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–Low latency 
–High availability
–Fault tolerance

POSIX File Systems vs. Distribution
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POSIX:

• Assumes operations occur in a total order

• Requires a synchronous, strong consistency model 

• Synchronisation is costly and not available under partition

• In practice,  concurrency conflicts are rare

Distribution:

• No synchronisation: processes an update locally, propagates 
effects to other replicas later. 

• Weakens consistency and causes conflicts
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Safety
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• Convergent: do replicas that delivered the same 
updates have the same state?

• Is the invariant preserved?
• Sequential: single operation in isolation maintains  

the invariant
• Concurrent execution maintains the invariant
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Tree Invariant

• Has a fixed root node

• Root is an ancestor of every node in the tree 
(reachability)

• Every node, which has a name has exactly one parent, 
except the root

• No cycle in the directory structure
•  Unique names within a directory
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Example= sequential move operation 
fails
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Example= do not move directory 
under self
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Example= concurrent moves fails
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mvDir(B,A)
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mvDir(A,B)
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Concurrency Control
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Tokens≈ concurrency control abstractions
Tokens = {τ, …}

Conflict relation ⋈ ⊆ Tokens × Tokens
 Example - mutual exclusion tokens:  
 Tokens = {τ};  τ ⋈ τ
An operation’s generator may acquire a set of tokens

Operations associated with conflicting tokens cannot 
be concurrent
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Example= moving a directory while 
updating its content is safe
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Example= moving a directory while 
updating its content is ok
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• CAP theorem: Either (Strong) Consistency or 
Availability, not both, when Partitions occur 

• This is a design trade-off

When is Synchronization Necessary?

Our approach: 
• Synchronize (CP) only operations where strictly 

necessary for safety
• Other operations are asynchronous (AP)

Safety = convergent + invariants
Mahsa Najafzadeh



Model
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Effects: ueff ∈ State ➞ (State ➞ State)

Return value: uval ∈ State ➞ Value

Generator (@origin) reads state from one copy and 
maps operation u to: 

ueff
r1

uval 

r2

origin replica

other replica
ueff

uPRE

client

Precondition
Safety

r3other replica
ueff

u 
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Deliver(@all replicas): causally dependent messages 
delivered in order

Model
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ueff
r1

uval 

r2

origin replica

other replica
ueff

uPRE

Precondition
Safety

r3other replica
ueff

veff

veff

u 

v 

client

A Mostly-Available, Convergent and 
Correct File System Design

• Allows common file system operations can run without 
synchronization except for moves

• Maintains the tree invariant 

• Guarantees convergence using replicated data types 
[Shapiro+ 2011] 
• Name conflicts:

• Merge directories
• Rename files

• Update/Remove conflicts:  add-wins directory 
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CISE Analysis: Proves Application is Correct

• Rely-Guarantee reasoning for a causally-consistent system with 
only polynomial complexity

• Consists of  three analysis rules: 
Effector Safety:
Every effect in isolation execution maintains the invariant I (sequential 
safety)

Commutativity:
Concurrent operations commute (convergence)
Stability: 
Preconditions are stable under concurrency (concurrent safety)

If satisfied: the invariant I is guaranteed in every possible execution 

[Gotsman et al. POPL 2016 ’Cause I’m Strong Enough: Reasoning about 
Consistency Choices in Distributed Systems]
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Effector Safety: 
Example= move requires precondition

• do not move directory under self 
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root

     ueff
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Stability Rule: 
precondition is stable under concurrent effect

precondition of u holds
ueff

σ

σ I u

I

r1

r2

uPRE

1. Effector Safety:  ueff preserves I when executed 
in any state satisfying uPRE

Mahsa Najafzadeh

precondition of u holds
ueff

σ

σ

     
veff

I u

I ?ueffI

r1

r2
veff

uPRE
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1. Effector Safety:  ueff preserves I when executed 
in any state satisfying uPRE

Stability Rule: 
precondition is stable under concurrent effect
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uPRE?

