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1 Introduction

Distributed systems replicate shared data in order to improve read perfor-
mance and availability. An optimistic protocol allows a user to also update a
local replica without co-ordinating with other replicas. This improves write
availability in the presence of high network latencies, failures, or parallel
development, but allows replicas to diverge. This is especially useful when
using mobile devices with intermittent connectivity.

Repairing divergence after the fact, called reconciliation, combines the
isolated updates [17]. In operation-based (or log-based) approaches, up-
date actions are recorded in a log; reconciliation replays the combined ac-
tions, from the initial state, according to some schedule.

Sometimes a set of updates conflicts, i.e., running them all would violate
an invariant. Most systems avoid the violation by dropping one or more of
the updates. For this reason disconnected updates are said tentative.

Dropping an action may have a high impact. Think of a calendar sys-
tem dropping an important meeting, or a sales-support tool for a travelling
salesman that would drop an order.

1.1 Limitations of existing systems

Many existing reconciliation systems (Section 7) are dedicated to a single
application semantics.

Others are general-purpose and use a simple syntactic criterion such as
timestamps to decide decide which updates to retain, and in what order
to run them. This is inflexible and causes spurious conflicts. Consider the
example of Figure 1, where two users make meeting requests to a calen-
dar program. One user requests room A at 9:00, and either room B or C,
also at 9:00. Meanwhile, the other user requests either room A or B at 9:00.
Combining the logs in some simple way does not work. For instance run-
ning Log 1 then Log 2 will reserve rooms A and B for the first user, and
the second user’s requests is dropped. Running Log 2 first, or interleaving
the two logs, has a similar problem. To satisfy all three requests requires
reordering them, which syntactic systems can’t do.

1.2 Challenges

Our goal is to provide a general-purpose system for optimistic write shar-
ing. In this paper we focus on the challenges of scheduling, i.e., of deciding
which actions a reconciler should run, and in what order to run them.
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Figure 1: Syntactic scheduling spuriously fails on this example

Being excessively conservative and dropping actions spuriously, when
there is no true conflict, should be avoided. One challenge then to min-
imise the number (or the value) of dropped actions. Therefore IceCube
approaches scheduling as an optimisation problem.

Only conflicting actions should be dropped; therefore the system must
know something about the invariants to be respected, i.e., about the se-
mantics. The second challenge for IceCube is to design an interface that is
expressive enough and sufficiently abstract to support a wide range of ap-
plications. Our choice for IceCube is to abstract invariants as constraints.

A subclass of constraints, static constraints, direct the search of the op-
timisation engine. This helps answer the third challenge: efficient and scal-
able reconciliation. Furthermore, a number of techniques described here-
after further optimise IceCube’s performance. Results given hereafter show
that IceCube reconciles in reasonable time and scales nicely to large logs.

A final challenge is to demonstrate the practicality of the approach. We
report in this paper on our experience coding a number of useful applica-
tions.

1.3 Outline

This paper is organised as follows. Section 1 is this introduction. In Sec-
tion 2 we present our system model and give an example of the uses and
capabilities of IceCube. Section 3 discusses the main concepts and APIs.
The scheduler’s algorithms are explained in detail in Section 4. Some ap-
plications that use IceCube are presented in Section 5. We present some
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Figure 2: Multi-application travel scenario

measurements of write concurrency, and evaluate performance and qual-
ity of IceCube in Section 6. Section 7 discusses related work, and Section 8
summarises the conclusions and lessons learned.

2 System model and scenario of usage

2.1 System model

IceCube is intended as a component of a distributed system supporting
disconnected operation. On each computer, a number of applications allow
users to access the data shared with other computers. There may be several
applications, each one accessing several sets of shared data. Each computer
has its own replica of the shared data. Assume that all replicas start in an
identical initial state.

While disconnected, an application accesses its local replicas, and records
the actions describing its updates in a local log.

Eventually the computers reconnect. One site collects all the logs and
submits them to IceCube. IceCube proposes one or more schedules com-
bining the actions in the log, and replays them against the initial state of
the shared data. The user commits one of the proposals. The committed
schedule propagates to all machines, leading to a new common state of all

3



replicas.
The system model has some obvious limitations. Although updating

is peer-to-peer (any user can write without co-ordinating with the others),
reconciliation is centralised. Reconciliation is not incremental and involves
user intervention. In the conclusion, we present preliminary ideas for fu-
ture work to overcome the limitations.

A schedule takes into account semantic constraints set by a user, an
application, or a shared data type. The user can convey his intents, for in-
stance may require that a request made via a flight reservation application
be tied to another one made via a banking application. This is useful if the
latter is a payment for a flight reserved in the former. The application may
combine primitive actions into higher-level commands. For instance, the
bank application may tie a credit action to a debit action to form a bank
transfer. A shared data type may impose correctness conditions; for in-
stance airline database forbids different users from reserving the same seat.

2.2 A multi-application, multi-data scenario

To give a feel of how IceCube operates, we now present a typical user sce-
nario. Consider two users A and B planning a business trip to location X to
meet another user C. They use three different applications: a calendar to or-
ganise the meeting, a flight-reservation system for their travel, and a bank
account manager to pay for expenses. The users update their local replica
of the the corresponding databases; when they reconnect they may expe-
rience conflicts such as double bookings, insufficient funds, or a cancelled
flight.

