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Telex : un système de partage en écriture pour

les applications collaboratives, basé sur un

modèle formel

Résumé : Le système Telex est conçu pour le partage des données mod-
ifiables dans un environnement réparti, principalement pour des applications
collaboratives. Les utilisateurs opèrent sur une copie locale et persistante des
documents qu’ils partagent ils peuvent travailler en mode déconnecté, et ne sont
pas ralentis par la latence du réseau. Telex utilise une approche indépendante
de l’application pour détecter et corriger les conflits, qui se base sur un graphe
actions-contraintes (ACG) qui résume la sémantique de concurrence des applica-
tions. L’ACG est stocké de façon efficace dans une structure dite multi-journal
qui élimine la contention et est optimisée pour la localité. Des applications dif-
férentes s’exécutent sur Telex, qui permet de mettre à jour plusieurs documents
de façon coordonnée. Telex sépare proprement la logique système (ce qui inclut
la réplication, les vues, le «undo», la sécurité, la cohérence, les conflits, et la
finalisation) de la logique applicative. Un exemple d’application est un calen-
drier partagé, pour gérer des réunions multi-utilisateur le système détecte les
conflits de réunion et les résout de façon cohérente.

Mots-clés : Pas de motclef
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1 Introduction

The Telex system provides novel solutions for write-sharing data in co-operative
and disconnected work settings.

Existing approaches have severe limitations. For instance state machine
replication [5] imposes high latency and does not support disconnected opera-
tion. The popular last-writer-wins algorithm [11] does not ensure any high-level
correctness guarantees.1 In contrast, Telex is based on a principled approach
that combines flexibility and correctness, and cleanly separates application logic
from system logic.

Application logic transmits to Telex actions (operations) and constraints
(concurrency invariants), and applies execution schedules transmitted by Telex.
In return, Telex takes care of: replication, consistency, storage and access con-
trol; collecting, transmitting and persisting operations; detecting conflicts and
computing high-quality conflict-free schedules; forward execution and rollback;
checkpointing; commitment; and access control. Telex supports multi-document
updates and cross-application scenarios out of the box.

Telex is based on a principled approach, the Action-Constraint Graph
(ACG) [12]. We designed the multilog data structure to store ACG-based doc-
uments in a distributed file system. Multilogs eliminate write contention and
promote locality.

We developed a number of demonstration applications above Telex. For
instance, a shared calendar application lets people organise their agenda collab-
oratively, arranging private events and group meetings. Telex detects meeting
conflicts and proposes possible solutions.

The contributions of this paper include: a novel approach to shared data
replication that is application independent yet application-aware, the ACG; the
practical engineering of an ACG system, in particular the document and multi-
log structures; design examples and lessons learned for ACG-based applications;
and some benchmarks and performance measurements.

This paper proceeds as follows. Section 2 is an overview. Section 3 explains
the data structures that Telex uses. Section 4 documents the Telex architec-
ture and implementation. In Section 5, we present some example applications.
Section 6 evaluates the Telex performance. We reflect on lessons learned in
Section 7. Section 8 compares Telex with related work. Finally, Section 9 con-
cludes.

2 Telex overview

We give an overview of the Telex system from three complementary points of
view.

1 Section 8 analyses the state of the art in detail.
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4 Benmouffok et al.

a. App. reifies user op. b. Remote action rcvd.: c. Compute schedule(s),
as actions & constraints upcall for conflict constraints execute, display

Figure 1: Telex interactions. (The circled numbers refer to Figure 5)

2.1 User/application perspective

Telex supports participants, i.e., users working at disjoint sites, which may be
widely distributed. An authorised participant may replicate a shared document
on his site.

A site operates optimistically [11]: it applies local actions (operations),
sends them to other sites, and eventually replays the actions it receives. Hence,
applications are not slowed down by remote synchronisation, network issues, or
by remote failures.

A participant may work either connected or disconnected from others. Thus,
each participant has his own view of the current state of the shared document.
Documents and views persist across log-out/log-in and restarts. However, a
view is only tentative and may have to roll back.

