
A Constraint-based Formalism for Consistency in Replicated Systems

Marc Shapiro, Karthikeyan Bhargavan, Nishith Krishna∗

Microsoft Research, Cambridge
7 JJ Thomson Ave, Cambridge CB3 0FB, United Kingdom;marc.shapiro@acm.org

Abstract

We present a formalism for modeling replication in a
distributed system with concurrent users sharing infor-
mation. It is based on actions, which represent opera-
tions requested by independent users, and constraints,
representing scheduling relations between actions. The
formalism encompasses semantics of shared data, such
as commutativity or conflict between actions, and user
intents such as causal dependence or atomicity. It en-
ables us to reason about the consistency properties of
a replication protocol or of classes of protocols. It sup-
ports weak consistency (optimistic protocols) as well
as the stronger pessimistic protocols. Our approach
clarifies the requirements and assumptions common
to all replication systems. We are able to prove a
number of common properties. For instance consis-
tency properties that appear different operationally are
proved equivalent under suitable liveness assumptions.
The formalism enables us to design a new, generalised
peer-to-peer consistency protocol.

Keywords Consistency, models for distributed sys-
tems, replicated data, optimistic replication, semantics
of shared data, weak consistency, replication protocols.

1 Introduction

Replicating data in a distributed system improves avail-
ability at the cost of maintaining consistency, since
each site’s view may be partial or stale. It is well
accepted that replication can be made more efficient
by taking semantics into account, but it is difficult to

∗New York University

reason about the correctness of such weaker proto-
cols. Partial replication constitutes an further compli-
cation. Despite a large body of previous work [15], we
lack a formal framework for understanding, reasoning
about, and comparing replication protocols. This paper
presents such a framework.

We model a distributed system as a replicated database
and a replication protocol. Users independently sub-
mit queries and updates to the database, abstracted as
actions. End users, applications and data types (to-
gether abstracted as clients in this framework) also sub-
mit schedulingconstraintsto express important intents
or semantic properties.

Each site has a local view (called multilog) of known
actions and constraints. The site executes a schedule,
which completely determines the state of the replica.
Sites converge if they execute the same actions in the
same order, which a replication protocol ensures, if
necessary, by adding more constraints.

Our contributions are the following. We propose a
novel framework for reasoning about replicated sys-
tems. It is the first that unifies: data semantics such
as commutativity and conflicts, application semantics
such as causal dependence, user intents such as atom-
icity, and protocol decisions about which operations to
execute and in which order. Our framework is simple,
and gives a semantics of replication in terms of con-
strained sets.

Our results clarify the requirements and assumptions
of a replication system. As an example, we will model
different systems in our framework, e.g., Bayou and
ESDS, and prove them consistent.

We are able to prove interesting properties for classes
of replication protocols. For instance, we identify four
different notions of consistency, which seem to dif-

marc.shapiro@acm.org

fer in their operational requirements. We are able to
prove that, under sufficiently strong liveness assump-
tions, they are equivalent.

The framework can guide the design of new replication
protocols. We propose a new distributed replication al-
gorithm generalising Bayou, whose design is directly
guided by the framework. It shows that constraints can
be used as an implementation mechanism as well as
specification framework.

The paper proceeds as follows. Section 2 overviews
the basic formalism. Section 3 defines and compares
consistency properties. We examine some decision al-
gorithms from the literature and rules for local decision
in Section 4. We derive a novel decentralised replica-
tion algorithm in Section 5. Section 6 compares with
related work, and we conclude in Section 7 with a sum-
mary of contributions and future work.

A separate technical report [16] provides a complete
formal treatment. Here we focus on presenting the in-
tuitions and keep the formalism to a minimum.

2 Formal framework

Each site in a replicated system maintains a local view
calledmultilog.1 The current state results from execut-
ing a sound(i.e., valid) schedule computed from the
multilog. Over time the multilog grows (and concep-
tually never shrinks) by addition of actions and con-
straints, eithersubmittedby local clients or received
from remote sites. The set of sound schedules grows
with the number of actions and shrinks as the number
of constraints increases.

2.1 Actions and schedules

Slightly more formally,A is the set of unique actions
INIT , α, β, Actions are assumed deterministic2 but
are otherwise uninterpreted. Thenon-actionα is a
placeholder with no effect (non-actions will be useful
when discussing liveness). ActionINIT represents the
initial state and has no effect.

1 We call it a multilog and not a log, because it contains actions
submitted at several sites and the actions are not ordered.

2 Executing the same action from two equivalent input states
yields equivalent output states.

A scheduleis a non-empty sequence of actions and
non-actions, for instanceS = INIT .α.β.γ. In this ex-
ample,α is executed(notedα ∈ S), andβ is non-
executed (notedβ ∈ S); all four actions are saidsched-
uled (notedsched(α, S)). A given action may appear
only once in a schedule, either as executed or as non-
executed. The ordering is noted<S . Every schedule
starts withINIT . Intuitively, a non-action in a schedule
indicates that the scheduler is aware of the action but
does not execute it, e.g., because of a constraint.

Actions commute unless specified otherwise by the no-
tationα ↔ β (read “non-commuting”). A non-action
commutes with every action and non-action. Two
schedules areequivalent(S1 ≡ S2) if they execute the
same actions, and non-commuting pairs of actions ex-
ecute in the same order.