Figure 2 shows a screenshot of this scenario from A’s perspective. The
top middle window shows A’s calendar and the top right one A’s bank ac-
count. Each line represents an action; ticked actions are those that have
been committed in a previous reconciliation run, and the unticked actions
are A’s tentative requests. In the calendar window, A requests a meeting
with B and C in location X on 20 May 2002 at 14:00; in the bank window
there are two payment requests, for tickets and accomodation. If A’s airline
reservation window was visible it would show a flight request for 26 May.
The rightmost column in an application window displays any constraints
imposed on the actions; in this instance, all of A’s tentative actions are in a
“parcel,” indicating that the schedule must contain all of them or none.
Through the graphical user interface, A can add or remove constraints,
even across different applications.

B has similarly arranged travel and payment, but has specified two al-
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interface Action { // Java
// preCondition has no side effects
public boolean preCondition (ReplicatedState state);

// execute modifies state; may save undo info; return postcondition
public boolean execute (ReplicatedState state, UndoData info);

// undo execution; returns false if can not undo
public boolean undo (ReplicatedState state, UndoData info);

// Do actions commute?
public boolean commute (Action otherAction);

// Do (overlapping, non-commuting actions) conflict?
public boolean mutuallyExclusive (Action otherAction);

// Is there a successful ordering of these (overlapping,
// non-commuting, not mutually exclusive) actions?
public int bestOrder (Action otherAction);

// Return cluster identifiers
public Object[] clusterIds ();

}

Figure 3: The action callback API

ternative possibilities, requesting the scheduler to help him choose between
a cheap option, flying on 19 May, and a more expensive option on 20 May.

In this snapshot, A has asked to collect the logs and reconcile. The left-
most pane displays a tree representing the union of A’s and B’s logs. The
first branch contains A’s parcel. The second branch shows B’s two alterna-
tives, each of which is itself a parcel.

Finally, the bottom middle window displays the output from the rec-
onciler. The top pane contains the actions included in the proposed sched-
ule, the bottom one the actions dropped and the reason why they were
dropped. As can be seen, the scheduler proposes to accept B’s cheaper
alternative and therefore to drop the expensive one. In this particular ex-
ample there are no conflicts. At this point user A has a choice between
three possibilities. He can either press the Cancel button to return to dis-
connected mode and continue adding (or removing) actions or constraints
to his log; additionally he can select certain actions to force their inclusion
in the next schedule (or exclusion from it). He can click on Retry to ask
the scheduler to propose a different solution. Or he can choose Accept to
commit this schedule, propagate it to B’s machine to be replayed there, and
iterate the process.

5



3 The IceCube system and APIs

IceCube explores the space of possible schedules heuristically. It selects
and executes the highest-valued ones, subject to constraints specified by the
application and the shared data. It can do so repeatedly until a satisfactory
solution is found.

3.1 Actions and logs

An action is a tentative operation, executed by a program operating on an
isolated replica, in order to update the shared state. The IceCube API has
primitives for creating an action, recording it in the local log, and register-
ing log constraints (defined later). An action is a Java object implementing
the methods of Figure 3, which are call-backs invoked by the IceCube sys-
tem during the reconciliation process. Their meaning will be explained
later, as they become needed.

3.2 Shared data

A set of data managed by IceCube is abstracted as in the Replicated-
State class. An application developer provides a ReplicatedState
with methods to checkpoint and to return to a previous checkpoint. Repli-
catedStates are disjoint and are intended to be coarse grained.

At any time a particular ReplicatedState exists in several versions:
there is a copy at each site, and each copy can have multiple checkpoints, in
addition to the current tentative state and/or the current replay state. The
set of checkpoints includes a subset of linearly-ordered committed check-
points.

3.3 Constraints

A brute-force search through all possible schedules is infeasible; IceCube
uses static constraints to limit the scope of search. Even so, the problem’s
complexity warrants a heuristic solution.

A static constraint is one that can be verified independently of the shared
state. Furthermore, executing an action is subject to dynamic constraints,
viz., its pre-condition and post-condition, verified against the current state
of the shared objects. The heuristics take into account past dynamic con-
straint violations.
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predecessorSuccessor(a; b) a! b ^ b) a
parcel(a; b) a) b ^ b) a

alternative(a; b) a! b ^ b! a
mutuallyExclusive(a; b) a! b ^ b! a

bestOrder(a; b) a! b

Table 1: Static constraint equivalence relations

The system implements two primitive static constraints, order, noted
!, and implies, noted ). Relation a ! b states that, if actions a and b are
both scheduled, then a must be scheduled before b (although not necessar-
ily immediately before). Relation a) b means that, if a is scheduled, then b
must also be (but not necessarily in that order nor contiguously) and must
execute successfully.

The! relationship must be acyclic in any schedule. If cycles occur, they
must be broken by dropping one or more actions. The breaking of (non
binary) cycles is the main source of complexity of scheduling. Finding an
acyclic subgraph of a given size is an NP-complete problem [7]; therefore
the reconciliation problem, of finding an optimal such subgraph, is NP-
hard.

The primitive constraints are too low-level to be used directly. The Ice-
Cube API wraps them into higher-level abstractions, log constraints and
object constraints, which we explain in the next sections. Table 1 shows the
mapping between the two levels.

3.3.1 Log Constraints

A log constraint is a dependency between two specific actions, stored with
them in the log. A log constraint expresses how successive actions relate to
each other, i.e., the user’s intents.

The predecessorSuccessor constraint states that the successor ac-
tion may be executed only after success of the predecessor (but not nec-
essarily immediately after). This is useful when the predecessor produces
some effect used by the successor. As an example consider that the user
wants to copy a file after changing it. The write to the file must be a prede-
cessor of the action that copies the file.

