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Abstract

Replication is attractive for scaling databases up, as
it does not require costly equipment and it enables
fault tolerance. However, as the latency gap be-
tween local and remote accesses continues to widen,
maintaining consistency between replicas remains a
performance and complexity bottleneck. Optimistic
replication (OR) addresses these problems. In OR, a
database tentatively executes transactions against its
local cache; databases reconcilea posteriorito agree
on a common schedule of committed transactions.
We present three OR protocols based on the deferred
update scheme. The first two are representative of
the state the art. The third is new; we describe it in
detail. As all three protocols are expressed within a
common formal framework, we are able to compare
them, to identify similarities and differences, and to
introduce common variants. We show that our pro-
tocol behaves better than the other two, with respect
to latency, message cost and abort rate.

∗This research is funded in part by the European project
Grid4All and by the French project Respire.

1 Introduction

In order to scale up a database system, several ap-
proaches are possible: buying a bigger machine, di-
viding the work, or replicating the load across sev-
eral remote machines. Replication does not require
costly equipment and enables fault tolerance. How-
ever, remote access has a high latency, and the la-
tency gap only keeps increasing. Furthermore, re-
mote access is subject to disconnections. Therefore,
maintaining consistency between replicas is difficult.

Optimistic replication (OR) is an attempt to ad-
dress this problem. An OR system caches data. A
database executes transactions against its local cache
tentatively. Remote databases reconcile after the fact
to agree on a common schedule of committed trans-
actions.

Among OR techniques, thedeferred update
scheme has recently raised an increasing interest of
the community [PGS03, HSAA03, KA00, SSP06].
In the deferred update scheme a database executes
a new incoming transaction against its local cache.
If the transaction is a query it is immediately com-
mitted; in the other case the database computes a
logical clock, and the read set, write set and update
values of the transaction. This information is then
sent to distant sites to globally commit the trans-
action. The deferred update scheme has proven to
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be efficient, outperforming existing pessimistic ap-
proaches, while maintaining consistency [WS05].

This paper compares three OR commitment pro-
tocols based on deferred updates. The first two are
representative of the state of the art: the epidemic
protocol of Agrawal et al. [AES97], and the Database
State Machine (DBSM) approach of Pedone et al.
[PGS03]. The third one is new. We describe it in
detail.

Our contributions are the following:

• We describe all three protocols in the same for-
mal framework. This clarifies the comparison.

• Using the framework, we can explore common
variants. For instance, we propose a new variant
to the Agrawal et al. protocol, ensuring snap-
shot isolation.

• We propose a new OR protocol that batches
transactions. This allows it to optimise the abort
rate. Furthermore, batching amortizes commu-
nication and computation costs.

• We show that our protocol improves over the
other two, in terms of latency, message cost and
abort rate.

• We propose two variants of our protocol: one
that is more optimistic, and one that ensures
snapshot isolation.

The rest of this paper is organized as follows. We
present our model in Section 2. Section 3 studies the
Agrawal et al. protocol, and proposes a variant for
snapshot isolation. Section 4 studies the protocol of
Pedone et al. Section 5 presents our proposal and
its variants. We compare the different protocols in
Section 6. Section 7 surveys related work. We close
in Section 8 with a discussion.

2 System Model

We consider a distributed system in which any client
can submit an operation on shared data, at any site
at any time. In the general case, maintaining consis-
tency requires a complex concurrency control mech-
anism. However, providing the system with some
semantic knowledge can simplify consistency. For
instance, suppose that all updates commute; in this
case, maintaining consistency reduces to propagat-
ing the update operations to all sites, and executing
them in any order.

Building upon this insight, our model (which is
a refinement of the Action-Constraint Framework
[SBK04]) maintains an explicit graph, where the
nodes are the actions that access shared data, and
the edges represent semantic links between actions.
A consistency protocol is a particular solution to a
graph problem. The complexity of the problem is re-
lated to the shape of the graph. In our experience,
our model clarifies the understanding of consistency,
makes it easier to compare protocols, and helps with
the design of new solutions.

2.1 The Action-Constraint Framework

2.1.1 Actions, constraints and multilogs

We postulate a universal set ofactionsA.

Actions are linked each others byconstraints,
which are relations overA. Five constraints are of
particular interest in our framework:+,−,→,⊳ and
/; respectively pronounced “commit,” “abort,” “not
after,” “enables” and “non-commuting.” The con-
straints+ and− are unary relations overA, whereas
→, ⊳ and / are binary relations overA. Their se-
mantics will be explained shortly, in Section 2.1.2.
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Our central structure in the Action-Constraint
Framework (ACF) is themultilog. A multilog is a
sextuple(K,+,−,→,⊳,/) whereK is a set of ac-
tions, and+,−,→,⊳, / are some sets of constraints
over A. We noteM the universal set of multilogs
overA.

We define union, intersection, difference, etc.,
between multilogs as component-wise operations.
For instance, letM = (K,+,−,→,⊳,/) and M′ =
(K′,+’,−’,→’,⊳’,/’) be two multilogs. Then,
M∪M′ = (K∪K′,+∪+’,−∪−’,→∪→’,⊳ ∪⊳’

,/ ∪ /’). By abuse of notation, we also use the union
operator to add an element to a single component,
which should be clear from the context. For instance,

M∪{α} addsα to theK component, i.e.,M∪{α} △=
(K ∪{α},+,−,→,⊳,/). Similarly, M ∪{α+} adds
(α,α) to the+ component, andM ∪{α→ β} adds
the pair(α,β) to the→ component.

The notationα− ∈ M, or just (when clear from
the context)α−, are used as a shorthand for “(α,α)
is in the+ component ofM.” Similarly, either{α→
β} ∈ M or just α→ β are shorthands for “The pair
(α,β) is in the→ component ofM.”

We also use the following shorthand notations:

α ←
→ β △= α→ β∧β→ α

α ⊳
→ β △= α→ β∧α⊳ β

α ⊳

⊲ β △= α⊳ β∧β⊳ α

2.1.2 Schedules of multilogs and classes of
schedules

Let E be a subset ofA. We call schedule a couple
S= (E,<S) where<S is a strict total order overE.
We noteS the universal set of schedules overA.

Given a multilogM = (K,+,−,→,⊳,/), we say

thatS= (E,<S) is a schedule ofM, iff :

∀α,β ∈ K
α− ∈M⇒ α 6∈ E
α+ ∈M⇒ α ∈ E
α⊳ β ∈M⇒ (β ∈ E⇒ α ∈ E)
α→ β ∈M⇒ (α,β ∈ E⇒ α <s β)

For some actionα and a scheduleS= (E,<S), we
say thatα is scheduledin S (notedα ∈ S) iff α ∈ E.
We noteΣ(M) the set of schedules ofM.

