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1 Synonyms

Asynchronous Replication; Lazy replication; Optimistic replication; Reconciliation-based
data replication.

The term “optimistic replication” is prevalent in the distributed systems and dis-
tributed algorithms literature. The database literature prefers “lazy replication.”

2 Definition

Data replication places physical copies of a shared logical item onto different sites.
Optimistic replication (OR) [16] allows a program at some site to read or update the
local replica at any time. An update is tentative because it may conflict with a remote
update. Such conflicts are resolved after the fact, in the background. Replicas may diverge
occasionally, but are expected to converge eventually (see entry “Eventual Consistency”).

OR avoids the need for distributed coordination prior to using an item. It allows a
site to execute even when remote sites have crashed, when network connectivity is poor
or expensive, or while disconnected from the network.

The defining characteristic of OR is that any communication between sites occurs in
the background, after local commitment, i.e., off the critical path of the application.

OR enables parallelism, and updates occur and propagate quickly. The OR approach
is well adapted to distributed databases over slow or failure-prone networks, and OR is
essential to be able to access remote data with high availability. Prominent examples
include geo-replication (see entry “Multi Datacenter Consistency”) and mobile computing
scenarios. Indeed, the CAP Theorem states that, in a network that is prone to dis-
connection, it is not possible to ensure both strong consistency and availability. When
availability is paramount, for instance in e-commerce applications, this leads to the choice
of the weak consistency levels (e.g., see entry “Eventual Consistency”) supported by OR.
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Disconnected operation, the capability to compute while disconnected from a data source,
e.g., in mobile computing, requires OR. In computer-supported cooperative work, OR
enables a user to temporarily insulate himself from other users. In cloud computing, OR
enables the system to remain available for reads and writes even when the network is
slow or partitioned away.

3 Historical Background

(The vocabulary used in this history is defined in Section 4.)

The first historical instance of OR is Johnson’s and Thomas’s Last-Writer-Wins
replicated database (1976).

Usenet News (1979) supports a large-scale ever-growing database of (read-only) items,
posted by users all over the world. A Usenet site connects infrequently (e.g., daily) with
its peers. New items are flooded to other sites and are delivered in arbitrary order. Users
occasionally observe ordering anomalies, but this is not considered a problem. However,
system administrators must deal manually with conflicts over administrative operations.

In 1984, Wuu and Bernstein’s replicated mutable key-value-pair database uses an
operation log, transmitted by an anti-entropy protocol: site A sends to site B only the
tail of A’s log that B has not yet seen [22]. Concurrent operations either commute or
have a natural semantic order; nonconcurrent operations execute in happens-before order.

The Lotus Notes system (1988) supports cooperative work between mobile enterprise
users. It replicates a database of discrete items in a peerto-peer manner. Notes is state-
based and uses a Last-Writer Wins policy. A deleted item is replaced by a tombstone.

Several file systems, designed in the early 1990s to support disconnected work, e.g.,
Coda [8], are state based and use version vectors for conflict detection. Conflicts over some
specific object types (e.g., directories or mailboxes) cause automatic resolver programs to
run. The others must be resolved manually.

The Computer-Supported Cooperative Work (CSCW) community invented (1989) a
form of OR called Operational Transformation (OT). Conflicting operations are trans-
formed, by modifying their arguments, in order to execute in arbitrary but causal order
[19].

Golding [5] (1992) studies a replicated database of mutable key-value pairs. This
system purges an operation from the log when it can prove that it was delivered to all
sites. Consistency is ensured by defining a total order of operations.

Bayou (1994–1997) is a seminal general-purpose database for mobile users [12]. Bayou
is operation based and uses an anti-entropy protocol. Each site executes transactions in
arbitrary order; transactions remain tentative. The eventual serialisation order is the
order of execution at a designated primary site. Other sites roll back their tentative
state, and re-execute committed transactions in commit order.
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In 1996, Gray et al. argued that OR databases cannot scale [7], because conflict
reconciliation is expensive, conflict probability rises as the third power of the number of
nodes, and the wait probability further increases quadratically with disconnection time.