The alternative relation instructs the system to choose a single ac-
tion from a set. An example is submitting an appointment request to a cal-
endar application, when the meeting can take place at (say) either 10:00 or
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11:00. In case of conflict, alternatives provide the scheduler with a fallback
solution.

The parcel relation constitutes an all-or-nothing grouping — either
all of its actions are executed successfully, or none are. (Unless otherwise
constrained, actions of a parcel can run in any order, possibly interleaved
with other actions.) Parcels make it possible to compose primitive actions
into more complex ones. For instance, in our mail management application
RMF (Section 5.3), moving a message between folders is a parcel unlink-
ing it from its old location and linking it to the new one. Decomposing a
complex action into more primitive ones makes it easier to reason about the
correctness of constraints [15].

3.3.2 Object constraints

An object constraint expresses relations between classes of actions, and re-
flects the static semantics of shared data. Object constraints are computed
by comparing each action with every other at the beginning of scheduling.
Pairs of actions support the following comparison methods:

1. commute: returns true if the two actions commute. Actions that oper-
ate on different data objects generally commute; for instance debits to
two different accounts. Often operations on the same object commute
as well, for instance credits to the same account.

2. mutuallyExclusive: returns true if running both actions will vi-
olate an invariant. For example, in a file system, an action creating
a directory with name N and another creating a file with the same
name N are mutually exclusive.

3. bestOrder: Actions for which there is a favorable execution order
return that order. For instance, in a bank account application, best-
Order comparing a debit and a credit to the same account will return
“credit before debit.” This method is called only for pairs that are not
mutually exclusive.

commute is not properly a constraint (indeed it indicates absence of con-
straints) but is included in this interface as an optimisation. The system
avoids calling mutuallyExclusive and bestOrder for action pairs that
commute. As we shall see in Section 4.3, commutability information en-
ables the clustering optimisation. As a further optimisation, commutability
is evaluated in several passes, from a coarse granularity to a fine one. The
rest of this paper ignores this feature.
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Object constraints credit/credit debit/debit debit/credit
Same account commute commute bestOrder

Different accounts commute commute commute

Dynamic constraint: no overdraft

Table 2: Bank constraints

3.3.3 Discussion

In the absence of further constraints, commuting actions can be scheduled
in any relative order; this is captured by the following relation:

independent(a; b) = :(a! b) ^ :(b! a) ^ commute(a; b)

Alternatives and mutuallyExclusive both cause choice of a single
action from a set. However choosing among alternatives is normal be-
haviour, whereas mutuallyExclusive is reported back as a conflict.

If there is a best order between actions, they are always scheduled in
that order.

As an example, Table 2 shows the object constraints in a banking appli-
cation with credit and debit actions. More examples are given in Section 5.

4 Reconciliation scheduler

Static constraints limit the size of the scheduling space, but the problem re-
mains inherently complex. Therefore our scheduler searches heuristically
through the static constraint space. As it generates a schedule, it immedi-
ately executes it and checks the dynamic constraints. For improved perfor-
mance, the search space is partitioned into independent subproblems. We
now describe the design and implementation of the corresponding algo-
rithms. Later (in Section 6) we benchmark their efficiency and quality.

4.1 Heuristic search

This scheduler performs efficient heuristic sampling of small portions of
the search space. After a schedule has succeeded, or a partial schedule
has failed, an unrelated portion of the search space is selected. Schedule
selection and execution are repeated until some user-selected satisfaction
criterion is satisfied.

9



Sampling combines search heuristics and randomisation. Initially each
action is assigned a merit, estimated from its static constraints. Every time
an action is selected and executed in a schedule, the merit of the remaining
actions is re-evaluated.

At each step the scheduler selects (with randomisation) among the can-
didates with highest merit; the selection procedure is called selectAc-
tionByMerit hereafter. This incremental approach circumvents the need
for expensive graph analysis, as in Kermarrec et al. [10]. The downside is
that we cannot guarantee that the system finds the absolute optimum.

The merit estimator computes the benefit of adding a given action to
a given partial schedule. The lower the value of other actions this action
prevents from being scheduled in the future, the higher its merit. More
precisely, the merit of any candidate action A is higher:

1. As the the value of actions that can only be scheduled before A is
lower.

2. As the value of alternatives to A is lower.

3. As the value of actions mutually exclusive with A is lower.

4. As the value of actions that can only be scheduled after A is higher.

The above factors are listed in decreasing order of importance. Further-
more, when an action fails dynamically, its merit drops drastically in the
near future.

The merit estimator executes in constant time, thanks to summary in-
formation computed and updated during scheduling (see next section).

4.2 Basic algorithm

Our reconciliation algorithm is displayed in pseudo-code1 in Figures 4 and
5.

Procedure reconcile implements the complete reconciliation algo-
rithm. Initially computeInfo computes a summary of static constraints,
to be used in estimating the merit of each action. It calls scheduleOne
repeatedly and remembers the highest-value schedule. It terminates when
some application-specific selection criterion happy is satisfied — often a
value threshold, a maximum number of iterations, or a maximum execu-
tion time. For the benefit of happy and as feedback to users, every time an

1Indented text indicates a nested block. Arguments and return values are passed by
value. A procedure can return multiple values.
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scheduleOne (state, summary, goodActions) = // pseudo-code
schedule := []
value := 0
actions := goodActions
WHILE actions <> {} DO

nextAction := selectActionByMerit (actions, schedule, summary)
precondition := nextAction.preCondition (state)
IF precondition = FALSE
THEN // pre-condition failure
// abort and exclude any partially-executed parcels
toExclude := implyingSet (nextAction)
toAbort := INTERSECTION (schedule, toExclude)
IF NOT EMPTY (toAbort)
THEN