Thus the−, +, → and ⊳ constraints restrict
which schedules may appear inΣ(M). This defines
their semantics.

In contrast, / divides Σ(M) into equivalence
classes of schedules. LetM = (K,+,−,→,⊳,/) be
a multilog. Two schedulesSandS′ of Σ(M) are said
equivalentaccording to/, notedS∼ S′, iff:

∀α,β ∈ K,
{

α ∈ S⇔ α ∈ S′

(α,β) ∈ S2∧α / β ∈M⇒ (α <S β⇔ α <S′ β)

We noteΣ(M)/∼ the quotient set ofΣ(M) by∼,
and|Σ(M)/∼| the number of equivalence classes of
schedules induced by∼.

The following constraints or combinations of
constraints are particularly useful for defining appli-
cation semantics. LetM = (K,+,−,→,⊳,/) be a
multilog andα,β two actions ofK. A →-cycle in
M (e.g.,α ←

→ β) representsantagonism, i.e for any
scheduleSof Σ(M), eitherα is in S, or β is in S, or
neither of them; the conjunctionβ ⊳

→ α meansα de-
pends causallyon β; and an⊳-cycle such asα ⊳

⊲ β
expresses an atomic grouping. Finallyα / β means
that α andβ do not commute; ifα andβ are trans-
actions, this models the isolation constraint (the I of
ACID).
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2.1.3 Particular subsets of multilogs and con-
cept of soundness

Let M = (K,+,−,→,⊳,/) be a multilog. The fol-
lowing subsets ofK are of particular interest for the
study of consistency.

• Committedactions appear in every schedule of
M. This set is the greatest subset ofK satisfying:

Committed(M)
△
=

{α |α+∨∃β ∈ Committed(M) : α⊳ β}
• Abortedactions never appear in a schedule of

M. Aborted(M) is the greatest subset ofK that
satisfies:
Aborted(M)

△
=

{α| (∃β1, . . . ,βm≥0 ∈Committed(M),

α→ β1→ . . .→ βm→ α)

∨ ∃β ∈ Aborted(M) : β⊳ α
∨ α−}

• Serialized actions are either aborted, or are
ordered with respect to all non-commuting
constraints against non-aborted actions:

Serialized(M)
△
=

{α| ∀α,β ∈ K,α / β⇒
( α→ β∨β→ α
∨α ∈ Aborted(M)

∨β ∈ Aborted(M))}

• Decidedactions are either aborted, or both com-
mitted and serialized:

Decided(M)
△
=

Aborted(M)∪ (Committed(M)∩Serialized(M))

• A Durableaction is decided, and, if committed,
all actions that precede it, either by→ or by
⊳, are themselves durable. This is the greatest
subset ofK satisfying :

Durable(M)
△
= Aborted(M) ∪

{α ∈Committed(M) |

∀β ∈ K : (β→ α∨β⊳ α)

⇒ β ∈ Durable(M)}

A multilog M is said sound iff Committed(M) ∩
Aborted(M) = Ø. Observe thatΣ(M) 6= Ø implies
M sound.

A multilog M is saiddecidediff Decided(M) =
K.

A multilog M is saiddurableiff Durable(M)= K,
or equivalently iffM is sound and|Σ(M)/∼|= 1.

2.2 Formalizing consistency in replicated
systems

We consider an asynchronous distributed system of
n sites i, j, . . . , connected through fair-lossy links
[BCBT96]. The failure model is fail-stop. A global
clock t ∈ T ticks at every step of any process, but
processes do not have access to it.

We assume that some shared data is replicated at
every site. Initially, att = 0, the data is in the same
state at every site. We make no further assumption
about the data; indeed data does not appear explicitly
in the model, which considers only the actions that
access the data.

A site contains two processes: an application pro-
cess called theclient, and a singleconsistency agent
(or justagenthereafter).

Clients receive and execute user actions accessing
shared data. Agents ensure the consistency of the
system by executing a protocol.

ACF constraints capture both the schedule se-
mantics of actions, and the decisions taken by the
protocol.
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2.2.1 Site-multilogs and site-schedules

At any point in timet, each sitei is entirely defined
by its site-multilog Mi(t) = (Ki(t),+i(t),−i(t),→i

(t)),⊳i (t),/i (t) and itssite-schedule Si(t).

• Mi(t) is the local knowledge thati has at timet
of the set of actions and of the semantics linking
them.

Initially, every site-multilog is equal to
(Ø,Ø,Ø,Ø,Ø,Ø).

Site-multilogs grow monotonically over time,
as clients add actions and constraints, and
agents add constraints. The following rule cap-
tures this monotonic growth:

∀i ∈ J1,nK,∀t ∈ T ,∃M ∈M,

Mi(t +1) = Mi(t)∪M

We abstract the computation of constraints into
a routine notedaddConstraints() that takes as
input a multilogM = (K,+,−,→,⊳,/), and re-
turns a multilogM′ = (K′,+’,−’,→’,⊳’,/’)
such that:M ⊆M′ andK′ = K. Different con-
currency control differ, in particular, in how
they computeaddConstraints().

• Si(t) ∈ Σ(Mi(t)) represents the state of shared
data oni at timet. The choice ofSi(t) is arbi-
trary when|Σ(Mi(t))/∼|> 1. If Si(t−1) is not
a prefix ofSi(t), it represents a roll-back.

Agents and clients both have access to the site-
schedule and the site-multilog, but our clock is as-
sumed sufficiently fine-grain that betweent andt+1,
only one or the other may access it. We formalise this
using transitions:(Mi(t),Si(t)) A (Mi(t +1),Si(t +
1)) for the agent, and(Mi(t),Si(t))  C (Mi(t +
1),Si(t +1)) for the client.

2.2.2 Definition of System and of Commitment
Protocol

We note a system of n sites as Sn =
((M1,S1), . . . ,(Mn,Sn)).

We call protocol a family of algorithmsP =
{P1,P2 . . .} where eachPi is defined by a set of cou-
ples(S,T)∈ (MxS)2, whereSis a state andT a tran-
sition.

In our framework both clients and agents exe-
cute protocols. Given a systemSn, we noteC =
{C1, . . . ,Cn}, (resp. A = {A1, . . . ,An}) the protocol
of clients (resp. agents) executing at sites 1. . .n.

The client protocol is left mostly unspecified, as
clients are free to do anything, as long as they do not
put the system into an error state. The agent proto-
col aims to bring the system to consistency; we refer
to A as acommitmentprotocol. Hereafter, we study
three different commitment protocols, and variants
of each.