Commutativity allows us to model a number of real-
world cases of schedule equivalence:

• Classically, actions commute if both are reads, or
if they access independent variables.

• Overwriting: in some systems an out-of-order
write has no effect; then writes effectively com-
mute. For instance in timestamped replication
(Last Writer Wins) [15], writing a file tests
whether the write timestamp is greater than the
file’s; if so the write takes effect, otherwise it is
a no-op [16].

• Reconciliation: An example of a reconciliation al-
gorithm is Operational Transformation [20, 22].
Two actions submitted concurrently execute in ar-
bitrary order. The second one to execute is trans-
formed to ignore the effect of the first, in effect
rendering them commutative.

• Failure or aborts: An action that fails or aborts
becomesdead, i.e., appears as a non-action in all
schedules, which commutes with all actions.

2.2 Multilogs and sound schedules

Multilog M = (K,→,B) represents a site’s view.K
is the set of known actions (K ⊆ A); → andB are the
set of known constraints. The relation→⊆ A×A (pro-
nounced Before) is not necessarily acyclic, nor reflex-
ive, nor transitive. RelationB ⊆ A × A (pronounced
MustHave) is transitive and reflexive. By convention,

MustHave

Before

χ

α
β

γ
δ

ε η

κ

ρ

σ

θ

ζ

Figure 1. Example constraints. α, β and γ form a
parcel, an atomic (i.e., all-or-nothing) execution. γ ex-
ecutes only if δ also executes. δ is causally dependent
on ε. ε and ζ conflict with (i.e., mutually exclude) each
other. Only two actions out of the three γ, θ and κ can
execute. If both χ and κ execute, χ comes first.

for any α ∈ A, INIT → α andα B INIT ; this is left
implicit in the rest of the paper.

Figure 1 gives some examples of constraints and of
common combinations. Intuitively,α → β indicates
that a scheduler must maintain an ordering between the
two actions: no schedule may executeβ beforeα. A
schedule that executes neitherα nor β, or only α, or
only β, or bothα andβ in that order (but not necessar-
ily adjacent) is correct with respect to this constraint.
Relationα B β is an implication: ifα executes in a
schedule, thenβ must also execute somewhere in the
same schedule, although not necessarily in that order.
A schedule that executes onlyβ, or that executes nei-
therα nor β, is correct with respect to this constraint.
Conversely, if the schedule non-executesβ, thenα may
not execute.

The set of sound schedules ofM is notedΣ(M); M is
said sound ifΣ(M) 6= Ø. ScheduleS ∈ Σ(M) iff:

• Every action inK is either executed or non-
executed inS: α ∈ K ⇒ sched(α, S).

• Actions that execute inS are ordered by→:
α, β ∈ S ∧ α → β ⇒ α <S β.

• MustHave behaves like implication:α ∈ S ∧α B
β ⇒ β ∈ S.

For instance, the multilogsM1 = ({α},Ø, {INIT B
α}) and M2 = ({α}, {α → α},Ø) are both
sound. Their sound schedules areΣ(M1) = {INIT .α}
and Σ(M2) = {INIT .α}. Their union M3 =

t 0 1 2 3 4
Ki(t) Ø α α, β α, β α, β
→i,(t) Ø Ø Ø α → β α → β, β → α
Bi,(t) Ø Ø β B α INIT B β, β B α INIT B β, β B α

Σ(Mi(t)) INIT INIT .α INIT .α.β INIT .α.β Ø
INIT .α INIT .α.β

INIT .α.β
INIT .β.α

Kj(t) Ø β α, β α, β α, β
→j,(t) Ø Ø Ø β → α β → α, β → α
Bj,(t) Ø β B α β B α β B α INIT B β, β B α

Σ(Mj(t)) INIT INIT .β same asi INIT .α.β Ø
INIT .α.β
INIT .β.α

Figure 2. Example execution with two sites i and j,
and actions A = {INIT , α, β} where α ↔ β. The
two multilogs start empty (Time 0); the only possible
schedule is INIT . • At Time 1, the multilogs receive ac-
tions and constraints (either from a client at their site,
or from a third site). The views of the two sites are
different, and so are the sound schedules each site
can choose from. Note that the only sound sched-
ule at Site j is INIT .β because β B α but j does not
know α. • At Time 2, the two sites have communi-
cated and have identical multilogs and identical sets of
sound schedules. Note however that the two sites have
not converged, as they may execute non-equivalent
schedules; for instance i might execute INIT .α.β while
j could choose INIT .β.α. • At time 3, Site i has en-
sured that both α and β must execute. Both sites have
serialised the non-commuting actions. • At time 4 they
have exchanged their multilogs. Now the system is un-
sound (there are no sound schedules) because the two
sites chose opposite serialisation orders at Time 3. • If,
say, only β → α had been submitted at Time 3, then
at Time 4 they would converge to schedule INIT .β.α.
Alternatively, if Site j had not submitted β B α at Time
1, now they would converge to INIT .α.β.

({α}, {α → α}, {INIT B α}) is not sound. Al-
though it contains a→ cycle, multilog M4 =
({α, β}, {α → β, β → α},Ø) is sound, since
Σ(M4) = {INIT .α.β, INIT .α.β, INIT .α.β}. (We do
not need to consider the sound schedulesINIT .β.α
and INIT .β.α since they are equivalent to the previous
ones.)

