
Proceedings of the
5th MiNEMA Workshop

Middleware for Network Eccentric and Mobile
Applications

11-12 September 2007, Magdeburg, Germany

We thank the European Science Foundation (ESF) for funding and supporting the
5th MiNEMA Workshop in Magdeburg

Semantic Middleware for Designing Collaborative
Applications in Mobile Environment

Lamia Benmouffok
Université Pierre et Marie Curie

Laboratoire d’Informatique de Paris 6
104, avenue du Président Kennedy

75016 Paris - France
Email: lamia.benmouffok@lip6.fr

Jean-Michel Busca
INRIA - Rocquencourt

Laboratoire d’Informatique de Paris 6
104, avenue du Président Kennedy

75016 Paris - France
Email: jean-michel.busca@inria.fr

Marc Shapiro
INRIA - Rocquencourt

Laboratoire d’Informatique de Paris 6
104, avenue du Président Kennedy

75016 Paris - France
Email: marc.shapiro@acm.org

Abstract—The Telex middleware facilitates the design of
collaborative applications in a mobile environment. It provides
optimistic replication, tentative execution and disconnected work.
It solves conflicts based on semantic information provided by
applications. We study in particular a Shared Calendar (SC) ap-
plication, whereby mobile users can create and manage meetings
in a collection of shared calendars. The application provides Telex
with objects representing (1) meeting creation and modification
operations (actions), (2) dependence or conflict information
between actions (constraints). When a conflict occurs, Telex
proposes solutions to users.
The advantage of this approach is a clean separation of

concerns. The SC application writer concentrates on applica-
tion logic, whereas Telex takes care of replication, consistency,
conflicts, and commitment across all applications.

I. INTRODUCTION

Designing collaborative applications raises the key problem
of ensuring the consistency of shared mutable data. This
problem is even more difficult in a mobile environment due
to its decentralized nature and to the volatility of participants.
The Telex middleware facilitates the design of collabo-

rative applications by taking care of complex application-
independent aspects, such as replication, conflict detection
and repair, and ensuring eventual commitment. It supports
optimistic replication [1], which decouples data access from
network access. Telex allows an application to access a local
replica without synchronizing with peer sites. The application
makes progress, executing uncommitted operations, even while
peers are disconnected. Telex propagates updates lazily and
ensures consistency by a global a posteriori agreement on the
set and order of operations. Local execution is tentative; due
to conflicts, some operations may roll back later.
Unlike previous optimistic replication systems, Telex takes

the semantic of the collaboration into account, building on the
Action Constraint Formalism (ACF) [2]. A Telex application
represents its shared data as a set of actions (representing
application operations submitted by users), and a set of con-
straints between these actions, expressing their concurrency
semantics. Telex uses this semantic information to accuratly
detect conflicts and to propose solutions.
We designed a Shared Calendar (SC) application to demon-

strate how Telex facilitates the design of collaborative appli-

Fig. 1. Shared Document Representation

cations in mobile environment. A SC application aims to help
people organizing their agenda in a collaborative way. It allows
people to create and manage private events as well as group
meetings, scheduled on a collection of online calendars. The
design of SC application illustrates the benefit of using Telex
middleware; it also illustrates some limitations of Telex.
The remainder of this paper is organized as follows. Sec-

tion II briefly describes the ACF. Section III presents the
architecture of Telex and its operation. Section IV describes
the Shared Calendar application built on Telex. Section V
concludes.

II. ACTION CONSTRAINT FORMALISM

In ACF, an action represents an application operation
and a constraint defines a scheduling invariant between two
actions. The ACF defines three elementary constraints ex-
pressing commutativity, order and dependency relations. (A
non-commuting B) states that executing A before B does
not yield the same result as executing B before A. (A
not-after B) indicates that A must not execute after B.
(A enables B) means that B can execute if and only if A
also executes.
Elementary constraints can be combined to express richer

semantic relations, encompassing data semantics, application
semantics and user intents. Thus, the cycle ((A not-after
B) and (B not-after A)) states that A and B are
antagonistic, i.e. an execution cannot contain both actions.
((A not-after B) and (A enables B)) expresses
the fact that B causally depends on A. The cycle ((A
enables B) and (B enables A)) indicates that A
and B must be executed atomically.