2.2.3 Runs

A run r of Sn according toC andA is an array ofn
rows, each rowi representing the evolution over time
of (Mi,Si) starting att = 0, and such that :

∀i ∈ J1,nK,∀t ∈ T ,∃M ∈M,
Mi(t +1) = Mi(t)∪M

∧

{

(Mi(t),Si(t)) C (Mi(t +1),Si(t +1))
⇒ ((Mi(t),Si(t)),(M,Si(t +1))) ∈ Ci

∧

{

(Mi(t),Si(t)) A (Mi(t +1),Si(t +1))
⇒ ((Mi(t),Si(t)),(M,Si(t +1))) ∈ Ai

As usual, considering a runr, we say that a sitei
is correct in r iff r[i] is infinite (notedi ∈ correct(r));
otherwise we say thati is crashedin r (i ∈ crash(r)).

A column ofr at timet represents the state of the
system at timet. We note itSn(t).
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We noteR(Sn,C,A) the set of runs of A and C in
Sn .

2.3 Consistency

Serialization theory [BHG87] considers only finite
sets of transactions; accordingly, hereafter we con-
sider only quiescent systems. Given a systemSn, a
set of clientsC, and a set of agentsA, we say that
a systemSn is quiescentiff in any run of Sn, both
agents and clients eventually stop submitting new ac-
tions:

∀r ∈ R(Sn,C,A),
∃T ∈ T ,∀t ≥ T ∈ T ,∀i ∈ J1,nK,
Mi(t +1).K = Mi(t).K

whereM.K denotes theK component of multilogM.
Definition (Eventual Consistency). A systemSn is
eventually consistent (EC) in a run r iff it satisfies
the following correctness conditions:

• Eventual Decision:

∀i ∈ correct(r),∀t ∈ T ,∀α ∈ Ki(t),

∃t ′ ∈ T ,α ∈ Decided(Mi(t
′))

• Mergeability:

Σ(
[

i∈J1,nK
t∈T

Mi(t)) 6= Ø

• Eventual Agreement:

∃t ∈ T ,∀t ′ ≥ t,∀i, j ∈ correct(r),

Si(t
′)∼ Sj(t

′)

Roughly speaking, eventual decision ensures that
the system makes progress. Eventual agreement

ensures that all sites eventually agree on the deci-
sions. Mergeability ensures that the system is glob-
ally sound, i.e., no decision ever puts it in an error
state.

If in any run of R(Sn,C,A), with at most f
crashes, eventual consistency is attained by every
correct process, we say thatA is f -resilient.

Given a systemSn a client C, and a fault-
resilience degreef we call the problem of finding
such a protocolA, theconsistency problem.

2.4 Modeling database replication

This section refines the previous model to the spe-
cific case of a fully replicated database accessed
through ACID transactions.

We model ACID transactions in our framework
at a coarse-grained level, where a single action rep-
resents a whole transaction. Given a transactionT,
we noteRS(T) its read set,WS(T) its write set and
UV(T) the corresponding update values.

Two transactions may be related by constraints
derived from their respective read and write sets, and
from whether they are concurrent or not. Commit-
ment protocols differ on how they compute these
constraints, as will become apparent later.

We model a set of fully replicated databases as a
system of sites. A processes that issues transactions
is a client, and agents execute the protocol.

The client, Algorithm 1, models the application
processes. A client submits a new transaction at
a time to its local replica, by adding it to the site-
multilog.

We divide an agent into three modules that exe-
cute in parallel:

• The executionmodule schedules and executes
transactions.
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Algorithm 1 Client Ci at sitei
1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: loop
4: choose some transactionT
5: Mi := Mi ∪{T}
6: end loop

• The certification module decides which trans-
actions to abort or commit.

• The propagation module sends and receives
messages to co-ordinate replicas.

All the commitment protocols considered in this
paper are based on a scheme known asdeferred ex-
ecution. A transaction first executes at the local site,
under local serializability. The system records the
transaction’s read set, write set and update values. At
this point, no remote locks are taken. After the trans-
action terminates the system contacts remote sites,
attempts to apply the update values to the write set
remotely, and to certify the transaction. The transac-
tion may commit only if the certification succeeds.

More formally, leti be a site, andT a transaction
submitted ati. The deferred execution algorithm is
as follows.

1. i executesT under two phase-locking (2PL)
[BHG87].1

2. WhenT terminates without aborting, it keeps
its write locks and releases its read locks.

3. Sitei computesRS(T), WS(T) andUV(T), and
assigns a vector clock value toT (see hereafter).

4. If T is a read-only transaction, it commits.

5. Otherwise,WS(T), UV(T) andT ’s vector clock
are sent to sitesj 6= i.

1 With no loss of generality, we can ignore local deadlocks.

6. When site j receivesT, it examinesWS(T),
UV(T) andT ’s vector clock, and either aborts
or commitsT according to a specific certifica-
tion algorithm. If it commits, it appliesUV(T)
to WS(T).

In the rest of this paper, we discuss the differences
between commitment protocols, in particular differ-
ent certification algorithms.

We model bullets 1–4 with the execution module.
Bullet 5 constitutes the propagation module. Bullet 6
constitutes the certification module.

2.4.1 The execution module

Algorithm 2 shows in more detail how, given the cur-
rent site-scheduleSi , the execution module computes
a new scheduleS.

Algorithm 2 Execution module in the deferred scheme

1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: loop {execution}
4: chooseS∈ Σ(Mi) such that∀T,T ′ ∈ K,
5: T ∈ Si ⇒ T ∈ S∨T ∈ Aborted(Mi)
6: (T,T ′ ∈ S∧T >Si T ′)⇒ T >S T ′

7:
(T ∈ Si ∧ T ′ /∈ Si ∧T ′ >S T)
∧WS(T)∩ (RS(T ′)∪WS(T ′)) = Ø

}

⇒ T ∈

Committed(Mi)
8: for all T,WS(T) = Ø do
9: Mi := Mi ∪T+

10: end for
11: Si := S
12: end loop

Two-phase locking ensures that any new sched-
ule extends the current schedule. Consequently
a transaction never rolls back unless it is aborted
(Line 5), and transactions execute in the same or-
der (Line 6). When a transaction terminates, it re-
leases its read locks but keeps its write locks; there-
fore any new transaction can execute only if all the
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transactions with which it conflicts are already com-
mitted (Line 7). Finally read-only transactions com-
mit when they terminate (Line 9).

2.4.2 The propagation module

The propagation module differs between commit-
ment protocols. In particular they are based on dif-
ferent communication primitives. Consider some
messagem.