We say that two multilogs are equivalent if they gen-
erate the same set of sound schedules:M1 ≡ M2 iff
Σ(M1) = Σ(M2). Note thatΣ(M) is closed with re-
spect to schedule equivalence. Hereafter, we identify a
multilog with its equivalence class.

This limited constraint language is surprisingly expres-

sive. We have used it to express the semantics of appli-
cations as diverse as a shared calendar, a travel reser-
vation system and a replicated file system [12, 18]. For
instance ifα creates a directory andβ a file in that same
directory, the file system submitsβBα∧α → β (causal
dependence) along withβ.

A set of actionsc is said toconflict if the actions inc
form a→ cycle. Intuitively, this means that no sound
schedule can execute all the actions inc. For example,
if α → β andβ → α, thenα andβ conflict, i.e., there
can be no sound schedule that executes both of them.

Figure 2 provides an example of scheduling in two dif-
ferent sites, as actions and constraints are submitted
and propagated between sites.

2.3 Significant subsets and events of a replication
protocol

Execution strategies vary widely between replication
protocols: in some, actions execute immediately, in
others they are deferred; execution order may be
pre-established or computed; actions might roll back.
However a protocol would be useless if it did not reach
some final decision for every action. We represent de-
cisions as constraints; the followingsignificant subsets
capture the possible stages of irrevocable decision:

• Guaranteed actions execute in every schedule.
Guar(M) is the smallest set satisfying: (1)
INIT ∈ Guar(M). (2) ∀β ∈ A : If α ∈
Guar(M) andα B β thenβ ∈ Guar(M).

• Dead actions non-execute in every schedule.
Dead(M) is the smallest set satisfying: (1)∀α ∈
A : If β1, . . . , βm ∈ Guar(M), wherem is any
natural integer, andα → β1 → . . . → βm → α,
then α ∈ Dead(M). (2) ∀α ∈ A : If β ∈
Dead(M) andα B β, thenα ∈ Dead(M).

• A serialisedaction is one that is ordered with re-
spect to all non-commuting actions that execute.

Serialised(M) def= {α ∈ A|∀β ∈ A,α ↔ β ⇒
α → β ∨ β → α ∨ β ∈ Dead(M)}

• An action isdecidedonce it is either dead, or both
guaranteed and serialised.

Decided(M) def= Dead(M) ∪ (Guar(M) ∩
Serialised(M))

• An action isstablewhen its effects cannot change,
i.e., it is either dead, or it is guaranteed and
serialised and all preceding actions are them-
selves stable. (In practice, stable actions can be
pruned from multilogs.)Stable(M) is the small-
est set satisfying: (1)INIT ∈ Stable(M), (2)
Dead(M) ⊆ Stable(M), (3) If (α ∈ Guar(M)∩
Serialised(M)) ∧ (∀β ∈ A : β → α ⇒ β ∈
Stable(M)) thenα ∈ Stable(M).

Note that ifM is sound, every guaranteed action must
be known:Guar(M) ⊆ K. Also note thatα → α ⇒
α ∈ Dead(M) and thatINIT B α ⇒ α ∈ Guar(M).
M is sound iff the guaranteed and dead sets are dis-
joint.

3 Replication and consistency

In this section, we describe liveness and safety prop-
erties that we require of replication systems, stated in
terms of our action-constraint framework.

3.1 Site schedules and transition rules

Different replication systems (such as ESDS and
Bayou) differ by the actions and constraints they ac-
cept, and by the decisions they make. We summarise a
replication protocol by rules describing how the system
changes from timet to t + 1.

The current state of sitei is the result of running a
site scheduleSi(t) ∈ Σ(Mi(t)). In our framework, if
|Σ(Mi(t))| > 1, then the choice between sound sched-
ules is irrelevant for consistency, although individual
replication systems may carefully pick a schedule for
optimality.

Each sitei has its own viewMi(t) = (Ki,→i,Bi)(t),
evolving over timet, called itssite multilog.3 Multilogs
are monotonically non-shrinking, which implies that
the significant subsets of Section 2.3 are non-shrinking,
and that an unsound multilog remains unsound forever.

All protocols obey a Universal Transition Rule, which
says simply that a site may receive actions and con-
straints from a local client or from a remote multilog.

3 For simplicity we assume discrete time and use a global time
notation. The theory does not assume that a site can observe the
global time.

A specific protocol may have additional transition
rules. As an example, let us encode a linearisable pro-
tocol [9], i.e., one in which an action takes effect at
some instant in time, and actions execute in taking-
effect order. We translate this to the following transi-
tion rule: “Only one action may be submitted per unit
of time; if α is submitted at timet, then for any action
β 6= α: if β ∈

⋃
j Kj(t − 1) thenβ → α, otherwise

α → β.”

A replicated system based on pessimistic concurrency
control, orpessimistic system, has transition rules that
ensure that at every site and every timeSi(t) is a prefix
of Si(t + 1). Otherwise the system is saidoptimistic.

3.2 Liveness conditions

While different replication algorithms maintain differ-
ent consistency invariants, all of them must satisfy
some liveness conditions for convergence. We identify
two liveness conditions, one for the propagation proto-
col that distributes actions and constraints, the other for
the decision algorithm that stabilises actions and mul-
tilogs.

The propagation protocol must ensure that all actions
and constraints submitted to the system eventually
reach all nodes.