Telex, not applications, takes care of hard issues such as conflict detection,
reconciliation, and consistency. However, since a conflict is the violation of some
application invariant, Telex is parameterised by application-specific concurrency
invariants called constraints. A constraint relates two actions, either of the same
or distinct documents. Hence, Telex maintains consistency between documents.

Figure 1 illustrates the control structure of Telex with a Shared Calendar
(SC) application.2 In this example, the participant creates an appointment,
which conflicts (double booking) with one created remotely. In Figure 1.a,
the participant performs the appointment operation. The SC application logs
the corresponding actions and constraints to the local Telex dæmon (+action
appointment). In Figure 1.b, when the site receives a remote action (signal),
it compares it to the concurrent actions. If Telex suspects a conflict, it calls
up to the application (getConstraint), which replies with precise information
(+constraint antagonism). Finally, as in Figure 1.c, Telex periodically sends
schedules to the application, for execution and/or rollback. The application

2 Elements of the figure not discussed here will be explained in later sections.

INRIA
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Name Notation Semantics
NotAfter A→ B A is never after B in any schedule
Enables A ⊳ B B in a schedule implies A in same schedule

NonCommuting A / B Must agree on A→ B or B → A (conflict)

Atomic A
⊳
⊲ B All or nothing

Causal A
⊳
→ B B depends causally on A

Antagonism A
←
→ B A and B never both in same schedule (conflict)

Table 1: Constraints

computes and displays the corresponding views, in this example with a conflict
indication (conflict).3

2.2 Formal perspective: actions and constraints

Telex is based on a formal model, the Action-Constraint Graph (ACG) [12].
The ACG is a labelled graph whose nodes are the actions and edges are the
constraints. The current view of a site is the result of executing a sound schedule,
i.e., an ordering of actions currently known at that site, that obeys the safety
constraints NotAfter and Enables. In effect, the ACG represents the set of all
legal views.

Table 1 presents briefly the constraints supported by Telex; for full details
please refer to the relevant publications [12]. The first three are primitive, the
last three are combinations of the primitives.4

These represent important classes of concurrency invariants. While they
can approximate the true application semantics only grossly, we have found
that they are sufficiently expressive for reconciliation purposes in several kinds
of applications [9, 13].

Formally, eventual consistency requires that all schedules be sound, that
they have a common stable sound prefix, that every action eventually be either
aborted or in the prefix, and that non-commuting actions that are in the prefix
be ordered.5 The latter two items imply a global consensus between sites. We
call this consensus the commitment protocol. In Telex, commitment is optimistic,
i.e., it occurs in the background, not in the critical path of applications.

2.3 Engineering perspective: multi-logs and commitment

The design of Telex is motivated by some major requirements and challenges:
(i) Persist and replicate the ACG. (ii) Provide strong guarantees above a dis-

3 For the purpose of this paper, document state, view and schedule are synonymous. “View”
emphasises that the state is local and is not unique; “schedule” emphasises that it is computed
by some ordering of available actions.

4 Atomic does not ensure transactional isolation; an isolation constraint will be added in
the future. Currently, to achieve isolation, the user must manually group operations into a
single action.

5 Mutually-commuting actions may run in any relative order.
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6 Benmouffok et al.

tributed file system with only best-effort consistency. (iii) Integrate documents
into the file system, with reasonable overhead and scalability. (iv) Provide ac-
cess control, without violating consistency. (v) Remove old ACG entries from
storage. (vi) Decentralised, peer-to-peer design, with support for casual discon-
nected operation.

A document is a named entity in the file system. For locality, a document
stores only the portion of the ACG consisting of the actions operating on the
document, and their constraints.

Telex documents coexist with ordinary files and directories in the file system.
Using one or the other is up to the application.

Telex relies on external mechanisms to store and replicate documents, and
to propagate changes to remote sites. To avoid file system bottlenecks and
consistency issues, each participant writes to a distinct append-only log within
a document. To enable incremental garbage collection, the log is broken down
into successive chunk files. This structure is called multilog.