Epidemic Propagation consists of two primitives:
EPsend(m) andEPreceive(m). With epidemic prop-
agation, processes have the following guarantees:

• Integrity: if j performsEPreceive(m), then a
processi performedEPsend(m) previously.

• If a correct processi performsEPsend(m) in-
finitely often, and j is correct and performs
EPreceive() infinitely often, then j eventually
performsEPreceive(m).

Atomic broadcast consists of the primitives
ABcast(m) and ABdeliver(m), with the following
properties:

• Uniform Integrity: for every messagem every
process performsABdeliver(m) at most once
and only if a processi performedABcast(m)
previously.

• Validity: if a correct processi performs
ABcast(m), then it eventually performs
ABdeliver(m).

• Agreement : if a correct processi performs
ABdeliver(m), then every other correct pro-
cesses eventually performABdeliver(m).

• Uniform Total order: if a process performs
ABdeliver(m) andABdeliver(m′) in this order,
then every process that performsABdeliver(m′)
has previously performedABdeliver(m).

T ≺ T ′ T ‖ T ′ T ′ ≺ T
RS(T)∩

WS(T ′) 6= Ø
T→ T ′ T→ T ′ T ′ ⊳

→ T

WS(T)∩
WS(T ′) 6= Ø

T→ T ′ T / T ′ T ′→ T

Table 1:An example of constraints computation

2.4.3 The certification module

The certification modules differs from one commit-
ment protocol to another, but they all base their cer-
tification on static constraints computed using:

1. Read-set and write-set intersection. Two trans-
actions T and T ′ are said to conflict iff
(RS(T) ∩WS(T ′) 6= Ø) ∨ (RS(T ′) ∩WS(T) 6=
Ø)∨ (WS(T)∩WS(T ′) 6= Ø).

2. Thehappens-beforerelation [Lam78]. Transac-
tion T happens-beforeT ′, notedT ≺T ′, iff T ′ is
submitted at some sitei afterT has terminated
at sitei, or if there exists a transactionT ′′ such
that T ≺ T ′′ ∧T ′′ ≺ T ′. If neither T ≺ T ′ nor
T ′ ≺ T the two transactions are said concurrent,
notedT ‖ T ′.

As mentioned previously, commitment protocols
enforce constraints computed byaddConstraints().
These depend on the consistency criterion that needs
to be ensured. Table 1 provides an example of such
a computation.

For instance given two transactionsT andT ′ such
that T ‖ T ′, RS(T) = {x},WS(T) ={y},RS(T) =Ø,
andWS(T ′) = {x,y}, Table 1 defines the constraints
betweenT andT ′ as:T → T ′ andT / T ′.

If we consider an empty multilogM, then
the result of addConstraints(M ∪{T,T′})
is the multilog M′ such that: M′ =
({T,T ′},Ø,Ø,{(T,T ′)},Ø,{(T,T ′)}).
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T ′ ∈ snapshot(T)
MaxX∈snapshot(T){V(X)}

< MaxY∈snapshot(T ′){V(Y)}

RS(T)∩
WS(T ′) 6= Ø

T ′ ⊳
→ T Ø

WS(T)∩
WS(T ′) 6= Ø

Ø T ←
→ T ′

Table 2:Constraint computation for GSI

2.4.4 Serializability and Snapshot Isolation

This paper considers two consistency criteria, Se-
rializability and Snapshot Isolation. Serializabil-
ity (SER) means that the multiversion serialization
graph of committed transactions is acyclic [BHG87].
Snapshot Isolation (SI) is weaker, ensuring that read-
only transactions never block and do not cause up-
date transactions to abort.

We also consider Generalized Snapshot Isolation
(GSI), whereby a transaction always observes a con-
sistent state of the database, but not necessarily the
latest one [EZP05], and Prefix Consistent Snapshot
Isolation (PCSI), in which a transactions observes at
least the effects of transactions that precede it in the
same “workflow.”

SI is used in many commercial databases, such
as Oracle [Ora97], PostGres [Glo04] and SQLServer
[Mic05]. In practice, most computations are serial-
izable under SI [FLO+05].

We introduce SI and friends into our framework
as follows. Let T be a transaction. We note
snapshot(T) the set of transactions thatT reads from
its snapshot (snapshot(T) is any subset of{T ′|T ′ ≺
T}). Similarly the workflow of a transactiont is
some subset of{T ′|T ′ ≺ T}, notedworkflow(T).

SER, GSI and PCSI are mapped to Eventual Con-
sistency: if during a run, the system is eventually
consistent, and the constraints linking transactions

T ′ ∈ workflow(T)
RS(T)∩WS(T ′) 6= Ø T ′→ T

Table 3:Constraint computation for PCSI

are sufficient, then the system reaches the consis-
tency criterion.

For instance, if the system is eventually consistent
in a runr and constraints are computed according to
Table 1, then the executionr is serializable; if con-
straints are computed according to Table 2,r is GSI;
and if constraints are computed according to Table 2
in addition to Table 3,r is PCSI.

3 Database replication with epi-
demic propagation

Agrawal, El Abbadi and Steinke propose a family of
commitment protocols based on an epidemic com-
munication between sites [AES97]. We first model
their pessimistic scheme (AES), then consider their
optimistic variant (AESO).

3.1 Overview

AES uses a deferred scheme in which sites exchange
epidemically their local logs. AES ensures serializ-
ability with a certification test, which ensures that
any two concurrent transactions that conflict will
both abort. When a sitei receives a log containing a
transactionT, if T is not aborted, its write locks are
taken on sitei, and update values ofT are applied.
Wheni learns thatT was successfully executed at all
sites,T is committed ati.
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T ≺ T ′ T ‖ T ′ T ′ ≺ T
RS(T)∩WS(T ′)

6= Ø
T→ T ′ T ←

→ T ′ T ′ ⊳
→ T

WS(T)∩WS(T ′)
6= Ø

T→ T ′ T ←
→ T ′ T ′→ T

true T→ T ′ Ø T ′→ T

Table 4:Constraints computation for AES

3.2 Computing constraints in AES

Table 4 summarises the constraints used in AES. In
AES transactions are executed according in the order
they appear in logs, whether they commute or not,
hence the→ relation in the bottom row of the table.
In AES concurrent conflicting transactions cannot be
both executed; we translate this with an antagonism
(first two rows). Then, as transactions are executed
under 2PL:

• If a committed write happens-before a read with
which it conflicts, the write is causally before
the read:

T ′ ≺ T
∧ RS(T)∩WS(T ′) 6= Ø

}

⇒ T ′ ⊳
→ T

• If a committed read or write happens-before a
write, the former is ordered before the write.

T ′ ≺ T
∧WS(T)∩ (RS(T ′)∪WS(T ′)) 6= Ø

}

⇒T ′→T

3.3 AES

Algorithm 3 expresses the AES algorithm. (Each
loop iteration is atomic.)

