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Abstract

Ezisting systems for disconnected data access and recon-
ciliation are monolithic, complex and somewhat ad-hoc.
In contrast, we demonstrate here a principled approach
based on a general-purpose reconciliation engine. We de-
scribe the Reconcilable and Undoable File System, Rufis,
implemented on top of the IceCube reconciler. IceCube
is generic but supports application-specific reconciliation
invariants. Consequently, the code for Rufis is quite small
and simple, and the reconciliation logic is well separated
from the main file system code. Furthermore, Rufis sup-
ports specialised reconciliation for files containing data
of known types and enables ad-hoc user scenarios involv-
ing multiple applications.

1. Introduction

The Reconcilable and Undoable File System (Rufis)
is a distributed file system supporting disconnected op-
eration, reconciliation and selective undo. Rufis is built
upon the application-agnostic reconciliation engine Ice-
Cube.

Rufis lets users replicate a shared file system on mul-
tiple machines. A user may tentatively update a replica
while disconnected from the network. Upon reconnect,
IceCube reconciles the tentative updates (called ac-
tions). The user is ultimately in control of which up-
dates get committed.

Rufis and applications running on top of it declare
to IceCube the invariants relating actions to one an-
other, called constraints. Constraints enables powerful,
well-behaved reconciliation and selective undo. Actions
can be undone in any consistent order and by any user.

IceCube cleanly separates the application logic from
reconciliation and removes the part of the burden of
reconciliation from the application developer. We re-
port here on how we first developed a non-replicated
file system and extended it with ease to make Rulfis,
simply by declaring action semantics to IceCube.
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Section 2, next, presents some example usage sce-
narios. Then we present the IceCube structures, APIs
and algorithm in Section 3. Section 4 goes into the de-
sign and implementation rationale of Rufis. We study
related work in Section 5. Finally, Section 6 concludes
with lessons learned and future work.

2. Example scenarios

Consider the file system depicted in Figure 1. Ini-
tially Anne’s and Brian’s replicas both contain direc-
tories /, /a and /b and files /b/c and /b/d. While dis-
connected, user Anne creates a directory and moves
file /b/c into /a. Concurrently user Brian creates di-
rectory /a/c and writes a string into /a/d.

In Rufis, Brian writing a file does not conflict with
Anne renaming the same file. However, the name of
the directory Brian created clashes with the file Anne
moved. IceCube proposes schedules corresponding to
the two non-conflicting outcomes depicted on the right-
hand side of the figure. From the control interface,
Brian experiments with undoing his directory creation
(this does not undo his unrelated file write), redoing
it, and finally committing a schedule that combines his
and Anne’s directory creations, thus aborting Anne’s
conflicting file move.

Now suppose that, after moving /b/c into /a, Anne
had deleted directory /b and its contents /b/d. By de-
fault, Rufis considers that the delete depends on the
previous move. (Anne could override the default if that
was not her intent.) In order to satisfy the dependen-
cies, when the move is aborted, the delete that depends
on it is aborted is as well, and file /b/d will not be lost
by mistake.

Brian could decide to group two commands into
an an indivisible parcel, for instance: “parcel {mkdir
/a/c; write "I won!" /b/d}.” In this way, if Brian
does not have permission to modify the file, the direc-
tory is not created; and vice-versa, when Brian undoes
the directory creation, the write is also undone.



mkdir /a/x
move /b/c /a

mkdir /a/c
write “foo” /b/c

Brian's
PC

IceCube enforces application invariants, and can fur-
thermore work across applications. Consider for in-
stance a calendar implemented upon IceCube. Anne
can request an appointment with Brian, proposing two
possible times, say 10:00 and 11:00, using the Alterna-
tives constraint. In each alternative, a parcel groups the
appointment request with a write that stores a string
into file /a/c, "ten" or "eleven" respectively. One of
the two appointment requests (but not both) may suc-
ceed, depending on when Brian is free; then the file
contains the appropriate time. If Brian is busy at both
times, neither succeeds, nor does the write, and Anne is
notified. If Brian commits Schedule 2 as above, then file
/a/c doesn’t exist, both appointement requests abort,
and Anne is notified.