58

Fig. 2. Telex Architecture

III. TELEX MIDDLEWARE

A document is the basic sharing unit, and Telex represents
its current state as a graph of submitted actions connected by
constraints. As shown in Figure 1, it implements the history as
a set of per-site logs, or multi-log. Furthermore, Telex allows
applications to define cross-document constraints.
Figure 2 shows the overall architecture of a Telex instance

running at some site. This instance supports several appli-
cations that together use its services. The Telex middleware
is composed of two main modules — the scheduler and the
replica reconciler — layered on top of two auxiliary modules
— the transmitter and the logger. For each open document,
Telex creates one instance of each module, which maintains
the execution context of the document.
The transmitter and the logger are responsible for main-

taining a replica of the document’s multi-log at the local site.
To this end, they implement an epidemic replication protocol
which ensures that multi-log updates are eventually propagated
to all participating sites, i.e. sites that collaboratively edits
the document, either at the same time, earlier or later. The
scheduler and the replica reconciler are described next.

A. Scheduler
The scheduler maintains an action-constraint graph that rep-

resents the state of the document known locally. Actions and
constraints are added to the graph either by: the application,
when local user updates the document, (ii) the logger, when
it receives an update issued by a remote user, (iii) the replica
reconciler, when it commits a schedule (see below).
Based on the action-constraint graph, the scheduler periodi-

cally computes sound schedules, i.e. sequences of actions that
comply with constraints, and proposes them to the application
for execution. In case some actions conflict, i.e. they do not
commute or they are antagonistic, several schedules exist, each
representing a particular solution to the conflict. The scheduler
computes them one by one, upon application request, until one
or more satisfaying schedules are found.
Actions submitted concurrently at different sites may turn

out to be conflicting. Therefore, whenever a new action is
addded to the graph, Telex checks whether constraints exist

against concurent actions. Conceptually, Telex calls the appli-
cation for every pair 〈newaction, existingaction〉 and adds to
the graph the constraints that the application returns, if any.
In order to optimize this CPU-intensive check, the application
tags each action it submits with a set of numeric keys, one
for each object that the action operates upon. Actions conflict
only if their key sets intersect. Telex checks for this condition
before calling the application, thus saving a significant number
of unnecessary calls. False positives cause only a performance
loss.

B. Replica Reconciler
Participating sites may generate different sound schedules

from the same action-constraint graph. The role of the replica
reconciler is to make sites agree on a common schedule to
apply and thus achieve (eventual) mutual consistency. The
agreed-upon schedule is said to be committed.
The replica reconciler implements a decentralized asyn-

chronous commitment protocol based on voting. Periodically
or on user request, each site proposes and votes for one or
more schedules generated by the scheduler. Local user may
specify the schedule(s) of his choice, if any. Votes are sent to
participating sites, and a schedule that receives a majority or
a plurality of votes is committed. The committed schedule is
then materialized as a set of constraints added to the action-
constraint graph.
The commitment protocol is fully asynchronous. It runs in

the background and each instance determines locally when a
schedule has won an election. Meanwhile, the scheduler keeps
proposing (tentative) sound schedules to the application. In
addition, the protocol may run only on a subset of partici-
pating sites that are know to be stable. The voting process is
automated and does not require user intervention. The detailed
protocol can be found in Sutra et al. [3].

IV. SHARED CALENDAR APPLICATION
The Shared Calendar (SC) application design demonstrates

how Telex facilitates the design of collaborative applications.
The SC application provides users a way to manage their
activities collaboratively. Each user has his own calendar,
which he shares with the other authorised users.
To create a meeting with a group, a SC user creates a

“meeting object” and shares it with the invitees. He notifies
invitees by creating an action on their respective calendar.
When one receives an invitation he can accept it or decline

it. If he accepts it, he can collaborate to hold the meeting: he
can invite other users, and modify the meeting time, and loca-
tion. For that purpose he creates actions on the corresponding
meeting object, concurrently with other invitees. Consequently
conflicts may appear. As we are in an optimistic replicated
environment, those actions are tentative until committed. In
case of antagonism, some of them are aborted.

A. Use case
Figure 3 shows an example concurrent execution of the

calendar application. Users Jean-Michel, Lamia and Marc use

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

59

a Shared Calendar application to plan meetings between col-
leagues. Jean-Michel, Lamia and Marc are working separately
and communicate only via the application.

Fig. 3. Execution scenario the Shared Calendar application.