SIGNAL dynamicFailure (goodActions \ toExclude)
ELSE

summary.updateInfoFailure (actions, toExclude)
actions := actions \ toExclude
LOOP

postcondition := nextAction.execute (state)
IF postcondition = TRUE
THEN // action succeeded
actions := actions \ beforeSet( nextAction)
summary.updateInfo (actions, nextAction)
schedule := [schedule | nextAction]
value := value + nextAction.value

ELSE // post-condition failure
toExclude := implyingSet (nextAction)
SIGNAL dynamicFailure (goodActions \ toExclude)

RETURN { state, schedule, value }

Figure 4: Executing a single schedule
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reconcile (state, log1, log2) =
state.setCheckpoint (init)
bestValue := 0
bestSchedule := []
allActions := union (log1, log2)
goodActions := allActions
summary := computeInfo (allActions)
DO

summary.resetInfo (goodActions)
state.restoreCheckpoint (init)
{ state, schedule, value } :=

scheduleOne (state, summary, goodActions)
CATCH dynamicFailure (goodActions)

LOOP
IF value > bestValue
THEN bestSchedule := schedule

state.setCheckpoint (best)
// consider failed actions again
goodActions := allActions

UNTIL happy (bestValue)
state.restoreCheckpoint (best)
RETURN { state, bestSchedule, value }

Figure 5: Selecting best schedule (no clustering)

action is dropped from a schedule the scheduler generates an appropriate
justification. For simplicity this is omitted from the pseudo-code.

4.2.1 Failure-free execution

The scheduleOneprocedure creates a single schedule and executes it against
the given data state. Its inputs are the data state and a set goodActions
of actions to be reconciled. It returns a successful schedule, the value of the
schedule and a new state, or exits with a dynamicFailure signal return-
ing a reduced goodActions set.

The main loop repeatedly selects an action to add to the schedule se-
lected so far, tests its pre-condition, executes its body and tests the post-
condition. The selection procedure selectActionByMerit applies the
heuristics explained previously in Section 4.1.

If both the action’s precondition and the execute method return success,
the action and any non-scheduled action that should have been executed
before it (beforeSet) is removed from the set of candidates actions,
updateInfo updates the summary of static constraints, the action is ap-
pended to the schedule, the value of the schedule is incremented, and the
loop iterates.
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4.2.2 Dynamic constraint violation

When there is a dynamic failure, the action that causes the failure and its
implying-set are removed from the set goodActions of candidates for
consideration for the next execution of scheduleOne.2 The rationale is
to avoid experiencing the same failures again, thus guaranteeing that some
solution is reached, albeit a sub-optimal one. Once a solution has been
found, these actions are put back into goodActions for consideration
again.

If the precondition fails, we remove this action and its implying-set
from the set of candidates actions. Procedure updateInfoFailureup-
dates the summary information accordingly. If the implying-set contains
an already-executed action (e.g., this action belongs to a partially executed
parcel): (i) the current schedule is discarded; (ii) the actions that cause the
problem and their implying-set are removed from goodActions, and (iii)
scheduleOne aborts with a dynamicFailure signal, causing the state
to roll back. Otherwise, as a pre-condition has no side effects, it is safe to
iterate.

If the post-condition fails, the action and its implying-set are removed
from goodActions. The state may be invalid, so execution aborts.

Note how reconcile uses checkpoints to record states and roll back.
When a schedule fails that might have modified the state, we restore the
initial state with restoreCheckpoint (init). We also use checkpoint-
ing to record the state produced by the best schedule so far with (set-
Checkpoint (best)). A developer can implement checkpointing either
by cloning ReplicatedState or by using an undo mechanism that we
supply.

4.2.3 Complexity

The cost of of scheduleOne is dominated by selectActionByMerit.
The overall complexity is O(n2); where n is the size of allActions. In-
tuitively, order n actions are scheduled, and for each one selectAction-
ByMerit considers all the remaining ones.

The merit of an action evaluates in constant time thanks to the summary
of static constraints. Initially it is computed by computeInfo, of complex-
ity O(n2) because it compares every action with every other. When a very

2For some action a, implyingSet(a) = fbjb ) ag. It is the set of actions that cannot
be scheduled if a is dropped. By obvious extension to a set, implyingSet(A) = fbj9a 2
A; b ) ag.
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reconcileWithClustering (initState, log1, log2) =
clusters := clusterize (UNION (log1, log2))
schedule := []
value := 0
state := initState
FOR EACH c IN clusters

{ partialState, partialSchedule, partialValue } :=
reconcile (state, c.log1, c.log2)

state := partialState
schedule := [ schedule | partialSchedule ]
value := value + partialValue

RETURN { state, schedule, value }

Figure 6: Selecting best schedule, with clustering

small number of schedules is created the relative contribution of compu-
teInfo to total execution time increases.

The reconcile algorithm could be made O(n logn) by restricting the
merit function and by using priority queues to maintain merits. The overall
complexity would remain O(n2) because of computeInfo.

4.3 Clustering

As the complexity of scheduleOne is polynomial in the size of its inputs, it
helps to partition the problem into smaller, independent problems. We par-
tition actions into mutually-independent and disjoint subsets, called clus-
ters. Reconciling the initial logs is then equivalent to reconciling each indi-
vidual cluster in some sequential order.