A log is a succession of actions and constraints in no particular order. We
optimise for the expected common case, where constraints are inside the same
log; inter-log constraints within the same document are slightly more expensive.
Inter-document constraints are assumed to be relatively rare and are more costly.

Because of network delays and disconnections, and because of filtering and
access control (explained later), at any point in time, different participants may
observe different ACGs. However, each participant’s view is consistent, because
it results from a sound schedule. Thus, if some action A is not in a view, and
A Enables B, then B is also not in that view.

The current view can be recorded in a snapshot. Snapshots name a view,
speed up the computation of later views, and help with garbage collection.

A decentralised, background commitment protocol ensures that the common
prefix of schedules makes progress. Each participant can vote for a schedule
according, for instance, to user preference. Voting is decentralised and peer-to-
peer.

Committed log records may be deleted. However it may be advantageous
to retain them for auditing, recovery or selective undo (to be explained later).

3 Data structures

3.1 Document storage

Telex stores its documents in file systems with standard, best-effort consistency
guarantees. The storage design obeys some specific requirements. Documents
should be seamlessly integrated above a standard POSIX interface, with reason-
able performance and scalability. They should co-exist with classical files and

INRIA
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Figure 2: Storage of Telex document

directories. Participants must be able to work normally while disconnected.
The system should scales well with the number of collaborating participants.
Finally, Participants’ data must be secured even when shared.

We implemented multilogs above the federative peer-to-peer file system
VOFS [1]. VOFS provides global access to files with best-effort consistency.
It supports disconnected operations via persistent replication, and notifications
for file modifications on distributed files. A complete description of VOFS is
outside of the scope of this paper; here we focus on specific features related to
Telex integration.

3.1.1 Multilog Design

As illustrated in Figure 2, a Telex document is a structured directory of files.
Applications and Telex may store document-specific data within the document,
such as filters and snapshots. These data are local to a participant; only the
multilog needs to be replicated.

A multilog is itself structured as a directory that contains an append-only
log per participant. Actions and constraints created by an application are ap-
pended to that participant’s log. Each participant’s log is replicated at the other
participants’ sites; VOFS propagates the updates to the network. As each log
has a single writer, is append-only, and local to a document, this avoids write
contention and scalability issues.

Propagation of a log through the network is asynchronous, i.e., a log replica
may contain only a prefix of its source, as indicated by the “sync” bar in the

RR n° 6546



8 Benmouffok et al.

Figure 3: Implementation of multilogs over VOFS.

figure. Telex instances monitor the logs for new updates. Eventually, all actions
and constraints are known to all participants.

As time passes, an action eventually becomes committed and is not needed
any more. To enable removing such old records, a log is itself structured as a
directory of chunk files. When the size of the current chunk reaches a threshold,
a new one is created. The name of a chunk file includes a sequence number,
making it convenient to read chunks in order, and to selectively delete chunks.
A chunk may be deleted when all the actions it contains are committed and
there is a later materialised snapshot. This is, however, a policy decision; a site
may decide instead to retain old chunks for auditing or recovery.

3.1.2 Multilogs on VOFS

A document is stored by the Telex dæmon in the file system as a directory. The
internal structure of this directory is not meaningful to users, and is intended
to be hidden by the user interface (much like the “bundles” of MacOS).

In our deployed multilogs so far, we have used a centralised setup at a
primary master site, containing the authoritative version of all the logs in a
document. Participants’ sites cache the logs persistently, making them available
for disconnected operation. The master site is a single point of failure and a
scalability bottleneck.

In the future, we plan to use a peer-to-peer configuration, using accross-
network symbolic links that VOFS provides. Here, each participant hosts the
authoritative version of his own log on his own site, as in Figure 3. As before,
participants cache remote logs persistently. The master site serves only to list
all the logs using symbolic links. Any other method of distributing the list could
be used.