In 1999, Breitbart et al. [2] describe a partially replicated database that uses a form
of OR. Each item has a designated primary site and may be replicated at any number
of secondary sites. A read may occur at a secondary site but a write must occur on
the primary. It follows that write transactions update a single site. If transactions are
serialisable at each site, and update propagation is restricted to avoid ordering anomalies,
then transactions are serialisable despite lazy propagation.

Cloud computing has sparked a new interest in OR. In order to avoid synchronisation,
which is bad for performance and for fault-tolerance, AP (Available under Partition)
databases are designed in an OR style, supporting only weakly-consistent key-value
storage, such as Last-Writer Wins (Cassandra) or Multi-Value Register (Dynamo).

Geo-replication (see entry “Multi Datacenter Consistency”) places database replicas
at several data centers around the globe, for improved responsiveness and fault tolerance.
Although a replica may be strongly consistent internally, geo-replication typically uses
OR between data centers to ensure availability. Examples include Walter [18], Eiger [10],
or Riak.

Around 2010, several researchers proposed the concept of a Replicated Data Type
(RDT) [3, 14, 15, 17]. An RDT is similar to an ordinary data type; for instance, read-write
register, set, map, graph, etc., may constitute RDT types. Abstractly, an RDT is similar
to the corresponding ordinary abstract data type; for instance, the interface to a register
RDT might have read and assign methods, whereas a set RDT would have methods for
testing whether an element is a member of the set and for adding and removing elements
to/from the set. Internally, an RDT is replicated, to provide reliability, availability, and
responsiveness. Encapsulation hides the details of replication and conflict resolution.

4 Foundations

Figure 1 depicts a logical item x, concretely replicated at three different sites. In OR,
any site may submit or initiate a transaction reading or writing the local replica. If
the transaction succeeds locally, the system propagates it to other sites and replays the
transaction on the remote sites, in a lazy manner, in the background. Local execution is
tentative and may be resolved against a conflict with a concurrent remote transaction.
(The happens-before and concurrency relations are defined formally by Lamport [9].
Transaction A happens-before B, if OR replayed B was initiated on some site after A
executed at that site. Two transactions are concurrent if neither happens-before the
other.)

OR is opposed to pessimistic (or eager) replication, where a local transaction termi-
nates only when it commits globally. Pessimistic replication logically establishes a total
order for committed transactions, at the latest when each transaction terminates. In
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Figure 1: Three sites with replicas of logical item x. Site 1 initiates transaction f ; Site 2
initiates g. The system propagates and replays on remote sites. Site 3 executes in the
order g; f , whereas Site 1 replays f before g. Eventually, Site 2 will also execute f .

contrast, OR generally relaxes the ordering requirements and/or converges to a common
order a posteriori. The effects of a tentative transaction can be observed; thus OR
protocols may violate the isolation property and allow cascading aborts and retries to
occur.

4.1 Transmitting and Replaying Updates

In OR, updates are propagated lazily, in the background, after the transaction has
terminated locally. Transmission usually uses peer-to-peer epidemic or anti-entropy
techniques (see entry on “Peer-to-Peer Content Distribution”).

There are two main approaches to update transmission and delivery. In the state-
based approach, a sender transmits the updated (after-values) of the object; a receiver
merges the received value into its local state. In the operation-based approach, the sender
transmits the program of the update transaction itself; a receiver replays the code of the
transaction on its local replica.

The state-based approach is often perceived as being the simpler of the two. In the
common case of last-writer-wins, state-based merge often reduces to overwriting the
local replica with the received value; this is guaranteed to be deterministic. In the more
general case, the merge procedure must be carefully designed to ensure convergence.
The state-based approach tolerates unreliable and out-of-order delivery. However, if the
replicated object is large, then state-based transmission is expensive, and replay is subject
to false conflicts.