Jean-Michel organizes meetingM2 on 3 May between 11:00
and 12:00. He allocates Room 245 for that purpose. He
requires the presence of Marc and himself. This is illustrated
by Action 2 in Figure 3.
Lamia organizes meeting M1 on the same day between

10:30 and 12:00. She allocates Room 233. She will attend the
meeting, and allows other people to invite themselves, with
actions 1 in Figure 3.
The application only needs to provide the above actions

to Telex. Telex propagates them eventually to all interested
sites (in this example, to Marc’s site) even if some users are
offline. Suppose that, at some point in time t1, Marc has
received Lamia’s actions, but not yet Jean-Michel’s. This may
happen, for instance, if Jean-Michel is working offline. Marc
is interested in M1 and invites himself to that meeting (action
3 in the figure). Later, at t2Marc knows Jean-Michel’s actions.
As M1 overlaps, with M2 a conflict is detected at time

t3. For this to happen, the SC application arranges that the
corresponding actions’ key sets overlap. Therefore, Telex up-
calls SC, which returns an antagonism constraint, as explained
elsewhere.
To avoid this conflict, Lamia shifts the start time of M1 to

13:30 (action 4). Concurrently (t4), Marc also sets the date
of M1 to the 7 May (action 5), and Jean-Michel cancels M2
(action 6).
At t5 Lamia and Marc have received their concurrent

modifications of meeting M1. Obviously M1 is scheduled at
different times on Lamia’s and Marc’s calendar. SC provides
the non-commute constraint, which causes Telex to order them
the same way at all sites, after the commitment phase.

B. SC design using Telex

The application expresses its semantics by defining appro-
priate constraints between actions. The code for computing
actions and constraints is part of the application; at run time SC
outputs appropriate action and constraint instances to Telex,
and Telex propagates them to the appropriate replicas. Thus

application semantics is cleanly separated from the difficult
systems task of ensuring consistency.
In more detail, the shared calendar application supports the

following actions:
• createEvent (meetingId): Create some event, for instance
a meeting.

• setInfo (time, meetingId): Modify the schedule of an
event.

• invite/addUser (userId, meetingId): Invite a person to an
existing event.

• allocate (roomId, meetingId): Allocate a room for an
event.

• cancelInvitation/cancelUser (userId, meetingId): Cancel
an invitation.

• cancelAllocation (roomId, meetingId): cancel a room al-
location for a meeting.

• Cancel (meetingId): Cancel a meeting.
Recall that this application supports optimistic replication.

Each user of this application can generate one of the previous
actions and execute it locally. However the execution remains
tentative until an agreement phase reaches a consensus whether
actions are committed, or aborted, or reordered.
In the use case scenario, Jean-Michel generates actions : A =

createEvent (M2), B = allocates (245, M2), C = addUser(Jean-
Michel, M2), D = addUser(Marc, M2). It groups them
atomically with an enables cycle: ((A enables B)
and (B enables C) and (C enables D) and (D
enables A)). He also generates E = setInfo (11:00-12:00
03/05/07, M2) and the constraint A enables E. Telex prop-
agates these actions and constraints to Marc’s site, as well as
Lamia’s actions concerning meeting M1.
Telex checks each pair of actions for their keys. Telex up-

calls the application for possible constraints only two actions
have a same key. SC computes its keys as follows. Each
discrete 30-minute time slot has a unique identifier. For action
setInfo (description, time, meetingId) where time is a set of
slots {Si, i = 1 . . . n} the generated keys are:

• The hash of meetingId,
• The hash of each slot identifier Si.
Back to the use case scenario. At time t2 Marc receives

actions F = setInfo (“ ” ,10:30-12:00 03/05/07, M2) and
G = setInfo (11:00-12:00 03/05/07, M2). Keys of the two
setInfo match as both have a key that is a hash of the {11:00-
12:00 03/05/07} slot. Therefore, Telex asks SC for the cor-
responding constraints. SC returns an antagonisism constraint
((F not-after G) and (G not-after F)), which
causes either F or G, or both, to eventually abort.
Telex suffers from some usability issues, because reifying

application semantics into actions and constraints is not very
intuitive. Furthermore, constraints are hard to validate.
To facilitate the use of Telex to develop collaborative

applications, we propose a generic methodology for principled
designs. A rule for using Telex is to make any shared mutable
information a Telex-managed object. For instance, a meeting
is an implicit information inherent to each invitees’ calendar.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

60

This information is shared between all invitees, and is mutable
as any invitee can collaborate to modify the meeting informa-
tion. The number of invitees is also dynamic. Thus the easiest
way to manage a meeting is to make it an explicit Telex object,
with corresponding actions and semantics. Figure 4 shows the
state of Marc’s site at time t2.