Property 1 (Eventual Propagation) A replicated
system has the Eventual Propagation (EP) property
iff every submitted action and constraint is eventually
known everywhere:

• α ∈ Ki(t) ⇒ ∀j : ∃t′ : α ∈ Kj(t′)
• α Bi,(t) β ⇒ ∀j : ∃t′ : α Bj,(t′) β

• α →i,(t) β ⇒ ∀j : ∃t′ : α →j,(t′) β

The decision algorithm must ensure that all locally
known actions are eventually decided:

Property 2 (Eventual Decision) A replicated system
has the Eventual Decision (ED) property iff every sub-
mitted action is eventually decided:α ∈ Ki(t) ⇒ ∃t′ :
α ∈ Decided(Mi(t′)).

ED implies that every action eventually becomes stable
[16]. ED does not preclude the trivial implementation
that makes every action dead; our framework does not
rule this out, since it is a valid strategy if actions fail.

3.3 Mergeability and Uniform Local Soundness

We now discuss different definitions of consistency in
our framework. The first one, Mergeability, captures
the intuition that sites must not make conflicting de-
cisions: a hypothetical omniscient observer would not
see anything wrong. Mergeability generalises the clas-
sicalserialisabilityproperty [1].

Property 3 A system has the Mergeability property if,
given any arbitrary collection of sitesi, i′, i′′ . . . and
any arbitrary collection of timest, t′, t′′ . . . : Mi(t) ∪
Mi′(t′) ∪Mi′′(t′′) . . . is sound.

Mergeability is not easy to ensure in a distributed
setting. For instance, consider Site 1 has multi-
log ({α},Ø, {INIT B α}) and Site 2 has multilog
({α}, {α → α},Ø). They are both sound but not
mergeable, as their union({α}, {α → α}, {INIT Bα})
is not sound.

Mergeability suggests that for safety, it is enough if all
sites agree upon a deterministic decision strategy. For
instance, a simple timestamp-based protocol can guar-
antee mergeability by ensuring that all sites order ac-
tions uniformly, using a global timestamp.

Under the EP liveness assumption, every submitted ac-
tion and constraint is eventually received everywhere,
so in effect every site becomes an omniscient observer.
Then Mergeability reduces to the simpler Uniform Lo-
cal Soundness (ULS) invariant that site multilogs are
sound at all times:∀i, t : Σ(Mi(t)) 6= Ø.

3.4 Eventual consistency

A classical consistency property for optimistic repli-
cation systems [15] is Eventual Consistency. It has
been used to argue informally about the correctness of
Grapevine [2] or Bayou [21].

Property 4 A system is Eventually Consistent if, if ev-
ery client stops submitting, and submitted actions are
decided, then eventually every site will execute the
same schedule, up to equivalence, and hence have the

same final value:

∃T : ∀i, t > T ⇒ No actions are submitted ati

=⇒
∃T ′,∀t′, t′′, i, j : t′ > T ′ ∧ t′′ > T ′

∧ Si(t′) ∈ Σ(Mi(t′)) ∧ Sj(t′′) ∈ Σ(Mj(t′′))
⇒ Si(t′) ≡ Sj(t′′)

Although eventual consistency simply captures the no-
tion of replica convergence, it says little about the
safety invariants satisfied by the algorithm before the
system stabilises; these properties are captured by
mergeability.

3.5 Common Monotonic Strong Prefix (CMSP)

Lamport’s replicated state machine approach [10] man-
dates that all site execute exactly the same schedule.
Clearly such a system is consistent, but this does not
work for optimistic protocols whereSi(t) is not neces-
sarily a prefix ofSi(t + 1). However, even in an opti-
mistic system, over time some actions will stabilise and
form a prefix of all schedules. Such a system is consis-
tent if the stable prefixes of different sites are equiva-
lent. The system makes progress if the prefix grows.

Formally, a scheduleP is a prefix of scheduleS, writ-
tenP�S, if S ≡ S′ whereS′ is a schedule of the form
P.Q for some sequence of actionsQ.

Property 5 A replicated systemMi(t) (i varying over
sites, t over time) satisfies the Common Monotonic
Strong Prefix (CMSP) Property if there exists a func-
tion π(i, t) such that:

1. π(i, t) is a prefix of all sound schedules:∀S ∈
Σ(Mi(t)) ⇒ π(i, t)�S.

2. The prefix is equivalent at all sites:π(i, t) ≡
π(j, t)

3. The prefix is monotonically non-shrinking over
time: t < t′ =⇒ π(i, t)�π(i, t′)

4. Every known action eventually reaches the prefix:
∀α ∈ Ki(t) =⇒ ∃t′ : sched(α, π(i, t′))

We show that the actions in a CMSP are stable, and that
the set of stable actions forms a CMSP [16].

3.6 Summary

We have presented four definitions of consistency,
along with two liveness conditions. An interesting re-
sult is that under uniform assumptions, these defini-
tions of consistency are equivalent. This may come
as a surprise, since the operational definitions appear
so different. In particular, under the eventual propa-
gation and eventual decision liveness conditions, uni-
form local soundness (and hence mergeability) guaran-
tees eventual consistency and the common monotonic
strong prefix property. We provide a formal proof in
our technical report [17].