Actions that are independent of one another can be in different parti-
tions, but only if neither implies the other. This is in order to limit the scope
of a roll-back when scheduleOne signals a dynamic constraint violation.
Clustering a set of actions A yields a set of clusters c1; :::; ck that satisfy the
following relation:

A = c1[c2 [ : : : [ ck ^ 8i; j; a 2 ci; b 2 cj;

i 6= j )ci \ cj = ;^

independent(a; b) ^ :(a) b) ^ :(b) a)

Figure 6 shows pseudo-code for our reconciliation algorithm using clus-
tering. The set of actions to reconcile is clustered by clusterise. The rec-
onciliation is executed incrementally calling reconcile sequentially, once
for each cluster.
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Clustering reduces complexity considerably; reconcileWithClus-
tering is O(jc1j2+ : : :+ jckj

2) (instead of O(n2) for reconcile). The per-
formance measurements presented later are consistent with this estimate.

A straightforward clustering algorithm compares each action with ev-
ery other, of complexityO(n2). For improved performance we combine this
with a more coarse-grain algorithm of expected complexity O(n). Here, an
action returns a set of arbitrary identifiers (possibly identifying objects that
the action modifies). Actions with no common identifiers are classified in
different clusters. Multiple identifiers allow partitioning along different
properties — e.g., a bank action might return the identifier of both the ac-
count and the branch involved. A coarse-grain cluster identified in this
way is then partitioned again using the polynomial comparison-based al-
gorithm.

5 IceCube applications

In this section we describe some applications implemented with IceCube:
the demonstration application from Section 2.2, a calendar application used
as a benchmark (evaluation results are the subject of Section 6), a larger mail
folder application that interfaces to legacy applications, and a file system
application. This is to give a flavour of how the IceCube abstractions are
used in practice and of the complexity of building an application, and to
convey some lessons learnt from the experience.

5.1 Multi-Application Demonstration

The multi-application demonstration presents an intuitive scenario that ex-
emplifies the need for reconciliation across multiple applications. Log con-
straints are used to combine and define dependencies among actions from
several applications and to specify alternative strategies to solve conflicts.
In the example presented in Section 2.2, the plans to attend a meeting are
expressed as a hierarchy of parcels and alternatives that bridge the three
applications: calendar, bank and flight reservations.

Each application presents different intrinsic difficulty to the reconcili-
ation process. Calendar actions that overlap in time and have a common
participant simply exclude each other, which means that a “best” consistent
schedule can potentially be determined from the static constraints. Bank ac-
tions (credit or debit) and flight reservations interact more subtly, and may
fail dynamically because of insufficient funds or over-booking (it is impos-
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Object constraints add/add remove/remove remove/add
Same user&time mutuallyExclusive commute bestOrder
Other user, time commute commute commute

Dynamic constraint: none

Table 3: Calendar constraints

sible to express these constraints statically). Furthermore, we permit the
committed state of the flight reservation system to diverge asynchronously
from its replicas by the execution of actions not included in reconciliation
(flights may be booked by some outside agency).

Finally, the scenario provides an effective example of reconciliation in
the case where the engine can not automatically decide among multiple so-
lutions. If conflicts arise it is essentially a human decision to decide which
actions should take precedence, and consequently the reconciliation pro-
cess must be guided by the user. During reconciliation, the user is permit-
ted to select actions for preferential inclusion (or exclusion), thus ensuring
a rapid approach to an acceptable schedule.

5.2 Calendar application

The calendar application maintains a shared calendar accessed concurrently
by multiple users. A user can request a meeting, proposing one or more
alternative times, or cancel a previous request.

A shared calendar consists of a set of entries, each describing an ap-
pointment: time, duration, participants, and location. The low-level ac-
tions add an appointment (the add action) or delete one (remove). The
user-level commands are mapped in the obvious way onto alternatives
of low-level ones.

The calendar uses IceCube’s log cleaning mechanism (not described in
this paper) to eliminate redundant pairs of add and remove. As illustrated
in Table 3 the object constraints forbid double-booking a person or a room.
bestOrder makes removes execute at the beginning of the schedule, in-
creasing the probability that adds can be accommodated.

The shared calendar is implemented in about 630 lines of code, blank
lines and comments excluded (LOC). Each action averages 60 LOC. The
calendar application totals approximately 880 LOC. This application was
used as one of our performance and quality benchmarks, as we report in
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Figure 7: Structure of Reconcilable Mail Folders application.

Section 6. A further 250 LOC control the experiment, submitting requests
and calling the reconciler.

5.3 Reconcilable Mail Folders

Our Reconcilable Mail Folders application (RMF) uses IceCube to manage
replicas of e-mail folders and merge concurrent changes. RMF interposes
between a mail client and a server by intercepting their communication us-
ing the standard IMAP (mailbox access) protocol [3]. The client and server
are unmodified legacy systems; the server manages the storage of e-mail
folders and messages.

As shown in Figure 7, an interceptor redirects IMAP interactions to
the log. RMF’s ReplicatedState, called hereafter RMFState, contains
only meta-information about folders and messages. This avoids having
to checkpoint the whole server state multiple times during reconciliation.
Updates are reconciled initially against the RMFState, then the committed
schedule executes against the IMAP server.

Message-related IMAP commands map directly onto a single RMF ac-
tion. This is made possible by the simple semantics of most IMAP com-
mands. For instance creating a new message never conflicts with another
operation. Mail folder operations are more complex. Creating a mailbox
is idempotent.3 Renaming a folder rename is a parcel linking into the new
location and unlinking from the old one.

3An idempotent action is one that has the same effect whether executed once or several
times.
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Conflicts include concurrently renaming the same mail folder with dif-
ferent names, changing a message while concurrently removing the folder,
etc. Other concurrent events are reconciled; for instance one user may copy
a message while another user discards the message.