INRIA
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Figure 4: Two multilogs with their logs; note constraints within log, within
document, and between documents

3.1.3 The Multilog Toolkit

VOFS is optimised for multilogs, which improves the user experience. However,
multilogs can be implemented above any ordinary distributed file system. We
provide a toolkit implementation of multilogs, as a set of simple programs and
dæmons, providing simple and efficient multilog management and access above
an ordinary file system.

The implementation follows closely the design of Figure 2. More details are
available in Section 6.

3.2 Action and Constraint

An action represents an application operation. It is described by several at-
tributes, of which some are known to Telex and other are application-specific.
Among the former, the most important is a list of action keys. An action key
indicates the document subset that this action targets; if two actions have a
common key, this indicates suspicion that the actions conflict (see Section 4.2.1
for more detail). An action belongs to only one document. It is uniquely iden-
tified by the triple 〈document, issuer, timestamp〉. Telex logs an action in the
log of the participant who issues it.

A constraint reifies a semantic relation between two actions. It is defined by
its type (NonCommuting, NotAfter or Enables) and by the two actions it binds.
A constraint is uniquely identified by the triple 〈type, action1, action2〉. Telex
logs a constraint in the log of the participant who issues it.

Most often, a constraint binds two actions of the same document, whether
issued by the same participant or not. Such a constraint is called an intra-
document constraint. However, a constraint may bind actions of two distinct
documents. Such a constraint is called a cross-document constraint. It is then
logged in both documents.

RR n° 6546



10 Benmouffok et al.

A constraint C references an action A by using one of the three following
forms: (timestamp) if A is issued by the same participant as C and belongs to
the same document, (issuer, timestamp) if A belongs to the same document as
C and (docId, issuer, timestamp) otherwise. In the latter form, docId is the id
of the document that action A belongs to.

Figure 4 shows an example of the two types of constraint. Constraint
C1 is an intra-document constraint: it binds actions A1 and A2 of document
OSDI_paper. Constraint C1 is issued by Pierre and thus it is logged in Pierre’s
log of OSDI_paper. On the other hand, constraint C2 is a cross-document con-
straint: it binds action A3 of document OSDI_paper and action A4 of document
figure_1. Constraint C2 is issued by Georgios and thus it is logged in Georgios’s
log of both OSDI_paper and figure_1.

3.3 Views

A desirable feature of replication in collaborative work is to enable different
participants to have their own view of a shared document. For instance a
participant working on a given section of a shared document may temporarily
ignore updates to the same section by other participants. Telex allows the
participant to select a particular view of a document by means of action filters.
A filter defines which actions of the ACG Telex must exclude when computing
sound schedules. When applying a filter, Telex also exclude all actions that
filtered actions enable. This ensures that the view computed by filtering is
always sound, i.e., document invariants are not violated.

A participant defines a filter by specifying its name and one or more filter-
ing criteria involving any attribute of an action. The participant may define
several filters on a document and dynamically add and remove them. Telex
saves currently-defined filters as part of the persistent state of a document.

Note that a filter may target a specific action of a document. By adding and
removing the filter, user may thus selectively undo and redo the corresponding
action in his view of the document. (To undo an action persistently, the partic-
ipant must abort it. By convention, this is expressed by marking the action as
antagonistic with itself.)

Filters also provide a means to permanently exclude the operations of a
participant who turns out to be malicious, as in the Ivy file system [6]. Contrary
to Ivy, Telex filters maintain correctness, by excluding all actions that depends
on the malicious participant’s actions.

3.4 Snapshot

A snapshot records some view of the document. To define a snapshot, a par-
ticipant specifies its name and the schedule of actions whose execution yields

INRIA
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Figure 5: Telex architecture

the state being recorded. In addition, the application may provide the cor-
responding binary state of the document. In this case, the snapshot is said
materialised. Materialised snapshots speed up the computation of a view and
are used as garbage collection points.