4 Replication Systems and Decision Strate-
gies

Consistency requires an agreement between all sites,
which in the general case entails a consensus. For in-
stance, mergeability forbids different sites from mak-
ing conflicting decisions, thus requiring a consensus
between deciding sites. Yet some practical protocols
manage without this complexity, primarily by making
assumptions about the distribution of constraints across
actions. Here, we survey a few replication algorithms
and their decision strategies.

Timestamped Replication In timestamped replica-
tion, all actions are assumed to have a unique times-
tamp. This timestamp induces a total→ order on all ac-
tions even before they are submitted to the system. No
decisions need to be made since all actions are guaran-
teed and ordered, hence stable, when submitted. Hence
mergeability is guaranteed by default. The replication
algorithm thus reduces to a simple propagation proto-
col that must satisfy the EP property.

A variation on the timestamped replication algorithm is
one that uses the “last-writer wins” decision strategy.
It assumes that each action modifies a single variable
and when two actions modify the same variable, the
action with the later timestamp should be effectively
executed last. So, when two actions are received out of
order, either they commute, or the one received later is
converted to a no-op (identity action). As we argued in
Section 2.1, this strategy makes all actions effectively

commute, and trivially guarantees mergeability, while
allowing sites to execute actions without delay.

ESDS The ESDS protocol [7] assumes that actions
only have acyclic causal constraints between them, of
the formα B β, β → α. All actions are guaranteed
at submission, the only requirement is that their causal
predecessors must execute first. ESDS again reduces to
a propagation algorithm that must satisfy the EP prop-
erty, while maintaining the invariant that wheneverα
is propagated to a site, allβ such thatα B β have al-
ready been propagated. This enables each site to easily
keep track of the actions it can safely execute. Since
actions do not commute, ESDS requires a distributed
agreement for serialisation. All the sites participate in
computing a total order for actions that is consistent
with the causal order.

Bayou Many systems centralise consensus at a pri-
mary site. Bayou [21] assumes that the shared data can
be partitioned into independent databases, each with
its own primary site. Actions on different partitions
commute and are assumed to have no constraints be-
tween each other. Primaries make decisions for their
own actions and order them. Hence, the replication
system consists of a propagation protocol satisfying EP
that ensures that all actions reach their primaries, a pri-
mary decision strategy that ensures ED, and a propaga-
tion protocol that distributes the primary decisions to
all sites. By centralizing the decision-making for each
partition, mergeability for actions and constraints on
a single partition are ensured, and by disallowing con-
straints between partitions, all site multilogs are merge-
able.

Sufficient conditions for local decision If the con-
straint graph has some well-behaved properties, some
decisions can be safely decentralised; in Section 5 we
will derive an efficient decision protocol from the fol-
lowing observations. Consider for instance an actionα
that is involved in a single constraintα B β: then it is
always safe to makeα dead, regardless of the decision
for β. Conversely, ifα is only involved inγ B α, it
is always safe to makeα guaranteed, regardless ofγ.
This can be generalised to any acyclicB graph. Taking
the example of a chainα1 B . . . B αn it is safe to ei-

ther: makeα1 dead, then move on toα2, left to right;
or makeαn guaranteed, then move on toαn−1, right to
left. Since users don’t like to see their actions aborted,
guaranteeing in the right-left direction is preferable.

The decision regarding eachαi must consider→ con-
straints. Ifαi is not part of a→ cycle, the decision may
be either guarantee or make dead (although guarantee-
ing is preferable). If it is part of a→ cycle, and all other
actions in the cycle are guaranteed, the only sound de-
cision is to makeαi dead; otherwise either decision is
allowed.

Such local decisions may be sub-optimal. To ensure
optimality, viz., that the smallest possible number of
actions is made dead, it is necessary to consider the
whole graph as in IceCube [12].

5 A decentralised replication algorithm

Consider a travel booking system, where airlines and
hotels each manage their own primaries, but a user
wants his hotel and flight bookings to happen atom-
ically (all-or-nothing). Previous systems do not sup-
port this scenario: for instance Bayou imposes that all
actions in a transaction have the same primary. We
present a new algorithm, derived from the safe deci-
sion conditions from Section 4, that works for arbitrary
constraint graphs, hence does not suffer this restriction.

5.1 Input assumptions

We assume the invariant that whenα is in Ki, all con-
straints such thatα B β andβ → α (for any β) are
known ati. Each action inA is eventually submitted
at some site. In addition, each actionα is assigned a
unique primary site,P (α). We assume that two ac-
tions commute if and only if they have different pri-
maries. Conflicting (mutually-excluding) actions are
represented by→ cycles. We assume the existence of
a functionvictim(c) that deterministically chooses one
action from a subset of actionsC.

Note that Bayou relies on the independence of pri-
maries to enable distributed decision making. Each
primary waits for actions and makes them guaranteed
or dead without coordinating with other primaries. In
contrast, our algorithm must considerB and→ con-

straints between actions on different primaries.

5.2 Propagation module

We re-use the standard Bayou anti-entropy algorithm
for propagating actions and constraints to all sites.
The algorithm satisfies the eventual propagation prop-
erty: every action and constraint submitted at some site
eventually reaches all other sites. In addition, it main-
tains the invariant from the previous section.

5.3 The decision algorithm

Every primary must know for every action whether it
is guaranteed or dead, and its execution order with re-
spect to other non-commuting actions. To represent
these decisions, each site maintains a setGi of guar-
anteed actions, a setDi of dead actions, and a relation
Oi ⊆ Gi ×Gi that totally orders all actions belonging
to the same primary. The normal propagation module
reliably distributes decisions among all sites.