Space limitations forbid any greater detail. RMF totals 2625 LOC ap-
proximately. RMF supports seven different actions, implemented in 590
LOC; about one-third of this represents repetitive code that could be gen-
erated automatically if we had better tools. The code size for RMFState
is 505 lines. The rest of RMF adds up to approximately 1530 lines, which
includes the IMAP interceptor, the proxy to execute a schedule in the IMAP
server, and the code that controls reconciliation.

Our approach can be contrasted with disconnected operation as imple-
mented by some IMAP clients [6]: when a user reconnects, his disconnected
log is replayed against the current server state. While adequate for a sin-
gle user, this causes trouble in some concurrent update situations. Suppose
a user copies a message to another folder. Another user deletes the same
message. If the second user’s actions are replayed first, the copy fails. In
contrast, in RMF the semantic ordering will ensure the copy is scheduled
before the delete.

5.4 Reconcilable File System

Our Replicated File System (RFS) emulates a file system in memory, with
the usual semantics. In many respects RFS is similar to RMF; we focus here
on some differences and lessons learned.

RFS semantics are somewhat more complex than RMF; for instance the
move command has nine different cases depending on the nature of the
source and destination. There is also more opportunity for conflict, for
instance, creating a file and a directory under the same name constitutes
a conflict.

We decompose a user command into a parcel, first establishing a high-
level assertion, then linking/unlinking nodes in the filesystem tree. For
instance the move parcel first checks which of the nine possible cases to
execute, then does the corresponding set of links and unlinks.

RFS is approximately 1660 LOC over 33 files. Most of the code is shared
between a non-replicated and a replicated version. There are 9 concrete
action classes; actions account for 500 lines in 6 files; much of this code
is shared across several actions. 250 more lines over 3 files are specific to
replication.
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Currently we have no performance results for RFS, but we expect to
include them in the conference version of this paper.

5.5 Application design

Our experience shows that using IceCube drastically simplifies the devel-
opment of reconcilable applications. Indeed, developers do not need to cre-
ate ad-hoc mechanisms for every different application. They only need to
convey some simple facts about their application, and have tools to struc-
ture the application in the right way. However, the application must be
designed to be aware of, and to tolerate, disconnected operation, roll-back,
replay, and reconciliation, and this is by no means easy. Based on our ex-
perience, we offer some further design hints that can serve as guidance for
future developers.

High-level entities should be decomposed into small, manageable units.
Use static constraints as much as possible, and avoid dynamic constraints;
the former direct the search while the latter cause schedule execution to roll
back. Individual actions should be simple, because in this way it is possible
to characterise their static properties [15]. Also to enable static reasoning,
the log should be clean, i.e., should contain no redundant actions.4 Further-
more, the probability of successful reconciliation is increased when actions
commute, and when they are idempotent.

The RMF experience shows how it is possible to interpose reconciliation
inside a legacy application by keeping only a compact representation of
the legacy state. However this approach can work only if every committed
schedule executes without failure in the legacy application.

6 Measurements and evaluation

This section contains statistics collected on some CVS repositories, justify-
ing the need for reconciliation, and two experiments evaluating the perfor-
mance and scalability of IceCube.

6.1 Empirical observations of CVS repositories

Previous work [11, 16] on file systems shows that concurrent writes are rare.
While true for the general file population, this conclusion can be mislead-

4IceCube implements a generic log cleaning mechanism, which we do not describe here
for lack of space.
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Trace snmp chord ron ucl JOnAS Jonathan cm rochester hugo JORM OwS
Duration (days) 795 467 553 584 674 704 1099 232 390 186 412

Users 14 29 18 9 8 9 21 5 11 11 7
Non-concurrent M 8696 3808 1555 779 3398 1369 1824 1388 2593 2258 557

Merges G 1170 449 82 55 24 198 163 39 93 75 4
Collisions C 557 261 70 49 42 116 143 27 53 38 10

Concurrency (%) 16.57 15.71 8.90 11.78 1.91 18.66 14.37 4.54 5.33 4.77 2.45

Table 4: CVS statistics.

ing. The measurements hereafter show that, for sets of files designated as
write-shared, the rate of concurrent access is far from negligable.

CVS (Concurrent Version System) [2] is widely used to manage repli-
cated text files for concurrent code development.

A CVS repository is a collection of write-shared files. Each user has his
own replica and edits it without co-ordinating with others. Occasionally
he “updates” against the central repository to synchronise recent changes.
When a single replica has changed, the repository incorporates the updates,
and records the event by an “M” record in its history log. When two repli-
cas have changed concurrently, CVS attempts to reconcile them. Concur-
rent changes to overlapping sets of text lines are considered conflicting,
and must be resolved manually (“C” record). Disjoint changes are merged
automatically, and are logged with a “G” record.

We analysed eleven history files, one (snmp) publicly available from
SourceForge5 [18], the others provided to us by various volunteers. They
come mostly from academic institutions but vary in size and complexity.

Table 4 presents some statistics. Here, Duration is the time recorded in
the history file. Concurrency is the ratio (C + G)=(C + G +M), where C ,
G and M represent the number of corresponding records in the repository.
Concurrency measurements only take into consideration those files that are
actually editable (for instance, system files and derived files are excluded
from the calculations).

Concurrency rates are far from negligeable, ranging from 1.91% to 18.66%.
We also note that CVS’s merging is relatively successful.

6.2 Benchmarking IceCube

In this section we present measurements to evaluate both the quality of
reconciliation (by the size of the schedules), and its efficiency (by execution
time).