Conversely, the cost of transmitting an operation is often very small, similar to a
remote procedure call.

Furthermore, logical operations are more likely to commute than writes; thus opera-
tionbased replay typically causes fewer aborts. However, the operation-based approach
assumes communication layer, that ensures reliable, exactly-once delivery in happened-
before order.
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4.2 Conflicts

Each transaction taken individually is assumed correct (the C of the ACID properties),
i.e., it maintains semantic invariants. For example, ensuring that a bank account remains
positive, or that a person is not scheduled in two different meetings at the same time.

As is clear from Figure 1, concurrent transactions may be delivered to different sites in
different orders (see section “Scheduling Transactions Content and Ordering”). However,
requires that local schedules be equivalent. In this respect, one may classify pairs of
concurrent transactions as commuting, non-commuting, and antagonistic. Transactions
conflict if they are mutually noncommuting or mutually antagonistic.

The relative execution order of commuting transactions is immaterial; they require
no remote synchronisation. Formally, two transactions T1 and T2 commute if execution
order T1;T2 returns the same results to the user and leaves the database in the same
state as the order T2;T1 . For instance, depositing e10 in a bank account commutes
with a depositing e20 into the same account and also commutes with withdrawing e100
from an independent account. If running concurrent transactions together would violate
an invariant, they are said antagonistic. Safety requires aborting one or the other (or
both).

For instance, if T1 schedules me in a meeting from 10:00 to 12:00, and T2 schedules a
different meeting from 11:00 to 13:00, they are antagonistic since no combination of both
T1 and T2 can be correct. If two transactions are non-commuting and neither is aborted,
then their relative execution order must be the same at all sites. Consider for instance T1
= “transfer balance to savings” and T2 = “deposit e100.” Both orders T1;T2 and T2;T1
make sense, but the result is clearly different. There must be a system-wide consensus
on the order T1;T2 or T2;T1.

4.3 Conflict Resolution and Reconciliation

Conflict resolution rewrites or aborts transactions to remove conflicts. Conflict resolution
can be either manual or automatic. Manual conflict resolution simply allows conflicting
transactions to proceed, thereby creating conflicting versions; it is up to the user to create
a new, merged version.

Reconciliation detects and repairs conflicts and combines non-conflicting updates.
Thus transactions are tentative, i.e., a tentatively successful transaction may have to roll
back for reconciliation purposes. OR resolves conflicts a posteriori (whereas pessimistic
approaches avoid them a priori).

In many systems, data invariants are either unknown or not communicated to the
system. In this case, the system designer conservatively assumes that, if concurrent
transactions access the same item, and one (or both) writes the item, then they are
antagonistic. Then, one of them must abort, or both.
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A few systems, such as Bayou [21], IceCube [13] or CISE [6] support an application-
specific check of invariants. Bailis et al. [1] shows that application-level enforcement of
invariants is error prone.

4.4 Last Writer Wins

When transactions consist only of reads and assignments, a common approach is to ensure
a global precedence order.

For instance, many replicated file systems follow the “Last Writer Wins” (LWW)
approach. Files have timestamps that increase with successive versions. When the file
system encounters two concurrent versions of the same file, it overwrites the one with
the smallest timestamp with the “younger” one (highest timestamp). The write with the
smallest timestamp is lost; this approach violates the Durability property of ACID.

4.5 Semantic Resolvers

A resolver is an application-specific conflict resolution program that automatically merges
two conflicting versions of an item into a new one. For example, the Amazon online
book store resolves problems with a user’s “shopping cart” by taking the union of any
concurrent instances. This maximises availability despite network outages, crashes, and
the user opening multiple sessions.

A resolver should ensure that the conflicting transactions are made to commute. In a
state-based approach, a resolver generally parses the item’ s state into small, independent
sub-items. Then it applies an LWW policy to updated and tombstoned sub-items and a
union policy to newly created sub-items.