Given these sets, the schedule executed at a site is any
schedule that contains all guaranteed actions, no dead
actions, and obeys the MustHave constraints inBi and
the ordering constraints in→i andOi. For uniform lo-
cal soundness, such a schedule must always exist. For
eventual decision to hold, all actions inKi must even-
tually be included inGi or Di.

The decision algorithm runs concurrently with the
propagation module. An action is first submitted to the
system, then it becomes ready for a decision, it may be-
come guaranteeable, and finally it becomes guaranteed
or dead. We present the decision algorithm in terms of
these states.

Ready Actions An actionα is said to bereadyat its
primaryP (α) if

• All β such thatα B β are known atP (α)
• All β such thatβ → . . . → α are known atP (α).

Each of these conditions imposes a wait before any de-
cision onα can be taken. A primary has a set of ready
actions from which it chooses the next action to make
a decision on.

Guaranteeable Actions Once all the constraints on
an actionα are collected, the primary begins the pro-
cess of discovering whetherα can be guaranteed. In
particular, since it knows the closure of Before and
MustHave relations, it can detect all the decision cycles
between actions. For an action to be guaranteeable, all
the actions it MustHave should be guaranteeable and at
least one member of each→ cycle it belongs to should
be dead. This stage comprises the following steps:

• Compute the setM of all actions in aB cycle with
α. Let the set of remaining actions it MustHave be
designatedM ′.

• Compute the setC of action sets representing cy-
cles of→ involving α.

• Wait for all the actions inM ′ to become guaran-
teed. If any of these actions becomes dead,α is
now known to be dead; exit.

• For each cyclec in C, designatevictim(c) to be
dead. If this action isα, exit.

• Designateα as guaranteeable.4

• Send messages to all primaries with actions inM
saying thatα is guaranteeable.

We again rely on the propagation module to distribute
the guaranteeable actions to related primaries.

Guaranteed actions In the case ofB cycles, all
members of the cycle must agree to either be guaran-
teed or be dead. The final steps before guaranteeing are
as follows:

• Wait until either some action inM is dead, or all
actions inM are guaranteeable. If the former,α
is now known to be dead; exit.

• Wait until all β such thatβ → . . . → α and
P (β) = P (α) have been decided.

• Guaranteeα and order it after all guaranteedβ
with P (β) = P (α)

Dead actions In the process of computing guarantee-
able and guaranteed actions, we identify two conditions
in which an action becomes dead: either when one of
the actions it MustHave is dead (either down aB chain,

4 Some systems may elect to makeα dead at this point accord-
ing to their own strategies. For instance, Bayou checks a predicate,
called the “dependency check,” attached to each action.

or in aB cycle), or when it is designated as the victim
in a→ cycle.

The choice of action to make dead in a→ cycle can be
arbitrary. In general it is safe to make one or more ac-
tions in such a cycle dead, as long as this is propagated
up anyB chain. However, making too many actions
dead, or choosing the wrong action to make dead, can
have a negative impact on performance.

Summary of decision algorithm We now summa-
rize the steps for deciding actionα. Assumeα was
submitted at sitej.

1. Through epidemic (or other) communication,α is
eventually known at its primary sitei, P (α) = i.

2. The propagation module at sitei communicates
with other sites, discovering allβ such that:α B
. . . B β ∨ β → . . . → α. The action becomes
ready.

3. For each cyclec of→ involving α, if victim(c) =
α, then decideα is dead (e.g., add constraintα →
α) and exit.

4. Partition allβ such thatαBβ, into subsetsM and
M ′, according to the following property: actions
in M are such thatβ B α, those inM ′ are not.

5. Wait until: either some action inM ′ is known to
be dead; or all actions inM ′ are known to be guar-
anteed. In the former case,α is now known to be
dead; exit. In the latter,α is now guaranteeable.

6. To all actions inM , send a message saying that is
α is guaranteeable.

7. Wait for either some action inM to be known to
be dead, or for all actions inM to be guarantee-
able. In the former case,α is now known to be
dead; exit. In the latter, decideα is guaranteed
(e.g., addINIT B α).

8. The final execution order ofα is given by its→
relations. Wait for allβ such thatβ → . . . →
α∧P (α) = P (β). Executeα after all such actions
that are guaranteed.

5.4 Correctness

To prove the consistency and convergence of the al-
gorithm, we rely on eventual propagation, on eventual
decision, and on uniform local soundness.

The propagation module is fashioned on standard anti-
entropy protocols and reliably delivers all actions, con-
straints, and decisions. To prove that the decision al-
gorithm eventually decides every action, we show that
all the wait conditions in the algorithm are eventually
satisfied, i.e., there are no wait-for cycles. For uniform
local soundness, we argue that every decision extends
the set of constraints in a sound manner by performing
a step-by-step case analysis on the algorithm.

5.5 Extensions for partial replication

Up to now we assumed that all data is replicated at
every site. Let us now consider partial replication:
shared data is partitioned inton disjoint databases
D1, . . . , Dn, and we allow a site to replicate an arbi-
trary subset of the databases (as long as every database
is present on at least one site). Actions are correspond-
ingly partitioned into subsetsA1, . . . , An. A site repli-
cating Di should receive submitted actions that are
in Ai, and the constraints that involve such actions.
It does not need to receive actions or constraints for
databases it does not replicate.