3. IceCube

IceCube fits into a distributed system support-
ing disconnected operation. IceCube combines actions
from the different users to form a common, sequen-
tial schedule, to be replayed at every site. However,
combining concurrent actions into a correct sched-
ule is not trivial, as there may be conflicts.

To automate this process and to provide applica-
tion independence, IceCube uses semantic information
called constraints. The reconciler proposes and exe-
cutes any number of schedules that obey the con-
straints. The user has ultimate control over the out-
come. After viewing the results of different schedules
he may commit one of them. Otherwise, he has sev-
eral options, such as undoing some actions, commit-
ting only a subset of a schedule, asking for more sched-
ules, or editing the logs and trying again.

3.1. Actions and constraints

An action represents an application-specific opera-
tion and it is defined by the application programmer.

Directory File
constraints constraints
schedule 1 II

IceCube
scheduler

schedule 2 II

undo “mkdir /a/c”
redo “mkdir /a/c”
commit schedule 2

Constraints are IceCube’s central abstraction for
conflict detection and scheduling. A constraint is the
formal, “reified” representation of an application in-
variant. It is the responsibility of the IceCube system
to maintain invariants despite concurrency.

A static constraint relates two actions uncondition-
ally. As an example, Alice’s and Brian’s concurrent ac-
tions to create a file /a/c and a directory /a/c mutu-
ally exclude each other statically, because file-system
invariants forbid two different objects to exist concur-
rently with the same name.

IceCube also supports dynamic constraints that test
the success or failure of a single action, depending on
the current state. A simple example is a bank account
application that would use them a dynamic constraint
to verify that a debit never violates the “no overdraft”
constraint.

3.1.1. Log constraints A log constraint is a static
constraint between actions of the same log. Users and
applications use log constraints to make their intents
explicit. Constraint predecessorSuccessor(a, 3) es-
tablishes that action 8 executes only after o has suc-
ceeded (causal ordering). For instance, say a user ten-
tatively updates a file, then copies the new version; to
maintain this dependence upon reconciliation, the ap-
plication records a predecessorSuccessor constraint
between the write and the copy.

The parcel log-constraint is an atomic (all-or-
nothing) grouping. Either all of its actions execute suc-
cessfully, or none does.! For instance a user might
copy two whole directory trees inside a third direc-
tory as a parcel. If any of the individual copies would
fail (e.g., for lack of space, or because the user doesn’t
have the necessary access rights), then no copy-
ing at all occurs in the reconciled schedule.

1 Unlike a traditional transaction, a parcel does not ensure iso-
lation. In the absence of other constraints, its actions may run
in any order, possibly interleaved with other parcels.



The alternative log constraint provides choice of
at most one action in a set. An example is submit-
ting an appointment request to a calendar application,
when the meeting can take place at (say) either 10:00
or 11:00. Users use alternative constraints to pro-
vide the scheduler with a fallback in case of a conflict.
Rufis does not use alternative directly, but a num-
ber of applications running on top of Rufis do, for in-
stance the calendar application.

3.1.2. Object constraints An object constraint is
a static constraint between concurrent actions. Be-
fore reconciling, IceCube collects the object constraints
for every pair of concurrent actions in its logs, by
calling into application code. To this effect, applica-
tion action pairs implement the following methods:
mutuallyExclusive should return true if both actions
cannot be in the same schedule; and best0rder should
return the preferred execution order of the action pair,
if any exists.

Object constraints express (static) concurrency in-
variants, similarly to Schwartz [9] or Weihl [11]. For
instance, creating a file and creating a directory with
the same name is mutuallyExclusive. Another exam-
ple: a bank account application indicates a bestOrder
preference to schedule credits before debits.

3.1.3. Explicit commutativity We have found it
useful to further differentiate pairs of commuting ac-
tions that have no mutual side effects. This is impor-
tant in particular when an action’s dynamic constraint
is violated: actions that commute with it do not need to
be rolled back. The following methods provide this in-
formation.

GetDomain returns any number of domains, where a
domain is an opaque hash characterising a set of ob-
jects read or written by an action. Actions with no com-
mon domain are commutative. In Rufis, the domain of
an action is the identifier of the file system that it op-
erates upon.