5Most SourceForge projects have the history feature turned off.
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This uses the calendar application described in Section 5.2. The bench-
mark inputs are based on a trace from actual Outlook calendars, modified
to control the rate of conflicts and to include alternatives. The logs contain
only Requests, each of which contains one or more add alternatives. We
varied the number of Requests and the number and size of possible clus-
ters. The average number of average of add alternatives per requestis
two. Note that execution times include both system time (scheduling and
checkpointing), and application time (executing the actions); however the
latter is negligeable because the code is very simple.

In each cluster, the number of different adds across all actions is no
larger than the number of Requests. For instance, in the example of Fig-
ure 1, in the three Requests, there are only three different adds (‘9am room
A’, ‘9am room B’ and ‘9am room C’). This situation represents a hard prob-
lem for reconciliation because the suitable add alternative needs to be se-
lected in every request (selecting other alternative in any request may
lead to dropped actions).

In these experiments, all actions have equal value, and longer sched-
ules are better. A schedule is called a max-solution when no request is
dropped. A schedule is said optimal when the highest possible number of
Requests has been executed successfully. A max-solution is obviously op-
timal; however not all optimal solutions are max-solutions because of un-
resolvable conflicts. Since IceCube uses heuristics, it might propose non-
optimal schedules; we measure the quality of solutions compared to the
optimum. (Analysing a non-max-schedule to determine if it is optimal is
an offline, a posteriori process.)

The experiments were run on a generic PC running Windows XP with
256 Mb of main memory and a 1.1 GHz Pentium III processor. IceCube
and applications are implemented in Java 1.1 and execute in the Microsoft
Visual J++ environment. Everything is in virtual memory. Each result is
an averages over 100 different executions, combining 20 different sets of
requests divided between 5 different pairs of logs in different ways. Any
comparisons present results obtained using exactly the same inputs.

6.2.1 Single cluster

We first evaluate the IceCube heuristics without clustering. Our first set of
inputs gives birth to a single cluster; however execution time does include
execution of clusterise.

Figure 8, compares IceCube with a syntactic scheduling algorithm, to
justify our optimisation approach. We choose the simplest one, concatenat-
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22



85

88

91

94

97

100

5 204 403 602 801 1000M
a
x
 
s
o
l
u
t
i
o
n
 
f
o
u
n
d
 
(
%
)

Number of Requests

1 schedule
2 schedules
5 schedules
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ing the logs, but note that any syntactic algorithm will have similar worst-
case performance. For instance in Bayou [20] the schedule is ordered the
way updates are received at certain designated servers, which may be ex-
actly the same as concatenation order.

As expected, the results of semantic-directed search are better than syn-
tactic ordering. In our tests, IceCube could always find the best solution.
With syntactic ordering, approximately 12% Requests are dropped, con-
trasted to close to none for semantic-directed search. Compare against the
baseline marked “Single log” in the graph, which represents the simplest
non-trivial scheduler that guarantees absence of conflicts (it selects all ac-
tions from a single log and drops all actions from the other).

The drop rate grows very slightly with size. Although the improvement
may appear small, remember that dropping a single action may have a high
cost.

Figure 9 shows the execution time of reconcilevs. a log-concatenation
(hence suboptimal) scheduler. As expected, IceCube is much slower. This
is in line with the expected complexities, O(n2) in IceCube and O(n) for
concatenation.

Figure 10 decomposes the execution time into its major parts. First, the
time to cluster the actions; as expected, this represent a small fraction of the
overall execution time. Second, the time to compute the initial summary of
static constraints. Third, the search time, i.e., the time to create and execute
the schedules (action execution time is negligeable). As expected, the latter
two components are of the same order of magnitude.

In these examples, the best result is reached in a small number of sched-
ules, allowing initialisation time to slightly dominate search time. Even if
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Figure 13: Decomposition of reconciliation time (multiple clusters).

the heuristic scheduler were made infinitely fast, a bottleneck would re-
main in initialisation time.

In these experiments, happy is designed to stop either when a max-
solution is found, or after a given amount of time. Figure 11 shows how
quickly a max-solution is reached. The first schedule is a max-solution in
over 90% of the cases. In 99% of the cases, a max-solution was found in the
first five iterations. This shows that our search heuristics work very well, at
least for this series of tests. A related result is that in this experiment, even
non-max-solutions were all within 1% of the max size.

6.2.2 Multiple clusters

We now show the results when it is possible to cluster the actions. This is
the expected real-life situation.

The logs used in these experiments contain a variable number of Re-
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quests, and are constructed to that 25% of the adds can be clustered alone;
25% of the remaining adds are in clusters with two actions; and so on. Thus,
as problem size increases, the size of the largest cluster increases slightly, as
one would expect in real life. For instance, when the logs contain 1000 ac-
tions, the largest cluster contains the adds from 12 Requests, and 18 when
the logs total 10000. The number of clusters is approximately half of the
number of actions; this ratio decreases slightly with log size. The average
number of alternatives per request is two.

IceCube always finds the optimal solution, whether clustering is in use
or not. In contrast, using log concatenation, between 6% and 8% of the
requests were dropped. (This value is smaller than in the previous section
because a large fraction of the requests have zero or close to zero related
actions; e.g., 25% of the actions commute with any other action, thus, they
can be scheduled in any mutual order.)

Figure 12 shows the time to find a max-solution, with clustering turned
on or off. As expected a solution is obtained much more quickly in the
former case than the latter. As the number of clusters grows almost linearly
with the number of actions and the size of the largest cluster grows very
slowly, reconciliation time is expected to grow almost linearly. The results
confirm this conjecture. Moreover, the decomposition of the reconciliation
time of Figure 13, shows that all components of the reconciliation time grow
linearly, as expected.