The most elaborate example exists in Bayou. A Bayou transaction has three com-
ponents: the dependency check, the write, and the merge procedure. The former is
a database query that checks for conflicts when replaying. The write (a SQL update)
executes only if the consistency check succeeds. If it fails, the merge procedure (an
arbitrary but deterministic program) provides a chance to fix the conflict. However, it is
very difficult to write merge procedures in the general case.

4.6 Operational Transformation

In Operational Transformation (OT), conflicting operations are transformed [19]. Consider
two users editing the shared text “abc”. User 1 initiates insert(“X”,2) resulting in “aXbc”
and User 2 initiates delete(3), resulting in “ab”. When User 2 replays the insert, the
result is “aXb” as expected. However for User 1 to observe the same result, the delete
must be transformed to delete(2).

In essence, the operations were specified in a non-commuting way, but transformation
makes them commute. OT assumes that transformation is always possible. The OT
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literature focuses on a simple, linear, shared edit buffer data type, for which numerous
transformation algorithms have been proposed.

OT requires two correctness conditions, often called TP1 and TP2. TP1 requires
that, for any two concurrent operations A and B, running “A followed by {B transformed
in the context of A}” yield the same result as “B followed by {A transformed in the
context of B}.” TP1 is relatively easy to satisfy and is sufficient if replay is somehow
serialised. TP2 requires that transformation functions themselves commute. TP2 is
necessary if replay is in arbitrary order, e.g., in a peer-to-peer system. The vast majority
of published non-serialised OT algorithms have been shown to violate TP2 [11].

4.7 Conflict-Free Replicated Data Types (CRDTs)

The common memory-cell data model is not well suited to an OR system, since concurrent
assignments do not commute. OR will benefit from a data model where concurrent updates
can be merged, ensuring that replicas converge without requiring synchronisation or
consensus. For instance, concurrent increment and decrement operations to a shared
counter can be naturally merged, because they commute.

Conflict-free Replicated Data Types (CRDTs) generalise this approach [17]. A CRDT
is an abstract data type that extends some sequential type, and encapsulates algorithms
ensuring that concurrent updates are merged deterministically and are guaranteed to
converge. Thanks to this property, replicas of a CRDT can be updated in parallel
without synchronisation. CRDT types include registers, counters, sets, maps, graphs and
sequences.

When used in a sequential way, a CRDT type behaves just like its sequential
counterpart. Furthermore, if two updates commute in the sequential specification, then
executing the same two updates concurrently will converge to the same state. For instance,
the result of concurrently adding elements e and f to some CRDT set are the same as
adding them in any order. This means that a CRDT type is plug-in replacement for the
corresponding sequential data type.

The key challenge in CRDT design is providing a sensible concurrency semantics
for updates that do not commute in the sequential specification. Thus, the concurrent
specification of concurrently adding and removing the same element e to a set might be
“add wins,” i.e., e appears in the set; but, it could equally be “remove wins” or “highest
timestamp wins” depending on application requirements.

4.8 Scheduling Transactions Content and Ordering

In order to capture any causal dependencies, transactions execute in happens-before order
i.e., causal consistency. As explained in Section “Conflicts,” antagonistic transactions
cause aborts, and non-commuting transactions must be mutually ordered. This so-called
serialisation requires a consensus, violating the availability requirement.
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Whereas pessimistic approaches serialise a priori, most OR systems execute transac-
tions tentatively in arbitrary order and serialise a posteriori. Some executions are rolled
back; cascading aborts may occur.

A prime example is the Bayou system [21]. Each site executes transactions in the
order received. Eventually, the transactions reach a distinguished primary site. If the
dependency checks of a transaction fails at the primary, then it aborts everywhere.
Transactions that succeed commit and are serialised in the execution order of the primary.