The participant may define any number of snapshots of interest to him, and
later remove those that are no longer useful. Telex saves the set of currently-
defined snapshots as part the persistent state of the document.

4 Telex architecture and operation

Figure 5 is a detailed view of Figure 1 which shows the overall architecture of
Telex. An instance of Telex runs at each site and communicates with remote
sites.

On top of the figure are the applications using the services of Telex. Several
such applications may run concurrently at the same site. In the middle of the
figure is the Telex system. It is composed of two main modules — the scheduler
and the replica reconciler — layered on top of two auxiliary modules — the
transmitter and the logger. Arrows in the figure represent invocation paths
between Telex modules and to/from applications.
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12 Benmouffok et al.

Each application may open one or more documents. For each open docu-
ment, Telex creates one instance of each module, which maintains the execution
context of the document. The only exception is when documents are bound by
cross-document constraints, as described in section 4.2.3. In this case, the bound
documents share the same instance of the replica reconciler and the scheduler.

We describe next the interaction between a Telex instance and the outside
world and then detail the operation of the main modules.

4.1 Interactions

Telex-application interactions involve exchanging pieces of AC graphs (sets of
actions and constraints downwards, sets of schedules upwards). The interaction
cycle is as follows. The participant acts upon the application, which translates
his request into one or more actions and constraints and passes them to Telex. In
return, Telex computes a sound schedule from the set of locally-known actions
and constraints and hands the schedule to the application. The application
executes the schedule and presents the resulting state to the participant. If
some actions conflict, then several sounds schedules exist, each corresponding
to a possible solution to the conflict. The application presents the resulting
states to the participant so that he can select the solution he prefers.

Telex sites exchange actions and constraints through multilogs, and com-
municate with each other in the commitment protocol. The logger module logs
the actions and constraints submitted by the local participant in the partici-
pant’s log. In return, the VOFS notifies the logger when remote participant’s
log are updated. The transmitter determines the set of peer sites and provides
an Atomic Multicast service among peer sites (arrows #9 and #10).

4.2 Scheduler

The role of the scheduler is twofold. First, it maintains the in-memory ACG that
represents the state of the document at the local site. Second, it periodically
computes sets of sound schedules from the ACG and proposes them to the
application for execution. Actions and/or constraints are added to the graph
either by:

• The application (Figure 5, arrow #1), when the local participant updates
the document.

• The logger (arrow #2), when it receives an update issued by a remote
participant.

• The replica reconciler (arrow #3), when it commits a schedule.

The scheduler passes locally-submitted actions and constraints to the logger
(arrow #4) to log them on persistent storage.

INRIA
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4.2.1 Cross-site constraint generation

Actions logged independently by two participants may conflict; for instance
in the shared calendar application, a same user could be added to two parallel
meetings. Telex ensures that conflicts are reified by constraints as follows. When
a site receives a new action, it compares it against already-known, concurrent
actions of the same document. If they have a common key, then Telex invokes the
corresponding application’s getConstraint upcall. If the actions really conflict,
the application responds by logging an appropriate constraint (arrow #5 in
Figure 1.b or Figure 5).

Action keys are opaque to Telex, which tests them for equality only. Action
keys serve as a compact, but approximate, representation of the document subset
that the action uses or updates. Typically, an action key hashes the identifier
of a parameter of the action. Multiple keys have “or” semantics (Telex upcalls
getConstraint if a key of one action equals any key of the other). To implement
“and” semantics (for instance, to get an upcall only if two given objects are
involved) the application hashes the XOR of their identifiers into a single key.
An action with no keys conflicts with no other.

If two unrelated actions happens to have equal action keys, no harm is done,
other than a loss of performance.

4.2.2 Schedule generation

A large number of sound schedules exist for any given ACG in the general
case. It is therefore not feasible to compute all sound schedules beforehand and
present them to the application. Besides, the application may be interested only
in a few or even just one schedule. For these reasons, Telex generates sound
schedules dynamically, upon application request (this is not shown in Figure 5).
The application may thus iterate through the proposed schedules and stops
when one or more appropriate schedules are found.