If two actions have a common domain, IceCube calls
their overlap method to tests whether they overlap;
if not, they are commutative. In Rufis, two directory
actions of the same file system do overlap only if they
concern the same name inside the same directory; two
file actions overlap only if they touch the same file.

When two actions overlap, method commute tests
whether they commute semantically. For instance, two
reads to the same file overlap but commute.

3.2. Reconciliation algorithm

We now describe very briefly the operation of Ice-
Cube for reconciliation and undo. As the scheduling

problem is NP-hard, IceCube explores the space of pos-
sible schedules heuristically.

It first decomposes the inputs into independent sub-
problems, such that the actions in one sub-problem
commute with all actions in other sub-problems, and
there are no static constraints connecting actions from
different sub-problems. It follows that actions from dif-
ferent sub-problems may be scheduled in arbitrary or-
der, and executing or rolling back an action belonging
to some sub-problem does not affect actions of another
sub-problem. In the common case, the combined com-
plexity of the sub-problems is much lower than that of
the original problem.

Then the scheduler performs an efficient, heuristic
sampling of small portions of the search space for each
sub-problem. If the user requests a new schedule, or
the computation hits a dynamic constraint violation,
the search restarts over an unrelated portion of the
search space.

3.3. Undo

The user may request to undo an action. This also
undoes all dependent actions. Undo is a particular ap-
plication of the reconciliation algorithm. To undo some
action «, the system adds an alternative constraint
between a special “always-committed” action and .
This has the effect of rolling back execution to a state
where « is not executed. Any actions that depend on
a are excluded from the execution, as they now con-
flict with the always-committed action. Actions that do
not depend on « are not undone, even if they were ex-
ecuted after «. This includes any action S that is con-
current with o or commutes with «, unless an explicit
predecessorSuccessor or parcel connects a and (.
Actions that were excluded by a may now be included
(at the user’s option) in the new schedule.

Redo-ing « is simply a matter of removing the exclu-
sion between a and the always-committed action. The
effect of undo-redo is not necessarily equivalent to do-
ing nothing, as new conflicts may have appeared in the
meantime.

4. Inside Rufis
Rufis emulates the usual Unix file system seman-

tics. Operations include creating, deleting and renam-
ing files and directories.

4.1. File system concurrency semantics

By default, a file is just an untyped byte string and
its concurrency semantics are standard: conservatively,



concurrent writes constitute a conflict. However a file
can have its own invariants and weaker concurrency
control. For instance, for a calendar file, two updates
do not conflict unless they cause a double booking or
other violation of calendar invariants.

Concurrent directory operations conflict only if com-
bining them would would break the directory hierar-
chy, or would cause a user to lose work. For instance,
one user editing a file while another deletes it, consti-
tutes a conflict, whereas concurrently creating two files
in the same directory does not conflict, as long as their
names are different. More subtly, one user is allowed to
edit a file while another renames the file or a parent di-
rectory.

Beyond the inherent file system invariants, applica-
tions or users can insert their own log constraints. For
instance, grouping two copies and a delete into a par-
cel ensures that either all three operations can succeed,
or none is executed.

Currently, commitment is centralised in IceCube. In
this respect, Rufis follows the example of CVS, Bayou,
or Microsoft Briefcase.

4.2, Object identification

We envisaged two design approaches to identify file
and directory objects. In the first, each action in the log
records its pathname arguments. This naturally cap-
tures standard file system invariants, but does not cope
well with concurrent renaming. For instance if some
user creates file /a/b while an other renames /a to /c,
and the rename is scheduled first, then the new file
should be created as /c/b. The chosen approach is to
designate nodes by a unique identifier called RufisKey,
independent of their pathname, much like Unix inode
numbers. An action that operates on some file or sub-
directory within a directory records the directory’s Ru-
fisKey and the relative pathname of the object.

4.3. General structure

Internally, a file system is a tree of DirectoryNodes
and FileNodes, and a hash table of the same nodes,
indexed by RufisKey.

