
NumaGiC:
A garbage collector for big-data

on big NUMA machines

Lokesh Gidra‡, Gaël Thomas�, Julien Sopena‡,
Marc Shapiro‡, Nhan Nguyen♀

‡ LIP6/UPMC-INRIA �Telecom SudParis ♀Chalmers University

Motivation

◼Data-intensive applications need large machines with plenty of
cores and memory

Lokesh Gidra 2

Motivation

◼Data-intensive applications need large machines with plenty of
cores and memory

◼But, for large heaps, GC is inefficient on such machines

Lokesh Gidra 3

G
C

 T
hr

ou
gh

pu
t

(G
B

 c
ol

le
ct

ed
 p

er
 se

co
nd

)

Baseline PS

of cores

Ideal Scalability

Page rank computation of 100million edge Friendster dataset
with Spark on Hotspot/Parallel Scavenge with 40GB on a 48-core machine

Motivation

◼Data-intensive applications need large machines with plenty of
cores and memory

◼But, for large heaps, GC is inefficient on such machines

Lokesh Gidra 4

G
C

 T
hr

ou
gh

pu
t

(G
B

 c
ol

le
ct

ed
 p

er
 se

co
nd

)
Baseline PS

of cores

Ideal Scalability

GC takes roughly
60% of the total time

Page rank computation of 100million edge Friendster dataset
with Spark on Hotspot/Parallel Scavenge with 40GB on a 48-core machine

Outline

◼Why GC doesn’t scale?

◼Our Solution: NumaGiC

◼Evaluation

Lokesh Gidra 5

GCs don’t scale because machines are NUMA

Hardware hides the distributed memory
� application silently creates inter-node references

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

Lokesh Gidra 6

GCs don’t scale because machines are NUMA

But memory distribution is also hidden to the GC threads
when they traverse the object graph

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

GC thread

Lokesh Gidra 7

GCs don’t scale because machines are NUMA

But memory distribution is also hidden to the GC threads
when they traverse the object graph

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

GC thread

Lokesh Gidra 8

GCs don’t scale because machines are NUMA

A GC thread thus silently traverses remote references

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

GC thread

Lokesh Gidra 9

GCs don’t scale because machines are NUMA

A GC thread thus silently traverses remote references
and continues its graph traversal on any node

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

GC thread

Lokesh Gidra 10

GCs don’t scale because machines are NUMA

A GC thread thus silently traverses remote references
and continues its graph traversal on any node

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

GC thread

Lokesh Gidra 11

GCs don’t scale because machines are NUMA

When all GC threads access any memory nodes,
the inter-connect potentially saturates

=> high memory access latency

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

Lokesh Gidra 12

Outline

◼Why GC doesn’t scale?

◼Our Solution: NumaGiC

◼Evaluation

Lokesh Gidra 13

How can we fix the memory locality issue?

Simply by preventing any remote memory
access

Lokesh Gidra 14

Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

Lokesh Gidra 15

Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

Lokesh Gidra 16

Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

Remote reference � sends it to its home-node
Lokesh Gidra 17

Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages

Remote reference � sends it to its home-node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

Lokesh Gidra 18

Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages

And continue the graph traversal locally

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

Lokesh Gidra 19

Prevent remote access using messages

Enforces memory access locality
by trading remote memory accesses by messages

And continue the graph traversal locally
M

em
or

y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

Lokesh Gidra 20

Using messages enforces local access…

…but opens up other performance challenges

Lokesh Gidra 21

Problem1: a msg is costlier than a remote access

Node 0 Node 1

Too many messages

Lokesh Gidra 22

Inter-node messages
must be minimized

Problem1: a msg is costlier than a remote access

Node 0 Node 1

Too many messages

Lokesh Gidra 23

Inter-node messages
must be minimized

• Observation: app threads naturally create clusters of new allocated objs
• 99% of recently allocated objects are clustered

Node 0 Node 1

Problem1: a msg is costlier than a remote access

Node 0 Node 1

Too many messages

Lokesh Gidra 24

Inter-node messages
must be minimized

• Observation: app threads naturally create clusters of new allocated objs
• 99% of recently allocated objects are clustered

Approach: let objects
allocated by a thread stay
on its node

Problem2: Limited parallelism

◼Due to serialized traversal of object clusters across nodes
Node 0 Node 1

Node 1 idles while node 0 collects its memory

Lokesh Gidra 25

Problem2: Limited parallelism

◼Due to serialized traversal of object clusters across nodes

◼ Solution: adaptive algorithm
Trade-off between locality and parallelism
1. Prevent remote access by using messages when not idling
2. Steal and access remote objects otherwise

Node 0 Node 1

Node 1 idles while node 0 collects its memory

Lokesh Gidra 26

Outline

◼Why GC doesn’t scale?