Algorithm 3 AES, code for sitei

1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: Logs[n] {an array ofn multilogs.Logs[i] = Mi}
4: loop {execution}
5: same as Algorithm 2
6: end loop
7: ||
8: loop {propagation}
9: let L = {T ∈ Si |WS(T) 6= Ø}

10: choosek∈ J1,nK
11: L := {T ∈ L|∀T ′ ∈ Logs[k],T → T ′ /∈ Logs[k]}
12: EPsend(L) to j
13: end loop
14: ||
15: loop {commitment}
16: EPreceive(L) from some processj
17: Logs[ j] := addConstraints(Logs[j]∪L)
18: Mi := addConstraints(Mi ∪L)
19: for all T ∈ L do
20: if ∃T ′ ∈Mi : T ←

→ T ′ ∈Mi then
21: Mi := Mi ∪{T−,T ′−}
22: else
23: if T /∈ Aborted(Mi) ∧ (∀k ∈ J1,nK,∃T ′ ∈

Logs[k],T → T ′) then
24: Mi := Mi ∪{T+}
25: end if
26: end if
27: end for
28: end loop

3.4 Correctness of our translation and ob-
servations

Concurrency control in AES is based on the predi-
cateHasRecvd(i,T,k). This predicate captures the
fact that sitei knows thatk has received transac-
tion T. We capture this information with an array
of n multilogs, Logs. Logs[k] contains the knowl-

edge thati has of sitek: HasRecvd(i,T,k)
△
= ∃T′ ∈

Logs[k],{T → T ′} ∈ Logs[k].

A non-query transactions that has executed lo-

10



cally, and has not yet been received by some remote
site, is sent to that site. Formally, transactionT is
sent to remote sitek if ¬HasRecvd(i,T,k)⇔ (∀T ′ ∈
Logs[k],T → T ′ /∈ Logs[k]) (Line 11). Observe that
this propagation scheme might block when clients
stop submitting new transactions to the system.

Using HasRecvd, AES abortsT and T ′ if both
of them have executed on at least one site, and if
they are conflicting and concurrent [AES97]. See
Lines 20 to 21.

AES defines the predicateCommit(T, i) such that
i commitsT if i knows thatT has been received by
every site and no concurrent conflicting transactions
exist (Lines 23 and 24).

3.5 The optimistic variant

In AES, an optimistic variant of AES, transactions
release their write locks at the end of execution. With
this modification, cascading aborts may occur, and
read-only transactions (queries) may read uncommit-
ted values.

Our model for AESO is almost identical to
AES. Indeed⊳ captures the existing abort de-
pendencies between transactions: ifT ⊳ T ′,
then T ′ ∈ Committed(Mi) ⇒ T ∈ Committed(Mi)
and conversely (ii)T ∈ Aborted(Mi(t)) ⇒ T ′ ∈
Aborted(Mi(t)). Releasing write locks the end of
execution translates to removing Line 7 from Algo-
rithm 2. The rest is unchanged, see Algorithm 4.

3.6 The Snapshot Isolation variant

As an illustration of our framework, we propose a
variant of AES that ensures GSI or PCSI.

For GSI, the change is very simple: in either AES
or AESO, replace Table 4 with Table 2 . To obtain
PCSI, add Table 3 to Table 2.

Algorithm 4 AESO, code for sitei

1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: Logs[n] {an array ofn multilogs.Logs[i] = Mi}
4: loop {execution}
5: chooseS∈ Σ(Mi) such that∀T,T ′ ∈ K,
6: T ∈ Si ⇒ T ∈ S∨T ∈ Aborted(Mi)
7: (T,T ′ ∈ S∧T >Si T ′)⇒ T >S T ′

8: Si := S
9: end loop

10: ||
11: loop {propagation}
12: same as Algorithm 3
13: end loop
14: ||
15: loop {commitment}
16: same as Algorithm 3
17: end loop

4 The Database State Machine Ap-
proach

The database state machine approach [PGS03] uses a
deferred scheme where the certification test is based
on atomic broadcast. Two approaches exist: (1)
A classical approach (DBSM) in which an update
transaction commits or aborts as soon as it is deliv-
ered to sites; and (2) a reordering technique (DB-
SMR) in which a delivered transaction is re-ordered
with relation to the set of already committed transac-
tions.

4.1 Static constraints in DBSM

In DBSM, all update transactions are ordered. Con-
sequently any pair of transactions with a non-null
write-set is considered non-commuting.

Now let us refine these constraints according to
the certification test. LetCommitted( j) be the set
of committed transactions at sitej. The certification

11



T ≺ T ′ T ‖ T ′ T ′ ≺ T
RS(T)∩WS(T ′)

6= Ø
T→ T ′ T→ T ′ T ′ ⊳

→ T

WS(T) 6= Ø
∧WS(T ′) 6= Ø

T→ T ′ T / T ′ T ′→ T

Table 5:Constraints in DBSM

test commit transactionT at j after it has been deliv-
ered, iff:

∀T ′ ∈ Committed( j),

T ′ ≺ T ∨WS(T ′)∩RS(T) = Ø

ConsequentlyT is aborted iff:

∃T ′ ∈ Committed( j),

T ′ ‖ T ∨T ≺ T ′

∧WS(T ′)∩RS(T) 6= Ø

This test ensures that if bothT andT ′ are commit-
ted, thenT ←

→ T ′ cannot occur. Consequently since
T is executed afterT ′, this certification test checks
thatT → T ′ is not an existing constraint betweenT
andT ′. It follows that:

T ′ ‖ T ∧WS(T ′)∩RS(T) 6= Ø
∨ (T ≺ T ′∧WS(T ′)∩RS(T) 6= Ø)

}

⇒ T → T ′

Moreover, since transactions execute in DBSM
with 2PL, observations appearing in Section 3.2
hold. Table 5 sums up the constraints.

For the DBSMR reordering technique [PGS03,
page 11] a similar reasoning leads to the same table.

4.2 DBSM

Algorithm 5 presents the translation of the classical
database state machine approach in our framework.

Algorithm 5 DBSM, code for sitei

1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: loop {execution}
4: same as Algorithm 2
5: end loop
6: ||
7: loop {propagation}
8: choose aT ∈Mi s.t.T ∈ Si ∧T /∈Committed(Mi)
9: AB-cast(T)

10: end loop
11: ||
12: loop {Commitment}
13: AB-deliver(T)
14: Mi := addConstraints(Mi ∪T)
15: for all T ′ ∈ Committed(Mi) do
16: Mi := Mi ∪{T ′→ T}
17: end for
18: if T /∈ Aborted(Mi) then
19: Mi := Mi ∪{T+}
20: end if
21: end loop

4.3 DBSMR

In its classical form DBSM leads to a high abort rate
due to the unnecessary order appearing at line 16. To
solve this problem Pedone et al. propose a reordering
technique based on the deterministic construction of
a partial order over certified transactions: Algorithm
6.

