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Eventually consistent databases

• No synchronisation: process an update locally, 
propagate effects to other replicas later

• Weakens consistency: deposit seen with a 
delay
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• Deposits eventually consistent

Tune consistency:



Consistency choices

• Databases with multiple consistency levels:
‣ Commercial: Amazon DynamoDB, Basho Riak, 

Microsoft DocumentDB

‣ Research: Li+ OSDI’12; Terry+ SOSP’13;        
Balegas+ EuroSys’15...

• Pay for stronger semantics with latency, 
possible unavailability and money

• Hard to figure out the minimum consistency 
necessary to maintain correctness -       
proof rule and tool



Consistency model

• Generic model - not implemented, but can 
encode many existing models that are:

RedBlue consistency [Li+ 2012],                    
reservation locks [Balegas+ 2015],                     
parallel snapshot isolation [Sovran+ 2011], ...

• Causal consistency as a baseline: observe an 
update ➜ observe the updates it depends on

• A construct for strengthening consistency on 
demand
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• Effectors have to commute

• Eventual consistency: replicas receiving the 
same messages in different orders end up in 
the same state

• Replicated data types [Shapiro+ 2011]: 
ready-made commutative implementations

Ensuring eventual consistency

⟦deposit(100)⟧eff(σ)  =  λσʹ. (σʹ + 100)
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Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Example - mutual exclusion lock:  
Token = {τ};  τ ⋈ τ

Each operation associated with a set of tokens:              
⟦op⟧tok ∈ State ➞ P(Token)
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⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

2. Precondition stability: P will hold when f is 
applied at any replica

1. Effector safety: f preserves I when executed in 
any state satisfying P

CISE tool: ‘Cause I’m Strong Enough

By Mahsa Najafzadeh (UPMC & INRIA)

Discharges proof obligations using Z3 SMT solver
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1. Effector safety: f preserves I when executed in 
any state satisfying P
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2. Precondition stability: P is preserved by 
concurrent operations

Bug: concurrent 
withdrawals may violate 

the invariant



34

2. Precondition stability: P is preserved by 
concurrent operations

Add a token 
restricting concurrency



34

2. Precondition stability: P is preserved by 
concurrent operations

✔
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restricting concurrency



Conclusion

• First proof rule and tool for proving 
invariants of weakly consistent applications

• Case studies: fragments of web applications,  
replicated file system in progress

• Future work: other consistency models, 
automatic inference of consistency levels