◼Our Solution: NumaGiC

◼Evaluation

Lokesh Gidra 27

Evaluation

◼Comparison of NumaGiC with –
1. ParallelScavenge (PS): baseline stop-the-world GC of Hotspot
2. Improved PS: PS with lock-free data structures and interleaved

heap space
3. NAPS: Improved PS + slightly better locality, but no messages

◼Metrics
• GC throughput –

– amount of live data collected per second (GB/s)
– Higher is better

• Application performance –
– Relative to improved PS
– Higher is better

Lokesh Gidra 28

Name Description Heap Size
Amd48 Intel80

Spark In-memory data	analytics
(page	rank	computation)

110	to	
160GB

250	to	
350GB

Neo4j Object	graph	database
(Single	Source	Shortest	Path)

110	to	
160GB

250	to	
350GB

SPECjbb2013 Business-logic server 24	to	40GB 24	to	40GB

SPECjbb2005 Business-logic	server 4 to	8GB 8	to 12GB

Experiments

1 billion edge
Friendster dataset

The 1.8 billion edge
Friendster dataset

Lokesh Gidra 29

Hardware	settings	–
1. AMD	Magny Cours with	8	nodes,	48	threads,	256	GB	of	RAM
2. Xeon	E7-2860	with	4	nodes,	80	threads,	512	GB	of	RAM

GC Throughput (GB collected per second)

G
C

 T
hr

ou
gh

pu
t

Heap Sizes

Spark Neo4j SpecJBB13 SpecJBB05

on
Amd48

Lokesh Gidra 30

Improved PS NAPS NumaGiC

GC Throughput (GB collected per second)

G
C

 T
hr

ou
gh

pu
t

Heap Sizes

Spark Neo4j SpecJBB13 SpecJBB05

on
Amd48

NumaGiC multiplies GC performance up to 5.4X

Lokesh Gidra 31

Improved PS NAPS NumaGiC

5.4X

2.9X

GC Throughput (GB collected per second)

Heap Sizes

Spark Neo4j SpecJBB13 SpecJBB05

on
Amd48

on
Intel80

Lokesh Gidra 32

G
C

 T
hr

ou
gh

pu
t

3.6X

GC Throughput Scalability

Spark on Amd48 with a
smaller dataset of 40GB

G
C

 T
hr

ou
gh

pu
t

of nodes

Improved PS

Baseline PS

NumaGiC

Ideal Scalability

Lokesh Gidra 33

NAPS

Application speedup

Sp
ee

du
p

re
la

tiv
e

to
 Im

pr
ov

ed
 P

S

Lokesh Gidra 34

Spark Neo4j SpecJBB13 SpecJBB05

NAPS NumaGiC

94%
82%

36%

64%
55%

61%

27%
42%

Application speedup

Sp
ee

du
p

re
la

tiv
e

to
 Im

pr
ov

ed
 P

S

Lokesh Gidra 35

Spark Neo4j SpecJBB13 SpecJBB05

NAPS NumaGiC

12%

21%
37%

35%

26%

37%

33%
37%

Conclusion

◼ Performance of data-intensive apps relies on GC performance

◼Memory access locality has huge effect on GC performance

◼Enforcing locality can be detrimental for parallelism in GCs

◼ Future work: NUMA-aware concurrent GCs

Lokesh Gidra 36

Conclusion

◼ Performance of data-intensive apps relies on GC performance

◼Memory access locality has huge effect on GC performance

◼Enforcing locality can be detrimental for parallelism in GCs

◼ Future work: NUMA-aware concurrent GCs

Lokesh Gidra 37

Thank You J

Large multicores provide this power

But scalability is hard to achieve
because software stack was not designed for

Data analytic

Cores Memory
Banks

I/O
controllers

Operating system

Application

Language runtime

Middleware

Hypervisor

Hadoop, Spark,
Neo4j, Cassandra…

JVM, CLI, Python, R…

Linux, Windows…

Xen, VMWare…

Lokesh Gidra 38

Large multicores provide this power

But scalability is hard to achieve
because software stack was not designed for

Data analytic

Cores Memory
Banks

I/O
controllers

Operating system

Application

Language runtime

Middleware

Hypervisor

Hadoop, Spark,
Neo4j, Cassandra…

JVM, CLI, Python, R…

Linux, Windows…
Do not consider hypervisors in this talk:

Software stack is already complex
and hard to analyze!

Lokesh Gidra 39