The IceCube system showed that it is possible to improve the user experience
by scheduling operations intelligently [13]. IceCube is a middleware that relieves the
application programmer from many of the complexities of reconciliation. Multiple
applications may coexist on top of IceCube. Applications expose semantic annotations,
indicating which operation pairs commute or not, are antagonistic, dependent, or have an
inherent semantic order. The user may create atomic groups of operations from different
applications. The IceCube scheduler performs an optimisation procedure over a batch of
operations, minimising the number of aborted operations. The user commits any of the
alternative schedules proposed by the system.

4.9 Freshness of Replicas

Applications may benefit from freshness or quality-of-service guarantees, e.g., that no
replica diverges by more than a known amount from the ideal, strongly consistent state.
Such guarantees come at the expense of decreased availability.

The Bayou system proposes qualitative “session guarantees” on the relative ordering
of operations [20]. For instance, Read-Your-Writes (RYW) guarantees that a read
observes the effect of a write by the same user, even if initiated at a different site. RYW
ensures, that immediately after changing his password, a user can log in with the new
password. Other similar guarantees are Monotonic-Reads, Writes-Follow-Reads, and
Monotonic-Writes. The conjunction of their guarantees is equivalent to causal consistency.

Systems such as TACT control replica divergence quantitatively [23]. TACT provides
a time-based guarantee, allowing an item to remain stale for only a bounded amount of
time. TACT implements this by pushing an update operation to remote replicas before
the time limit elapses. TACT also provides “order bounding,” i.e., limiting the number
of uncommitted operations: when a site reaches a user-defined bound on the number of
uncommitted operations, it stops accepting new ones.

Finally, TACT can bound the difference between numeric values. For this, each
replica is allocated a quota. Each site estimates the progress of other sites, using vector
clock techniques. The site stops initiating operations once its cumulative modifications,
or the estimated remote updates to the item, reach the quota. At that point, the site
pushes its updates and pulls remote operations. For example, a bank account might be
replicated at ten sites. To guarantee that the balance observed is within e50 of the truth,
each site’s quota is e50/10 = e5. Whenever the difference estimated by a site reaches e5,
it synchronises with the others.
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4.10 Optimistic Replication Versus Optimistic Concurrency Control

The word “optimistic” has different, but related, meanings when used in the context of
replication and of concurrency control.

Optimistic replication (OR) means that updates propagate lazily. There is no a priori
total order of transactions. There is no point in time where different sites are guaranteed
to have the same (or equivalent) state. Cascading aborts are possible.

Optimistic concurrency control (OCC) means that conflicting transactions are allowed
to proceed concurrently. However, in most OCC implementations, a transaction validates
before terminating. A transaction is serialised with respect to concurrent transactions, at
the latest when it terminates, and cascading aborts do not occur.

5 Key Applications

Usenet News pioneered the OR concept, allowing to share write-only information over a
slow, but cheap network using dial-up modems over telephone lines.

Mobile users want to be able to work as usual, even when disconnected from the
network. Thus, mobile computing is a key driver for OR applications. Systems designed
for disconnected work that use OR include the Coda file system [8], the Bayou shared
database [21], or the Lotus Notes collaborative suite.

Another important application area is Computer-Supported Collaborative Work. In
this domain, users must be able to update shared artefacts in complex ways without
interfering with one another. OR allows a user to insulate himself temporarily from
other users. A key example is the Concurrent Versioning System (CVS), which enables
collaborative authoring of computer programs [4]. Bayou and Lotus Notes, just cited,
are also designed for collaborative work.

OR is used for high performance and high availability in large-scale web sites. A
well-known example is Amazon’s “shopping cart,” which is designed to be highly available,
even if the same user connects to several instances of the Amazon store discussed earlier.
For this reason, many NoSQL databases embrace the Available under Partition (AP)
option (cf. entry on “CAP Theorem”), which is OR.

6 Cross-References

• CAP Theorem

• Eventual Consistency

• Mobile Computing

• Multi Datacenter Consistency
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• NoSQL Databases

• Peer-to-Peer Content Distribution

• Replicated Data Types
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