Fig. 4. Marc Site at t2.

The Telex scheduler insures that Marc will not be scheduled
for M1 and M2 at the same time (Antagonistic actions). The
reconciliation phase ensures eventual consistency.

V. CONCLUSION AND FUTURE WORK
The Telex middleware facilitates the development of col-

laborative applications in mobile environment. The main con-
tribution of Telex is that the reconciliation between replicas
is application independent as Telex is semantically rich. We
presented a design of a Shared Calendar application to demon-
strate Telex benefits and highlight Telex usability limitations.
To facilitate the use of Telex to develop collaborative applica-
tions, we propose a generic methodology for more principled
designs. However this approach also suffers from limitations.
Reifying application semantics into actions and constraints is
not very intuitive. Furthermore, constraints are computed in
advance, without knowledge of the actual state. We suggest
two complementary approaches - A compiler should generate
actions and constraints from a high-level specification - A
checker should verify that all action-constraint combinations
verify the application invariants.

REFERENCES
[1] Y. Saito and M. Shapiro, “Optimistic replication,” Com-

puting Surveys, vol. 37, no. 1, pp. 42–81, Mar. 2005,
http://doi.acm.org/10.1145/1057977.1057980.

[2] M. Shapiro, K. Bhargavan, and N. Krishna, “A constraint-based formalism
for consistency in replicated systems,” in Proc. 8th Int. Conf. on Princi-
ples of Dist. Sys. (OPODIS), ser. lncs, no. 3544, Grenoble, France, dec
2004, pp. 331–345, http://www-sor.inria.fr/ shapiro/papers/opodis2004-
final-2004-10-30.pdf.

[3] P. Sutra, J. Barreto, and M. Shapiro, “An asynchronous,
decentralised commitment protocol for semantic optimistic replication,”
INRIA, Research Report 6069, 12 2006. [Online]. Available:
https://hal.inria.fr/inria-00120734

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

61

	Table of contents
	Foreword
	Organisation
	Session 1: Streaming and Multicast
	Building multicast trees in ad-hoc networks, Raphaël Kummer, Peter Kropf, Pascal Felber
	A Gambling Approach to Scalable Resource-Aware Streaming, Mouna Allani, Benoît Garbinato, Fernando Pedone, Marija Stamenkovic
	Removing Probabilities to Improve Efficiency in Broadcast Algorithms, Hugo Miranda, Simone Leggio, Luís Rodrigues, Kimmo Raatikainen

	Session 2: P2P Systems and Overlay Networks
	GossipKit: A Framework of Gossip Protocol Family, Shen Lin, François Taïani, Gordon Blair
	Enabling Cyber Foraging for Mobile Devices, Mads Kristensen

	Session 4: Publish/Subscribe
	Strategies for implementing Peer-to-Peer Publish/Subscribe with Persistent Events in Wireless Settings, Eugster Patrick, Benoît Garbinato, Adrian Holzer, Jun Luo
	Probabilistic Publish/Subscribe in Mobile Ad Hoc Networks, José Mocito, José Côrte-Real, Luís Rodrigues
	Predictive Publish/Subscribe for Delay Tolerant Mobile Ad Hoc Networks, Paolo Costa, Cecilia Mascolo, Mirco Musolesi, Gian Pietro Picco

	Session 5: Architectures and Frameworks
	Towards a Peer-to-peer Middleware for Context Provisioning in Spontaneous Networks, Tuan Dung Nguyen, Siegfried Rouvrais
	Semantic Middleware for Designing Collaborative Applications in Mobile Environment, Lamia Benmouffok, Jean-Michel Busca, Marc Shapiro
	Handling membership dynamicity in service composition for ubiquitous computing, Jeppe Brønsted

	Session 6: Wireless Sensor Applications
	End-to-end middleware for distributed sensor applications, Nelson Matthys, Sam Michiels, Wouter Joosen, Pierre Verbaeten
	Using COSMIC -- A real world case study combining virtual and real sensors, Michael Schulze, Sebastian Zug

	Index of authors

