
Proving Weakly Consistent
Applications Correct

Joint work with
Hongseok Yang (Oxford), Carla Ferreira (U Nova Lisboa),

Mahsa Najafzadeh, Marc Shapiro (INRIA)

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Eventually consistent databases

• No synchronisation: process an update locally,
propagate effects to other replicas later

• Weakens consistency: deposit seen with a
delay

deposit(100)

balance = 100 balance = 100

balance ≥ 0

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance ≥ 0

balance = 0

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance ≥ 0

balance = 0

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance ≥ 0

balance = 0

deposit(100)

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance ≥ 0

balance = 0

deposit(100) • Withdrawals strongly consistent

• Deposits eventually consistent

Tune consistency:

Consistency choices

• Databases with multiple consistency levels:
‣ Commercial: Amazon DynamoDB, Basho Riak,

Microsoft DocumentDB

‣ Research: Li+ OSDI’12; Terry+ SOSP’13;
Balegas+ EuroSys’15...

• Pay for stronger semantics with latency,
possible unavailability and money

• Hard to figure out the minimum consistency
necessary to maintain correctness -
proof rule and tool

Consistency model

• Generic model - not implemented, but can
encode many existing models that are:

RedBlue consistency [Li+ 2012],
reservation locks [Balegas+ 2015],
parallel snapshot isolation [Sovran+ 2011], ...

• Causal consistency as a baseline: observe an
update ➜ observe the updates it depends on

• A construct for strengthening consistency on
demand

σ

⟦op⟧val

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

Effector

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

Effector

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦balance()⟧eff(σ) = λσ. σ

State = Z

op

⟦balance()⟧val(σ) = σ

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦deposit(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Operation semantics

σ

50

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦deposit(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Operation semantics

σ

50

150

⟦op⟧eff(σ)
⟦op⟧val

⟦deposit(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Operation semantics

• Effectors have to commute

• Eventual consistency: replicas receiving the
same messages in different orders end up in
the same state

• Replicated data types [Shapiro+ 2011]:
ready-made commutative implementations

Ensuring eventual consistency

⟦deposit(100)⟧eff(σ) = λσʹ. (σʹ + 100)

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0balance = 0

λσʹ. σʹ - 100

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Example - mutual exclusion lock:
Token = {τ}; τ ⋈ τ

Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Example - mutual exclusion lock:
Token = {τ}; τ ⋈ τ

Each operation associated with a set of tokens:
⟦op⟧tok ∈ State ➞ P(Token)

balance = 100

withdraw(100) : ✔

balance = 100

{τ}

τ ⋈ τ

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

withdraw(100) : ✔

balance = 100

Anything I don’t
know about?

 withdraw(100) : ?

{τ}

τ ⋈ τ

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100 balance = 100

withdraw(100) : ✔

balance = 0

 withdraw(100) : ?

τ ⋈ τ

{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

 withdraw(100) : ✘

balance = 0

balance = 100

withdraw(100) : ✔

τ ⋈ τ

{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

 withdraw(100) : ✘

balance = 0

deposit(100)
∅

balance = 100

withdraw(100) : ✔

τ ⋈ τ

No synchronisation
{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

 withdraw(100) : ✘

balance = 0

deposit(100)
∅

balance = 100

withdraw(100) : ✔

τ ⋈ τ

No synchronisation
{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each otherDo we always have I = (balance ≥ 0)?

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

Effect applied in a different state!

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

1. Effector safety: f preserves I when executed in
any state satisfying P

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

1. Effector safety: f preserves I when executed in
any state satisfying P

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

P(σʹ)?

1. Effector safety: f preserves I when executed in
any state satisfying P

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

P(σʹ)?

2. Precondition stability: P will hold when f is
applied at any replica

1. Effector safety: f preserves I when executed in
any state satisfying P

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

2. Precondition stability: P will hold when f is
applied at any replica

1. Effector safety: f preserves I when executed in
any state satisfying P

CISE tool: ‘Cause I’m Strong Enough

By Mahsa Najafzadeh (UPMC & INRIA)

Discharges proof obligations using Z3 SMT solver

31

32

1. Effector safety: f preserves I when executed in
any state satisfying P

32

1. Effector safety: f preserves I when executed in
any state satisfying P

✔

33

2. Precondition stability: P is preserved by
concurrent operations

33

2. Precondition stability: P is preserved by
concurrent operations

33

2. Precondition stability: P is preserved by
concurrent operations

Bug: concurrent
withdrawals may violate

the invariant

34

2. Precondition stability: P is preserved by
concurrent operations

Add a token
restricting concurrency

34

2. Precondition stability: P is preserved by
concurrent operations

✔

Add a token
restricting concurrency

Conclusion

• First proof rule and tool for proving
invariants of weakly consistent applications

• Case studies: fragments of web applications,
replicated file system in progress

• Future work: other consistency models,
automatic inference of consistency levels

