

H

D

Mahsa Najafzadeh 35

Removing Token Over Source
Directory

FD

B

A C

H

mvDir(A,B)

mvDir(A,F)
{τ(F)}

root

F

B

A C

H

root

FD

B

AC

H

root

FD

B

AC

H

D

root

r1

r2

{τ(B), τ(C)}

Mahsa Najafzadeh 36

Removing Token Over Destination
Directory

mvDir(A,B)

r1

{τ(A), τ(C)}

r2

root

F

B

A C

H

D

Mahsa Najafzadeh 37

Removing Token Over Destination
Directory

mvDir(A,B)

mvDir(B,H)

r1

{τ(B),τ(A)}

{τ(A), τ(C)}

r2

root

F

B

A C

H

D

F

B

A C

H

root

D

root

FD

B

A C

H Mahsa Najafzadeh 38

Removing Token Over Destination
Directory

mvDir(A,B)

mvDir(B,H)

r1

r2

root

F

B

A C

H

root

FD

B

A C

H

root

FD

B

A C

H

D {τ(A), τ(C)}

{τ(B),τ(A)}

F

B

A C

H

root

D

Mahsa Najafzadeh 39

Removing Token Over Ancestors
up to LCA

mvDir(A,B)

r1

{τ(A), τ(B)}

r2

root

F

B

A C

H

D

Mahsa Najafzadeh 40

mvDir(A,B)

mvDir(C,H)

r1

{τ(C),τ(H)}

{τ(A), τ(B)}

r2

root

F

B

A C

H

root

F

B

A C

H

root

FD

B

A C

H

D

D

Removing Token Over Ancestors
up to LCA

Mahsa Najafzadeh 41

mvDir(A,B)

mvDir(C,H)

r1

{τ(A), τ(B)}

r2

root

F

B

A C

H

root

F

B

A C

H

root

FD

B

A C

H

root

FD

B

A C

H

D

D

{τ(C),τ(H)}

Removing Token Over Ancestors
up to LCA

Mahsa Najafzadeh 42

Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

Assume that these tokens are not
sufficient and we have loop over a
node, called E, due to concurrent
move operations:

E↓….. B ↓ A …… ↓E

Mahsa Najafzadeh 43

Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

consider the left side of the loop

E↓C….. B ↓ A ……H ↓E

Mahsa Najafzadeh 44

Intuition For Move Tokens
E↓C….. B ↓ A ……H ↓E

The left side implies that one of B’s ancestors, called C,
concurrently moves to E

mvDir(C,E):

Precondition: Directory E is not a descendent of C

mvDir(A,B)

r1

r2

mvDir(C,E)

Mahsa Najafzadeh 45

mvDir(A,B)
r1

r3

mvDir(C,E)

Now, consider the right side of loop

The right side implies that E concurrently moves to
one of A’s descendants, called H

Tokens over directory H up to LCA(H,E)

r2
mvDir(E,H)

E↓C….. B ↓ A ……H ↓E

mvDir(E,H)

Mahsa Najafzadeh 46

Intuition For Move Tokens

where is LCA(H,E)?

mvDir(A,B)
r1

r2

mvDir(C,E)

Mahsa Najafzadeh 47

E↓C….. B ↓ A ……H ↓E

1) LCA(H,E) is located between A and LCA(A,B)

in this case moving E to H requires token over A
that conflicts with tokens for moving A to B

B

LCA(A,B)

A

H

LCA(H,E)

Mahsa Najafzadeh 48

E↓C….. B ↓ A ……H ↓E

2) LCA(H,E) is located under A:

E is concurrently moved under A which is not
possible because this move operation needs to
acquire tokens conflicting with mvDir(A,B)

B

LCA(A,B)

A

H

LCA(H,E)

Exploiting More Parallelism

• Concurrent moves to the same destination directory
• Conflicting tokens for each directory A ∈ Dir:

source token τs(A) and destination token τd(A)

Mahsa Najafzadeh 49

(τs(A) ⋈ τd(A))

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

TT T

T