Both our correctness conditions and our distributed
algorithm extend naturally to partial replication with
constraints across partitioned data. The analysis and
presentation of this modified algorithm is left to a fu-
ture paper; here we sketch some details.

The B constraint is not adequate for partial replica-
tion, because ifα B β, then a site that executesα must
also knowβ. Therefore we define a version that is
“remotable” across partitions, Split MustHave, noted
BB ⊆ A×A. The definitions of mergeability and even-
tual consistency can then be extended in terms of this
newB operator.

The distributed algorithm stated above uses full repli-
cation only in computing the closure (and cycles) of
B and→. Under partial replication, this computation
must be done in a distributed manner. We adopt Mani-
vannan and Singhal’s distributed knot detection algo-
rithm [11] for this purpose.

6 Related work

IceCube is a general-purpose system supporting op-
timistic replication and cooperative work [12], based
on actions and constraints. Experience with IceCube
shows that relatively complex applications can be read-
ily encoded in this framework. Its decision algorithm
is centralised and computes an optimal schedule given
an arbitrary graph of actions and constraints. Although
the problem is NP-hard, IceCube uses efficient heuris-
tics and manages to execute in almost linear time in the
common case.

Our survey of optimistic replication [15] motivated us
to understand the commonalities and differences be-
tween protocols.

Chong and Hamadi [3, 17] proposed a decentralised
decision algorithm based on constraint satisfaction
principles, which inspired our algorithm in Section 5.

The relations between consistency and ordering have
been well studied in the context the causal dependence
relation [13, 14]. Our simpler and modular primitives
clarify and generalise this analysis. The primitives are
common to all protocols, as are the significant events of
actions becoming guaranteed, dead, serialised, decided
and stable.

Lamport’s state-machine replication [10] broadcasts
actions to all sites and ensures consistency because
each site executes exactly the same schedule. Our
CMSP property generalises this definition. Sousa et
al. [19] generalise Lamport’s state-machine approach
to the commitment of partially replicated databases.

Much formal work on consistency focuses on serialis-
ability [1, 5]. Mergeability constitutes a generalisation
of serialisability.

The X-Ability theory [8] allows an action to appear
several times in the same schedule if it is idempotent;
for instance, retrying a failed action is allowed. Sched-
ules are tested for equivalence after filtering out such
duplicates. It would be interesting to encode their ap-
proach in our formalism, and analyse their assump-
tions, which are quite strong. This is left for future
work.

Our approach has many similarities with the Acta
framework [4, 5]. Acta provides a set of logical prim-

itives over execution histories, including presence of
an event, implication, and causal dependence and or-
dering between events. Acta makes assumptions spe-
cific to databases, such as the existence of transaction
commit and abort primitives. The Acta description lan-
guage is more powerful and is used to analyse protocols
at a finer granularity. On the other hand, the action-
constraint language is simpler; it is straightforward to
translate most of the Acta dependencies into our lan-
guage. Acta takes serialisability as the definition of
consistency, and does not deal with partial replication.

Constraints→ andB were first proposed by Fages [6]
for general reconciliation problems in optimistic repli-
cation systems.

7 Conclusions and future work

We presented a formalism for describing replication
protocols and consistency. Our significant subsets are
common to the many replication protocols that can be
described in our language. We generalise a number
of classical formulations of the consistency property
and prove them equivalent. This underscores the deep
commonalities between protocols that appear quite dif-
ferent on the surface. Although consistency entails
global consensus in the general case, we exhibited suf-
ficient conditions for making local decisions. We de-
rived a new distributed decision algorithm, which sup-
ports multiple primaries, constraints across primaries,
and can be extended to handle partial replication. Our
results apply to a broad range of protocols, both pes-
simistic and optimistic.

This paper only presented the intuitions; the interested
reader will find a fully formal treatment in our tech-
nical report [16]. That report also contains a detailed
description for a variety of diverse classical replication
protocols, including consistency proofs.

The formalism rests upon only two binary constraints.
This makes it easy to prove properties, and is powerful
enough to incorporate all the classical replication pro-
tocols. However the semantics of some applications
(e.g., a shared bank account) demand more powerful
primitives. A possible direction is to generalise con-
straints to be n-ary and our significant subsets to pat-
terns. Then the crucial safety property would be that
the guaranteed and dead subsets are disjoint.

Acknowledgments

We thank Fabrice le Fessant for his participation to
early stages of this work, Yek Chong and Youssef
Hamadi for their contributions on a decentralised de-
cision algorithm, and Tony Hoare, Miguel Castro and
Patrick Valduriez for their encouragement and sugges-
tions.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987. http://research.microsoft.com/
pubs/ccontrol/.

[2] A. D. Birell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing.Commun.
ACM, 25:260–274, Apr. 1982.

[3] Y. Chong and Y. Hamadi. Distributed IceCube. Private com-
munication, Jan. 2004.

[4] P. K. Chrysanthis and K. Ramamritham. ACTA: The SAGA
continues. In A. K. Elmagarmid, editor,Database Trans-
action Models for Advanced Applications, chapter 10, pages
349–397. Morgan Kaufmann, 1992.