6.3 Comparison with Fages

Fages [4] solves reconciliation problems using constraint logic program-
ming techniques; his study uses synthetic benchmark problems. Here we
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study how well IceCube solves Fages’ benchmarks, and how well Fages’
algorithm solves our calendar benchmark.

We ran IceCube against a subset of Fages’ benchmarks. The constraints
included in each problem are generated randomly with a density of 1:5 for
each type of constraints, meaning that there are 1:5 � size constraints of
each type on average.

Figure 14 compares the quality of Fages’ CSP solutions with IceCube’s.
The results are similar, but notice that IceCube performs slightly better on
average on large problems. This shows that the IceCube heuristics perform
well on Fages’ inputs as well. Since the execution environment is very dif-
ferent, it would make no sense to compare execution times; however we
note that IceCube’s execution time grows more slowly with size than Fages’
constraint solver.

When we submit our calendar problems to Fages’ constraint-solving
algorithm, execution time grows very quickly with problem size. For in-
stance, for only 15 requests, Fages’ algorithm cannot find a solution within
an (arbitrary) timeout of 2 minutes. We believe that the problem lies in the
existence of alternatives.

7 Related Work

Several systems use optimistic replication and implement some form of rec-
onciliation for divergent replicas. Many older systems (e.g., Lotus Notes [8]
and Coda [12]) reconcile by comparing final tentative states. Other sys-
tems, like IceCube, use history-based reconciliation, such as CVS [2] or
Bayou [20]. Recent optimistically-replicated systems include TACT [21]
and Deno [9]. Balasubramaniam and Pierce [1] and Ramsey and Csir-
maz [15] study file reconciliation from a semantics perspective. Opera-
tional Transformation techniques [19] re-write action parameters to enable
order-independent execution even when they do not commutate. For lack
of space we focus hereafter on systems most closely related to IceCube. For
a more comprehensive survey, we refer the reader to Saito and Shapiro [17].

Bayou [20] is a replicated database system. Bayou schedules syntacti-
cally, in timestamp order. A tentative timestamp is assigned to an action as
it arrives. The final timestamp is the time the action is accepted by a desig-
nated primary replica. Bayou first executes actions in their tentative order,
then rolls back and replays them in final order. A Bayou action includes
a dependency check to verify whether the update is valid. If it is, the up-
date is executed; otherwise, there is a conflict, and an application-provided
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merge procedure is called to solve it. Merge procedures are notoriously
hard to program. IceCube extends these ideas by pulling static constraints
out of the dependency check and the merge procedure, in order to search
for an optimal schedule, reconciling in cases where Bayou would find a
conflict. IceCube’s alternatives are less powerful than merge procedures,
but provide more information to the scheduler and easier to use.

Lippe et al. [13] search for conflicts exhaustively comparing all possi-
ble schedules. Their system examines all schedules that are consistent with
the original order of operations. A conflict (to be resolved manually) is de-
clared when two schedules lead to different states. Examining all schedules
is untractable for all but the smallest problems.

Phatak and Badrinath [14] propose a transaction management system
for mobile databases. A disconnected client stores the read and write sets
(and the values read and written) for each transaction. The application
specifies a conflict resolution function and a cost function. The server seri-
alises each transaction in the database history based on the cost and conflict
resolution functions. As this system uses a brute-force algorithm to create
the best ordering, it does not scale to a large number of transactions.

The original IceCube is due to Kermarrec et al. [10]. They are the first to
distinguish static from dynamic constraints. However their engine only
supports ! (not )), does not distinguish between log and object con-
straints, and does not scale as it exhaustively searches the static constraint
space. The current system has a more powerful and easier-to-use API, and
is much more efficient. The quality of the solutions is virtually indistin-
guishable from the original system.

8 Final remarks

For an environment where concurrent writes to shared objects cannot be
neglected, we presented a general-purpose, semantics-aware reconciliation
scheduler that differs from previous work in several key aspects. Our sys-
tem is the first to approach reconciliation as an optimisation problem and
to be based on the true constraints between actions. We present novel
abstractions that enable the concise expression of semantics of these con-
straints. This simplifies the development of applications using reconcilia-
tion, as demonstrated by several prototype applications, and enables the
reconciler to deliver high-quality solutions efficiently: although reconcili-
ation is NP-hard, our heuristics find near-optimal solutions in reasonable
time, and scale to large logs. Finally, Icecude is application-independent,
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and bridges application boundaries by allowing actions from separate ap-
plications to be related by log-constraints and reconciled together.

Designing an application to be tolerant of disconnected operation and
reconciliation still remains a demanding intellectual task, but our system
has simplified this problem and provides a general tool so that application
developers need not develop their own reconciliation mechanism.

Making IceCube work as a completely decentralised system is our main
item of future work, the key issue being the problem of making reconcil-
iation fully peer-to-peer. Our current prototype centralises reconciliation
in the hands of a single user at some unique location. If however several
users at different locations are to share the authority to commit, how are
we to decide between possibly competing commitment decisions, and how
should we to order them? In the limit this might entail a consensus over
the whole distributed system.

A first possible solution is inspired by CVS [2], where different users
share the responsibility of commit, but commits are serialised at the cen-
tral repository. A more fully decentralised approach might distribute the
responsibility over a small number of core sites, along the lines of Gray et
al. [5], and make decisions by quorum consensus, as in the Deno system
[9].

The source code for IceCube is available from http://research.
microsoft.com/camdis/icecube.htm.
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