However this approach has a drawback : when
the system becomes quiescent, transactions block in
buffer B. To preserve liveness, “null” transactions
have to be sent to sites.

4.4 Snapshot Isolation

Elnikety et al. depict a variant of DBSM to guarantee
Generalized Snapshot Isolation [EZP05].
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Algorithm 6 DBSMR, code for sitei

1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: B {a buffer of sizel}
4: loop {execution}
5: same as Algorithm 2
6: end loop
7: ||
8: loop {propagation}
9: same as Algorithm 5.

10: end loop
11: ||
12: loop {commitment}
13: AB-deliver(T)
14: Mi := addConstraints(Mi ∪T)
15: if

∀T ′ ∈ Committed(Mi),{T→ T ′} /∈Mi

∧







∃ j ∈ J0, l −1K,
∀k∈ J0, j−1K,{B[k]→ T} /∈Mi

∧ (∀k∈ J j, l −1J,{T→ B[k]} /∈Mi)







then
16: for all T ′ ∈Committed(Mi) do
17: Mi := Mi ∪{T ′→ B[l −1]}
18: end for
19: Mi := Mi ∪{B[l −1]+}
20: for all k∈ J j, l −1K do
21: B[k+1] := B[k]
22: end for
23: B[ j] := T
24: else
25: Mi := Mi ∪{T−}
26: end if
27: end loop

We translate this algorithm in our framework sim-
ilarily to what we did with AES. We use Algorithm 5,
and switch from Table 5 to Table 2.

5 Optimization-Based Replication

The protocols depicted in the previous sections suf-
fer a problematic abort rate as they kill transactions
more than necessary (AES, Table 3.2), or do not se-
rialize concurrent updates in a good order (DBSM,
Algorithm 5, line 16). We also pointed out that they
may experience liveness issues when the system is
under low load (DBSMR, see Section 4.3 and AES,
see Section 3.4). Futhermore, they propagate one
transaction at a time over the network (DBSM and
DBSMR), whereas batch-processing transactions is
possible.

We propose a new commitment protocol to rem-
edy these issues.

Our idea is triple. We batch-process transactions
in the same atomic broadcast. We compute the weak-
est static constraints to preserve serializability and
causality. And we commit transactions trying to min-
imize the number of transactions aborted.

This last computation step is ensured with an
heuristic as the problem is an NP-hard optimization
problem (see futher).

In this section we first present our new protocol
(OBR). Then we expose a more optimistic variant
(OBRO) where we release write locks at the end of
execution. We conclude with a variant for snapshot
isolation.

5.1 OBR: overview

Our protocol works as follows:
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T ≺ T ′ T ‖ T ′ T ′ ≺ T
RS(T)∩WS(T ′)

6= Ø
T→ T ′ T→ T ′ T ′ ⊳

→ T

WS(T)∩WS(T ′)
6= Ø

T→ T ′ T / T ′ T ′→ T

Table 6:Static constraints in OBR

1. Transactions are executed against local cache
using 2PL. Read locks are released at the end
of execution, read sets, write sets and logical
timestamps are then computed. Queries are lo-
cally committed.

2. sites batch transactions in the same atomic
broadcast.

3. When a sitei delivers such a set of transactions,
it computes constraints linking transactions ac-
cording to Table 6.

4. Theni takes a decision upon these transactions
with an heuristic:Decide(). We specify this de-
cision such that:

• Non-commuting transactions are serial-
ized.

• All transactions are either committed or
aborted.

The decision process is strictly monotonic, i.e.
each new decision is sound with relation to pre-
vious decisions.

5.2 Computing a decision

Formally Decide() is an algorithm whose input is a
multilog M = (K,+,−,→,⊳,/), and whose output
is a multilogM′ = (K′,+’,−’,→’,⊳’,/’) such that
:

1. Decide() adds onlydecisions, namely:

• Decide() does not add new transactions:
K′ = K.

• +’ ⊇+

• −’ ⊇−

• α→’ β⇒ α→ β∨α / β

• /’ = /

2. Multilog M′ is decided.

3. If M is sound, thenM′ is sound.
According to this definition certification loops

appearing in previous sections are all instances of
Decide(). However we offer an improvedDecide()
algorithm (Algorithm 7) that aims at minimizing the
abort rate.

We follow the general guidelines proposed by
Shapiro and Krishna [SK05]. We decompose deci-
sion into three parts: serialization, conflict-breaking
and validation: serialization orders any non-
commuting pairs of transactions, conflict-breaking
aborts at least one transaction in any→-cycle, and
validation commits the remaining set of non-aborted
transactions.

Given T a blindwrite transaction (RS(T) = Ø),
we serializeT / T ′ in T ′→ T: lines 3 to 8. Indeed,
for any transactionT”, T → T ′′ is not possible ac-
cording to Table 6. Consequently no→-cycle may
exist serializingT andT ′ in T ′→ T.

We serialize the remaining pairs of non-
commuting transactions computing→’: line 9 to 10.
This relation extends the previous relation→, mini-
mizing the number of→-cycles newly introduced.

Breaking→-cycles minimizing the number of
transactions aborted is stated as follows:

Definition. Consider a graph G= (V,E) where
(i) each node in V is a transaction T of K\
Committed(M) weighted by k, with k equals to one
plus the number of distinct predecessors by⊳ that
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Algorithm 7 Decide(M)

1: {Serialization}
2: let SER:= K \Serialized(M)
3: for all T ∈ SER: RS(T) = Ø do
4: for all T ′ ∈ SER: T / T ′ do
5: M := M∪{T ′→ T}
6: end for
7: SER:= SER\ {T}
8: end for
9: choose→’ such that:
→⊆→’

∧ ∀T,T ′ ∈ SER, ((T,T ′) ∈→’)∨ ((T ′,T) ∈→’)
10: →:=→’

11: {Cycle breaking}
12: M := breakCycles(M)
13: {Validation}
14: for all T /∈ Decided(M) do
15: M := M∪{T+}
16: end for

T has in M, and (ii) for(v,v′) ∈ V, a directed edge
going from v to v′ exists in E, iff v→ v′ is in M. Con-
flict breaking is the problem of finding the minimum
feedback vertex set of G.

This problem is an NP-complete optimization
problem, and the literature upon this subject is im-
portant [GJ90]. Consequently we postulate the exis-
tence of an heuristic:breakCycles() (line 12).