[5] P. K. Chrysanthis and K. Ramamritham. Correctness cri-
teria and concurrency control. In A. Sheth, A. K. Elma-
garmid, and M. Rusinkiewicz, editors,Management of Het-
erogeneous and Autonomous Database Systems, chapter 10.
Morgan-Kaufmann, 1998.http://www-ccs.cs.umass.edu/
db/publications/mdb.ps.

[6] F. Fages. A constraint programming approach to log-based
reconciliation problems for nomadic applications. In6th
Annual W. of the ERCIM Working Group on Constraints,
Prague, Czech Republic, June 2001.

[7] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and
A. Shvartsman. Eventually-serializable data services.The-
oretical Computer Science, 220(Special issue on Distributed
Algorithms):113–156, 1999.

[8] S. Frølund and R. Guerraoui. X-Ability: A theory of repli-
cation. InSymp. on Principles of Dist. Comp. (PODC 2000),
Portland, Oregon, USA, July 2000. ACM SIGACT-SIGOPS.

[9] M. Herlihy and J. Wing. Linearizability: a correcteness con-
dition for concurrent objects.ACM Trans. Prog. Lang. Syst.,
12(3):463–492, 1990.

[10] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system.Commun. ACM, 21(7):558–565, July 1978.

[11] D. Manivannan and M. Singhal. An efficient distributed al-
gorithm for detection of knots and cycles in a distributed
graph. IEEE Transactions on Parallel and Distributed Sys-
tems, 14(10):961–972, October 2003.

[12] N. Preguiça, M. Shapiro, and C. Matheson. Semantics-based
reconciliation for collaborative and mobile environments. In
Proc. Tenth Int. Conf. on Coop. Info. Sys. (CoopIS), Catania,
Sicily, Italy, Nov. 2003.

[13] K. Ramamritham and P. K. Chrysanthis. A taxonomy of
correctness criteria in database applications.VLDB Journal,
5(1):85–97, 1996.

[14] M. Raynal and M. Mizuno. How to find his way in the jun-
gle of consistency criteria for distributed shared memories (or
how to escape from Minos’ labyrinth). InProc. of the IEEE
Int. Conf. on Future Trends of Distributed Computing Sys-
tems, pages 340–346, Lisboa (Portugal), Sept. 1993.

[15] Y. Saito and M. Shapiro. Optimistic replication. Technical
Report MSR-TR-2003-60, Microsoft Research, Oct. 2003.
ftp://ftp.research.microsoft.com/pub/tr/tr-2003-60.pdf.

[16] M. Shapiro and K. Bhargavan. The Actions-Constraints ap-
proach to replication: Definitions and proofs. Technical
Report MSR-TR-2004-14, Microsoft Research, Mar. 2004.
ftp://ftp.research.microsoft.com/pub/tr/TR-2004-14.pdf.

[17] M. Shapiro, K. Bhargavan, Y. Chong, and Y. Hamadi. A
formalism for consistency and partial replication. Technical
Report MSR-TR-2004-58, Microsoft Research, Cambridge,
UK, June 2004. ftp://ftp.research.microsoft.com/pub/tr/
TR-2004-58.pdf.

[18] M. Shapiro, N. Preguiça, and J. O’Brien. Rufis: mo-
bile data sharing using a generic constraint-oriented recon-
ciler. In Conf. on Mobile Data Management, Berkeley, CA,
USA, Jan. 2004.http://www-sor.inria.fr/∼shapiro/papers/
mdm-2004-final.ps.gz.

[19] A. Sousa, R. Oliveira, F. Moura, and F. Pedone. Partial repli-
cation in the database state machine. InInt. Symp. on Network
Comp. and App. (NCA’01), pages 298–309, Cambridge MA,
USA, Oct. 2001. IEEE.

[20] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achiev-
ing convergence, causality preservation, and intention preser-
vation in real-time cooperative editing systems.Trans. on
Comp.-Human Interaction, 5(1):63–108, Mar. 1998.http:
//doi.acm.org/10.1145/274444.274447.

[21] D. B. Terry, M. M. Theimer, K. Petersen, A. J. De-
mers, M. J. Spreitzer, and C. H. Hauser. Managing up-
date conflicts in Bayou, a weakly connected replicated stor-
age system. InProc. 15th ACM Symposium on Operat-
ing Systems Principles, Copper Mountain CO (USA), Dec.
1995. ACM SIGOPS.http://www.acm.org/pubs/articles/
proceedings/ops/224056/p172-terry/p172-terry.pdf.

[22] N. Vidot, M. Cart, J. Ferríe, and M. Suleiman. Copies con-
vergence in a distributed real-time collaborative environment.
In Computer Supported Cooperative Work, pages 171–180,
Philadelphia, PA, USA, Dec. 2000.

http://research.microsoft.com/pubs/ccontrol/
http://research.microsoft.com/pubs/ccontrol/
http://www-ccs.cs.umass.edu/db/publications/mdb.ps
http://www-ccs.cs.umass.edu/db/publications/mdb.ps
ftp://ftp.research.microsoft.com/pub/tr/tr-2003-60.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2004-14.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2004-58.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2004-58.pdf
http://www-sor.inria.fr/~shapiro/papers/mdm-2004-final.ps.gz
http://www-sor.inria.fr/~shapiro/papers/mdm-2004-final.ps.gz
http://doi.acm.org/10.1145/274444.274447
http://doi.acm.org/10.1145/274444.274447
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172 -terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172 -terry.pdf