Is it preserved 
after executing v?

ueff

σ

σ

     
veff

I u

I ?ueffI

r1

r2
veff

uPRE

Stability Rule: 
precondition is stable under concurrent effect

1. Effector Safety:  ueff preserves I when executed 
in any state satisfying uPRE

2. Precondition Stability: uPRE will hold when ueff is 
applied at any replica 

1. Effector Safety:  ueff preserves I when executed 
in any state satisfying uPRE

2. Precondition Stability: uPRE will hold when ueff is 
applied at any replica 
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ueff

σ

σ

     
veff

I u

IueffI

r1

r2
veff
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Stability Rule: 
precondition is stable under concurrent effect

uPRE

Necessary and Sufficient Concurrency 
Controls for Move
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(τ(d) ⋈ τ(d) )

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

T
T

T

• Add tokens, avoid mvDir || mvDir
• A mutually exclusive token for each 

directory d ∈ Dir:  

T

Example: avoid conflicting moves
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mvDir(B,A)

mvDir(A,B)
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root
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✔
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BA

root
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Verification Results
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Applications #O
P #Tokens #Invarian

ts Anomaly Average 
Time(ms)

Sequential 7 7 1 NO 278

Concurrent 7 0 1 safety 
violation 1297

Fully-Asynchronous 7 0 1 duplication 2350

Mostly-Asynchronous 7 2 1 NO 1570

Mahsa Najafzadeh

Conclusion

• A rigorous approach for modeling file system 
behavior for both centralized/synchronous and 
replicated asynchronous semantics

• Common operations except move to run without 
concurrency controls

• A hierarchical least-common ancestor concurrency 
control mechanism is necessary and sufficient for 
move operations
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• Translate the move concurrency controls into an 
efficient implementation 

• Integrate hard links, devices,  and mounts into model

•  Reason about the file system behavior in the 
presence of failures
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Q/A

Future Work

Backup Slides
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Removing Token Over Source 
Directory 
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Removing Token Over Source 
Directory 
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Removing Token Over Destination 
Directory 

mvDir(A,B)

r1

{τ(A), τ(C)}

r2
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F
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H
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Removing Token Over Destination 
Directory 
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mvDir(B,H)
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Removing Token Over Destination 
Directory 

mvDir(A,B)

mvDir(B,H)

r1
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H

root

FD
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Removing Token Over Ancestors 
up to LCA

mvDir(A,B)
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Removing Token Over Ancestors 
up to LCA
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Removing Token Over Ancestors 
up to LCA
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Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

Assume that these tokens are not 
sufficient and we have loop over a 
node, called E,  due to concurrent 
move operations:

E↓….. B ↓ A …… ↓E
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Intuition For Move Tokens

mvDir(A,B)

r1

r2

LCA(A,B)

BA

consider the left side of the loop

E↓C….. B ↓ A ……H ↓E
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Intuition For Move Tokens
E↓C….. B ↓ A ……H ↓E

The left side implies that one of B’s ancestors, called C,   
concurrently moves to E 

mvDir(C,E): 

Precondition: Directory E is not a descendent of C 

  
mvDir(A,B)

r1

r2

mvDir(C,E)
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mvDir(A,B)
r1

r3

mvDir(C,E)

Now, consider the right side of loop

The right side implies that E concurrently  moves to 
one of A’s descendants, called H

Tokens over directory H up to LCA(H,E) 

r2
mvDir(E,H)

E↓C….. B ↓ A ……H ↓E

mvDir(E,H)
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Intuition For Move Tokens

where is LCA(H,E)?

mvDir(A,B)
r1

r2

mvDir(C,E)
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E↓C….. B ↓ A ……H ↓E

1) LCA(H,E) is located between A and LCA(A,B)

in this case moving E to H requires token over A 
that conflicts with tokens for moving A to B 

B

LCA(A,B)

A

H

LCA(H,E)
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E↓C….. B ↓ A ……H ↓E

2) LCA(H,E) is located under A: 

E is concurrently moved under A which is not 
possible because this move operation needs to 
acquire tokens conflicting with mvDir(A,B)

B

LCA(A,B)

A

H

LCA(H,E)



Exploiting More Parallelism 

• Concurrent moves to the same destination directory
• Conflicting tokens for each directory A ∈ Dir:  

source token τs(A) and destination  token τd(A)
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(τs(A) ⋈ τd(A) )

r1

r2

mvDir(A,B)

root

BA

LCA(A,B)

BA

TT T

T