At the end of the serialization process and the
conflict breaking, remaining non-aborted transac-
tions are committed: lines 14-16.

Algorithm 7 minimizes the number of→-cycles
created when serializing two writes , and reduces the
number of transactions aborted when breaking con-
flicts. The abort rate of Algorithm 7 is consequently
lower than AES and DBSM. We futher detail this re-
sult in Section 6.

5.3 OBR

OBR is depicted in Algorithm 8. Each loop is
atomic.

Algorithm 8 OBR, code for sitei

1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: D = (Ø,Ø,Ø,Ø,Ø,Ø) {a multilog containing previ-

ous decisions}
4: loop {execution}
5: same as Algorithm 2
6: end loop
7: ||
8: loop {propagation}
9: let L := K \Decided(M)

10: AB-cast(L)
11: end loop
12: ||
13: loop {commitment}
14: AB-deliver(L)
15: D := addConstraints(D∪L)
16: D := Decide(D)
17: Mi := Mi ∪D
18: end loop

The second idea in OBR is to broadcast batches
of transactions with atomic broadcast: line 10. We
ensure the growing monotonicity of our decisions
with a local variable containing previous decisions
D: lines 15 and 16. OBR ensures serializability and
preserves causality.

5.4 Increasing the optimism

If we release write locks when transactions finish to
execute, we increase the transactions throughput of
the system. This result comes from the fact that we
batch process transactions in a single atomic broad-
cast.

On the other hand, this technique also augments
the probability that a→-cycle may exist. But OBR
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is designed to reduce the abort rate. Consequenlty
we may expect that the number of transactions com-
mitted increase. Algorithm 9 depicts our proposal,
OBRO.

Algorithm 9 OBRO, code for sitei

1: Mi {the site-multilog ofi}
2: Si {the site-schedule ofi}
3: D {a multilog containing previous decisions}
4: loop {execution}
5: same as Algorithm 4
6: end loop
7: loop {propagation}
8: let L := K \Decided(M)
9: L := L\ {T ∈ L|WS(T) = Ø}

10: AB-cast(L)
11: end loop
12: ||
13: loop {commitment}
14: same as Algorithm 8
15: end loop

Similarly to AESO, we release write locks at the
end of execution: line 5. Doing so, queries have to
wait before being committed, since they may see an
inconstant state: line 9.

Interestingly Algorithm 9 may also serialize
transactions in a better way than OBR. This result
is detailed in Section 6.

5.5 The impact of Snapshot Isolation

Similarly to what we did in Section 3.6, we ensures
SI in both of our algorithms by switching from Ta-
ble 6 to Table 3 and Table 2 in our algorithms.

6 Comparison between AES, DBSM
and OBR

AES, DBSM and OBR all ensure serializability. In
this section we compare them according to fault tol-
erance and liveness, time and message complexity,
abort rate, and implementation considerations.

6.1 Fault tolerance and Liveness

DBSM and OBR are based on an atomic broadcast
primitive. Atomic broadcast is not solvable in asyn-
chronous systems with crash-fail processes [FLP85].
However in a partially synchronous system with fail-
ure detectors, atomic broadcast becomes solvable
even in the presence of faulty processes [CT96].

AES was not designed to be fault-resilient. It
blocks if a site crashes, for instance (in a real-case
deployment) during maintenance or if a site discon-
nects.

In Sections 3.4 and 4.3 we pointed out a live-
ness problem that could occur with AES and DB-
SMR. The impact of this issue is not negligible as
during quiescent periods the commitment may block.
Conversely, our protocol is designed to not suffer
this liveness issue as transactions received by atomic
broadcast are immediately decided.

6.2 Time performance

We measure the time performance of a distributed
protocol with the latency degree: the smallest num-
ber of non-parallel communication steps required to
solve a problem. The latency degree measures for a
commitment protocol, the number of communication
steps to commit or abort a transaction.
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In AES a transactionT is sent epidemically to ev-
ery distant sites, and decided onceHasRecvd(i,T,k)
holds for everyk. In the best case, it requires 2 com-
munication steps.

DBSM and OBR are based on atomic broadcast.
This communication primitive has a latency degree
of 3 [CT96]. If broadcast over IP is possible, this
value is reduced to 1 ([PSUC02].

We observed previously that AES and OBR
batch-process transactions when they communicate.
This idea improves substantially time-performance
when the system becomes under medium to high
charge.

6.3 Message complexity

Message complexity is measured as the total number
of messages required to commit or abort a transac-
tion. AES has a message complexity of 2n, DBSM
and OBR 3n; 3n decreases ton if broadcast over IP
is available.

Once again, batch-processing transactions in
AES and OBR, decreases the message cost to com-
mit a transaction since we send them many at a time.

6.4 Abort rate

AES aborts all concurrent conflicting transactions,
DBSM and OBR try to minimize them; and DBSMR
reorders transactions whereas DBSM not. It fol-
lows that AES aborts more transactions than DBSM
which aborts more transactions than DBSMR. We
now compare DBSMR with OBR.

First of all observe that Table 5 is a strict augmen-
tation of Table 6. Consequently DBSMR computes
stronger constraints than OBR to obtain the same re-
sult: serializability. But as DBSMR computes more
constraints, it may also abort more transactions.

Table 7 illustrates this matter. We use the nota-
tion of [BHG87]: r1[x] models a read from transac-
tion T1 on data itemx andw2[z] models a write by
transactionT2 on data itemz.

Table 7 depicts a run during which two trans-
actionsT1 andT2 are concurrent toT3. The or-
der of delivery is the following: deliver(T1) <
deliver(T2) < deliver(T3).

Recall now that two transactions with a non-
empty write set, do not commute in DBSMR. Conse-
quently when DBSMR receivesT2,T2 is ordered af-
ter T1. The resulting schedule isT1.T2. Now when
T3 is received; DBSMR aborts it as the schedules
T1.T2.T3, T1.T3.T2 andT3.T1.T2 are not possi-
ble.

On the contrary our protocol does not orderT1
and T2, andT3 is committed when received. The
resulting schedule isT2.T3.T1.

T1 = {w1[x]}
T2 = {r2[y],w2[z]}
T3 = {r3[x],w3[y]}

T2≺ T1
T1 ‖ T3
T2 ‖ T3

deliver(T1) < deliver(T2) < deliver(T3)

Table 7:Unnecessary ordering of transactions with DB-
SMR

DBSMR serializes concurrent writes according to
the order they are received with atomic broadcast. In
particular it does not serialize blindwrite transactions
properly.