We decompose a user-level directory command into
a parcel of several actions. The first checks arguments
and establishes what needs to be done at a high level.
The following ones link and unlink nodes in the tree.
The last one might check the result. For instance the
move command (which renames a file or directory) is
decomposed into an action that checks which of nine
possible cases to execute, followed by up to three link

Directory link/link  link/unlink  unlink/unlink
Different parent, name —overlap —overlap —overlap
Same parent&name Mut.Excl. bestOrder commute
Dynamic constraint: maintain tree; linked name doesn’t exist

File Read/Read Read/Write  Write/Write
Other file —overlap —overlap —overlap
Same file commute bestOrder Mut.Excl.

Dynamic constraint: none

Directory/File
Other file
Same file

Unlink/Write other
—overlap —overlap
Mut .Excl. —overlap

Table 1. Rufis object constraints

and unlink actions, followed by a a check that the tree
structure is maintained (explained in Section 4.5).

In a link or unlink action, the parent directory is
identified by RufisKey and the file or directory being
linked by its string name. Using a RufisKey to iden-
tify a parent directory has the advantage that the key
does not change as the directory is renamed. When a
node is created, its RufisKey is logged so that at rec-
onciliation time, it is is re-created with the same Ru-
fisKey.

The chances of successful reconciliation are im-
proved by using bestOrder to move reads and unlinks
to the beginning of the schedule, and writes and un-
links at the end.

4.4. Rufis actions

The low-level Rufis action types are the following.
A directory action either creates a directory or links or
unlinks a node (either a file or another directory) into
a directory. A file action either creates a file or reads
or writes it.

The object constraints and explicit commutativity
methods are summarised in Table 1. In more detail,
those on DirectoryNodes are as follows: Each file sys-
tem constitutes a domain. Actions whose parent di-
rectory have the same RufisKey overlap. Also (spe-
cial case mentioned above), writing a file overlaps with
unlinking it from its parent directory. Otherwise, a
DirectoryNode action does not overlap any other type
of action. Actions that overlap commute if neither of
them is a write, or if the object names differ. Overlap-
ping actions that do not commute conflict if they are
both writes. Writing a file conflicts with unlinking its
directory (the special case again). Finally, we order un-
link actions before links to reduce the chance of a dy-
namic constraint being violated.2

2 Despite the strong static constraints, it does occur in some cor-
ner cases that a dynamic constraint is violated.



Similarly, for File actions: File actions in the same
file system overlap if the files have equal RufisKey. A
write action overlaps with a unlinking the node from
its parent directory (the special case). Two overlapping
file actions commute if either is a creation action, or if
both are read actions. A write conflicts with unlinking
the file (special case), and two non-commuting writes
conflict with each other. Finally, reads are preferably
scheduled before writes that do not commute with
them.

4.5. Checking structural integrity

Rufis makes little use of dynamic constraints, ex-
cept in the following case. At the end of a directory
move, a final action checks that the file system struc-
ture remains a tree. This is necessary because a move
parcel, unlike a transaction, is not isolated from con-
current moves. For example, consider a file system con-
taining directories /a/b/c/ and /a/d/e/. Two users
could concurrently request to move d/ under c/ and
b/ under e/. The result would be a cyclic structure
b/c/d/e/b/ ... unattached to /a/. The dynamic check
will disallow this from happening and cause at least one
of the moves to abort.

4.6. Implementation

The Rufis implementation is roughly 3,000 lines of
Java. We first built a “solo” system that implements
the centralised file system functionality in 1,700 lines.
Converting this to optimistic replication was relatively
simple: we added a layer to intercept and store success-
ful solo commands in the IceCube log, and we exported
appropraite log and object constraints. This constitutes
the remaining 1,300 lines.

We choose to log by recording a trace of the ac-
tual side-effects, as opposed to “diff-ing” snapshots be-
fore and after tentative execution. Diffing is less suc-
cessful at capturing user intents. For instance it does
not easily differentiate renaming a file from two inde-
pendent delete and create actions.

The logging code is essentially a modified copy of the
solo code. Consider some representative command, for
instance mkdir (create new directory). The solo mkdir
first checks its arguments, then creates a new direc-
tory object, then links the new object into the parent
directory. The replicated mkdir does the same, also re-
membering the RufisKey of the parent directory, the
RufisKey of the new subdirectory, and the name of the
subdirectory. If tentative (solo) linking was successful,
it logs (1) an action to create a directory node with the
same RufisKey and (2) an action to link the new node

under the same name, into the parent directory iden-
tified by its own RufisKey. The two actions compose
a parcel, and are predecessorSuccessor of one an-
other.

