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GC takes roughly 
60% of the total time

Page rank computation of 100million edge Friendster dataset
with Spark on Hotspot/Parallel Scavenge with 40GB on a 48-core machine



Outline

◼Why GC doesn’t scale?

◼Our Solution: NumaGiC

◼Evaluation
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GCs don’t scale because machines are NUMA

Hardware hides the distributed memory 
� application silently creates inter-node references
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GCs don’t scale because machines are NUMA

But memory distribution is also hidden to the GC threads
when they traverse the object graph
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GCs don’t scale because machines are NUMA

A GC thread thus silently traverses remote references
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A GC thread thus silently traverses remote references
and continues its graph traversal on any node
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GCs don’t scale because machines are NUMA

When all GC threads access any memory nodes, 
the inter-connect potentially saturates

=> high memory access latency
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How can we fix the memory locality issue?

Simply by preventing any remote memory 
access
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Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages
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Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages

And continue the graph traversal locally
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Using messages enforces local access…

…but opens up other performance challenges
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Problem1: a msg is costlier than a remote access

Node 0 Node 1

Too many messages
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Inter-node messages 
must be minimized
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Inter-node messages 
must be minimized

• Observation: app threads naturally create clusters of new allocated objs
• 99% of recently allocated objects are clustered

Node 0 Node 1
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Inter-node messages 
must be minimized

• Observation: app threads naturally create clusters of new allocated objs
• 99% of recently allocated objects are clustered

Approach: let objects 
allocated by a thread stay 
on its node



Problem2: Limited parallelism

◼Due to serialized traversal of object clusters across nodes
Node 0 Node 1

Node 1 idles while node 0 collects its memory

Lokesh Gidra 25

Problem2: Limited parallelism

◼Due to serialized traversal of object clusters across nodes

◼ Solution: adaptive algorithm
Trade-off between locality and parallelism
1. Prevent remote access by using messages when not idling
2. Steal and access remote objects otherwise

Node 0 Node 1

Node 1 idles while node 0 collects its memory
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Evaluation

◼Comparison of NumaGiC with –
1. ParallelScavenge (PS): baseline stop-the-world GC of Hotspot
2. Improved PS: PS with lock-free data structures and interleaved 

heap space
3. NAPS: Improved PS + slightly better locality, but no messages

◼Metrics
• GC throughput –

– amount of live data collected per second (GB/s)
– Higher is better

• Application performance –
– Relative to improved PS
– Higher is better
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Name Description Heap Size
Amd48 Intel80

Spark In-memory data	analytics
(page	rank	computation)

110	to	
160GB

250	to	
350GB

Neo4j Object	graph	database
(Single	Source	Shortest	Path)

110	to	
160GB

250	to	
350GB

SPECjbb2013 Business-logic server 24	to	40GB 24	to	40GB

SPECjbb2005 Business-logic	server 4 to	8GB 8	to 12GB

Experiments

1 billion edge
Friendster dataset

The 1.8 billion edge
Friendster dataset
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Hardware	settings	–
1. AMD	Magny Cours with	8	nodes,	48	threads,	256	GB	of	RAM
2. Xeon	E7-2860	with	4	nodes,	80	threads,	512	GB	of	RAM
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Improved PS NAPS NumaGiC
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NumaGiC multiplies GC performance up to 5.4X
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Improved PS NAPS NumaGiC

5.4X

2.9X

GC Throughput (GB collected per second)

Heap Sizes

Spark Neo4j SpecJBB13 SpecJBB05

on
Amd48

on
Intel80
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GC Throughput Scalability

Spark on Amd48 with a
smaller dataset of 40GB
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Spark Neo4j SpecJBB13 SpecJBB05

NAPS NumaGiC

12%

21%
37%

35%

26%

37%

33%
37%

Conclusion

◼ Performance of data-intensive apps relies on GC performance

◼Memory access locality has huge effect on GC performance

◼Enforcing locality can be detrimental for parallelism in GCs

◼ Future work: NUMA-aware concurrent GCs
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Thank You J

Large multicores provide this power

But scalability is hard to achieve 
because software stack was not designed for 

Data analytic

Cores Memory 
Banks

I/O 
controllers

Operating system

Application

Language runtime

Middleware

Hypervisor

Hadoop, Spark, 
Neo4j, Cassandra…

JVM, CLI, Python, R…

Linux, Windows…

Xen, VMWare…
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Large multicores provide this power

But scalability is hard to achieve 
because software stack was not designed for 

Data analytic

Cores Memory 
Banks

I/O 
controllers

Operating system

Application

Language runtime

Middleware

Hypervisor

Hadoop, Spark, 
Neo4j, Cassandra…

JVM, CLI, Python, R…

Linux, Windows…
Do not consider hypervisors in this talk:

Software stack is already complex
and hard to analyze!
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