Table 8 illustrates such a situation. Three con-
current transactionsT1, T2 andT3 are delivered in
the following order: deliver(T2) < deliver(T1) <
deliver(T3). DBSMR computesT2, thenT2.T1,
and finally abortsT3.

On the contrary OBR schedulesT1 and T2 in
T1.T2 when it receives the blindwrite transaction
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T2. Then it computesT1.T3.T2 whenT3 is deliv-
ered..

T1 = {w1[x], r1[y]}
T2 = {w2[x],w2[z]}
T3 = {w3[y], r3[z]}

T1 ‖ T2
T1 ‖ T3
T2 ‖ T3

deliver(T2) < deliver(T1) < deliver(T3)

Table 8:Serialization of blindwrite transactions

Batch-processing transactions induces a lower
abortion rate. Indeed we can compute a greater num-
ber of schedules when transactions are received set
by set, than one by one.

To illustrate this claim, we consider a run de-
picted Table 9. In this runT1 has already been re-
ceived, andT2,T3 are received within a set. Since
T2 andT3 are batch-processed, we obtain the result-
ing scheduleT1.T2.T3 where all the transactions are
committed.

On the contrary, suppose that we deliver in two
distinct messagesT3 thenT2 (it is possible sinceT2
release its read locks, and the two atomic broadcasts
are independent). The serialization ofT1 andT2 can
lead toT2.T1, as both ordersT1.T2 andT2.T1 do
not abort any transaction. But when we deliverT3,
we must abort it.

T1 = {w1[y], r2[z]}
T2 = {r2[x],w2[z]}
T3 = {w3[x],w3[y]}

T1 ‖ T2
T1 ‖ T3
T2≺ T3

deliver(T1) < deliver(T2,T3)

Table 9:Batch-processing transactions reduce abort rate

We said in Section 5.4 that OBRO may serialize
transactions in a better way than OBR, Table 10 il-
lustrates this.

Let T1, T2 andT3 be three transactions such that
T2 ⊳

→ T1, T2 / T3 andT3→ T1. OBR keeps lock
at the end of execution, consequentlyT2 andT3 are

T1 = {r1[x],w1[y]}
T2 = {w2[x], r2[z]}
T3 = {w3[x], r3[y]}

T2≺ T1
T1 ‖ T3
T2 ‖ T3

Table 10:Serialization in OBRO

ordered beforeT1 is received. Now sinceT2→ T3
does not create more→-cycles thanT3→ T2, T2
andT3 may be serialized inT2→ T3; and whenT1
is received, the constraintsT3→ T1, T1→ T3, and
T3+ induce thatT1 is aborted.

If we consider the execution with OBRO, and that
T1 andT2 are sent in the same atomic broadcast,T2
andT3 are serialized inT3→ T2 as it minimizes the
number of→-cycles: all transactions are committed.

6.5 Implementation considerations

Garbage collecting transactions in logs is encom-
passed in our concept of durable actions: an action
is durable if it is decided and its predecessors by→
and⊳ are durable. Consequently given a runr, a
certain pointt of r, and a transactionsT ∈Mi(t), T
is durable inr, if T ∈ Durable(Mi(t)) holds, and in
the remaining of the run, no new predecessors ofT
appear inMi.

In our framework according to Table 4, a trans-
actionT is durable in a run of AES as soon as it is
executed on every sites (and hence committed). This
is what Agrawal et al. do in [AES97]; they garbage-
collect transactions as soon as they are committed.

In DBSM and OBR the durability of a transaction
is achieved similarly. Indeed according to Tables 5
and 6, if every site executeT, T is durable.
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7 Related work

Holliday et al. propose a quorum-based variant of
AES to lower the abort rate of concurrent and con-
flicting transactions [HSAA03] . This variant does
not ensure serializability, but only external consis-
tency. Moreover the drawbacks of the approach re-
main: concurrent and conflicting transactions are an-
tagonist, and the protocol still suffers a liveness is-
sue.

Pedone et al. propose initially the database state
machine approach as a reordering technique for dis-
tributed databases.[PGS97]. Oliveira et al. revisit
the 1-copy equivalence of DBSM and point out that
session guarantees such as read-yours-writes are not
ensured [OPAaCA06]. To solve the problem they
introduce a semantic link between reads and writes
causally preceding them; this solution is very simi-
lar to what we depicted in Section 2.4.4 to introduce
Prefix Consistent Snapshot Isolation.

The idea of considering optimistic replication as
an optimization problem was firstly proposed in Ice-
Cube [PSM03a]. The IceCube approach was applied
to databases in mobile environments [PSM03b], and
in P2P environments [MP06]. However the recon-
ciliation process was always centralized to a primary
site.

IceCube is based on coarse-grained constraints.
Shapiro et al. refine these constraints and introduce
the Action-Constraint Framework to ease the under-
standing of replication [SBK04].

Kemme et al. propose a novel approach to imple-
ment eager replication [KA00]. This commitment
protocol is based on the deferred update technique
and atomic broadcast, but a single site decides if a
transaction commits or aborts, and only one transac-
tion at a time is sent in a single atomic broadcast.

Wiesmann and Schiper performed a quantitative
comparison between the protocol of Kemme et al.,
DBSM and existing pessimistic approaches [WS05].
Their work show that the deferred update technique
outperforms pessimistic approaches.

8 Conclusion

This paper depicts a detailed comparison between
two existing optimistic database replication tech-
niques: AES [AES97] and DBSM [PGS03], and
a new solution: OBR, that we describe in detail.
These techniques all implement the deferred update
scheme, a database replication technique managing
anywhere-anytime-anyway updates.

Our comparison emphasizes the basic building
blocks of the deferred update scheme viz. the execu-
tion module, the propagation module, the certifica-
tion module, and the static constraints computation.
It furthermore alleviates the design of new variants:
a snapshot isolated variant for AES and OBR, and an
optimistic variant for OBR.

In our new commitment protocol OBR, we refine
the consistency problem: serializability or snapshot
isolation, as a graph problem, and solve it with an
heuristic: Decide(). We also batch process transac-
tions in a single communication primitive whereas
previous approaches only send transactions one by
one. We finally show qualitatively that our solution
outperforms DBSM and AES with respect to latency,
message cost and abort rate.

In a shorter term, we plan to corroborate these re-
sults with an implementation into our ACF middle-
ware Telex [Tel]. In particular we intend to analyze
the tradeoff between releasing write locks (OBRO)
and keeping them at the end of execution (OBR), ac-
cording to different workloads.
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mento de Informática FCT/UNL, 2003.
URL=http://asc.di.fct.unl.pt/ nmp/papers/sqlice3-
rep.pdf.

[PSUC02] Fernando Pedone, André Schiper, Péter
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