By default, the replication code records a
Predecessor-Successor log constraint between any
action and the last action that modified the same ob-
ject(s). Undo and reconciliation remain selective, be-
cause later unrelated updates are not constrained.
However, this is still excessively conservative, so Ru-
fis also provides an interface where the application
provides log constraints explicitly.

4.7. RufisKey

All replicas of the same object are persistently iden-
tified by a common RufisKey, despite users concur-
rently mutating the file system tree. For instance con-
sider a user creating a file while another changes the
name of the parent directory. File creation will succeed
despite the concurrent change, since the mkdir actions
refer to the parent by RufisKey.

A RufisKey also serve a different purpose. The Rulfis
application has access to several (virtual) copies of the
file system. For instance, at some point in time might
coexist the last committed state, the current tentative
version being modified by the user, and one or more
reconciled states being proposed by IceCube. What is
logically a single logical file, with different versions, be-
comes at runtime unrelated Java objects, one for each
file system version. The RufisKey serves to identify the
single logical file object relative to the different ver-
sions. This tends to confuse application programmers,
but could undoubtibly be alleviated by specific com-
piler support.

5. Comparison to related work

Optimistic replication has been widely researched;
we refer to Saito and Shapiro [7] for a comprehensive
study. Relevant work includes the file systems Coda [3]
and Ficus [6]; the Concurrent Versions System CVS [2];
formal studies of file replication semantics by Balasub-
ramaniam and Pierce [1] and by Ramsey and Csirmaz
[5]. In all these systems, there can be no dependencies
between files or objects, and application-specific invari-
ants are either ignored or difficult to describe.

The most similar system is Bayou [10], a general-
purpose replicated database system. Specialised appli-
cations, such as a calendar or a mail folder manager,
can run on top of Bayou, each with their own invari-
ants. An action consists of a conflict test, an update
procedure, and a “second-chance” merge procedure in



case of conflict. In contrast to IceCube however, the se-
mantics are opaque to the system, and schedules run
strictly in timestamp order.

The novel contribution of IceCube is that invari-
ants have a formal representation (as constraints) and
that maintaining invariants is delegated to the sys-
tem. Furthermore, in Rufis (in contrast to most file
systems), writes do not necessarily conflict, and files
are not necessarily independent. Support for applica-
tion invariants is a native feature, and IceCube will rec-
oncile seamlessly data from very different application
domains.

Constraints are used widely in many application ar-
eas [8], but we believe IceCube is the first to use them
for replication.

Presenting alternative reconciliation schedules and
their outcomes to the user appears to be a unique fea-
ture of our system. Similarly, we have not seen other
systems that let the user combine application actions
in complex scenarios.

6. Conclusion and future work

Developing a replicated application is creative work
and remains difficult. The application must execute
user commands tentatively, log them, and respond to
conflicts by undoing some actions and replaying oth-
ers under system control.

The IceCube and Rufis frameworks make this work
somewhat easier. The IceCube approach is to make the
application invariants explicit (reified as constraints)
and to leave enforcement of the invariants to the sys-
tem. Rufis provides the standard naming and persis-
tence services of a file system, seamlessly integrated in
the IceCube environment.

Constraints are a convenient, intuitive representa-
tion of application semantics. In particular, the object
constraint API (i.e., the concurrency control interface)
makes explicit the questions that the developer would
need to ask anyway: do these operations conflict? do
they commute? etc. This encourages developers to de-
sign independent, commutative and idempotent actions
whenever possible.

Reconciliation logic is well separated from applica-
tion logic. Adding reconciliation to the solo version
of Rufis was fairly mechanical. Today unfortunately,
the process remains verbose, tedious and error-prone;
we would welcome specialised language support, which
would make it easier to write action code, could auto-
mate object identification (see the RufisKey discussion
earlier), and could generate the logging code automat-
ically. We have implemented a compiler to automati-

cally extract static constraints from dynamic precon-
ditions in the SQLIceCube project [4].
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