Telex generates the best schedules first, where the quality metric is the
number of actions included (implying fewer actions aborted). Optimal schedul-
ing is NP-complete, therefore Telex runs a heuristic inspired by IceCube [9].
Secondary goals of the heuristic are to give preference to actions of the local
participant in the case of a conflict, and to avoid returning a schedule equivalent
to one returned previously.

4.2.3 Bound documents

Two documents are said bound if there exists a constraint between an action of
one and an action of the other, and either action (or both) is not committed.
For instance, if a participant wishes to update two documents atomically, he
sets an Enables constraint in each direction between the updates.

RR n° 6546
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The actions of a document may not be scheduled independently from those
of the documents it is bound to. Scheduling is optimised for the common case
of non-bound documents, but we provide special processing for this particular
case. Note that bound documents may be handled by distinct applications.

Telex processes bound document by merging them into a single shared ACG
in order to compute global schedules over all actions and constraints. Each
global schedule generally contains actions from all bound documents. Thus,
in order to execute a global schedule, Telex first projects the schedule on each
document and passes each resulting sub-schedule to the relevant application.
The projection operation simply consists in retaining only those actions that
belong to the target document while preserving their order. Telex assigns the
same identifier to the sub-schedules deriving from the same global schedule.
This way, the participant can identify matching sub-schedules on each bound
document.

4.3 Replica reconciler

Each Telex site proposes a set of constraints, a proposal, to remote sites. A pro-
posal contains decision to commit, abort or serialise actions. These proposals
may differ, due to asynchronous communication, filtering, differing local infor-
mation, or user preference. The replica reconciler is in charge of commitment,
i.e., reaching agreement on a common schedule prefix. Commitment occurs in
the background, not within the critical path of applications. The committed
proposal appears as a prefix of the local schedules.

We propose a plug-in replica reconciler architecture, providing different
strategies according to needs. A reconciler has four (asynchronous) phases.

1. Each sites compute a proposal, according to its local view, for instance
based on the user’s preferences (arrow #8 in Figure 5).

2. The transmitter atomic multicasts proposals to set of sites directly con-
cerned (arrow #9) by the agreement (in case of bound documents more
than one replica group may be concerned). Atomic multicast maintains
liveness in presence of faults and network lags.

3. The transmitter forwards proposals it receives up to the replica reconciler
(arrow #10).

4. According to the commitment algorithm (described next) the reconciler
chooses a winning proposal, and logs it (arrows #3 and #4).

Currently we propose two commitment algorithms. (i) A first-in first-out algo-
rithm for applications such as a distributed database. At each site the FIFO
algorithm proposes to minimise the number of dead actions according to its
local view. When a site delivers a new proposal, the FIFO algorithm checks the
soundness of the proposal according to the previous winning proposals (arrows
#8 and #7). If the decision is sound, the reconciler adds it to the ACG, if not
the decision is discarded.

INRIA
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(ii) A voting algorithm that takes into account local preferences. A proposal
is a vote spanning one or multiple actions over one or more documents. A
proposal is broken into sub-ACGs with specific properties, called candidates.
Candidates containing the same actions challenge each other. A candidate may
be elected only if its set of actions is transitively closed in the union of all the
ACGs across sites. This protocol is described in detail in a separate publication
[15].

4.4 Access control

The Telex design includes access control at increasingly fine-grain levels, using
a security framework (whose description is out of scope of this document). This
is indicated by the three arrows marked check in Figure 1. (i) Access control at
file granularity ensures that a single participant writes a given log, and that only
authorised users can read a log. (ii) The Telex dæmon checks whether a user
is allowed to access an individual log record.6 (iii) Applications may enforce
further control. For instance, in the SC application, a user might observe the
times that another user is busy, but not be allowed to see the other details
of his meetings. As explained in Section 2.3, access control does not violate
consistency.

5 Applications

To provide insight on the issues involved in using the Telex system, this section
presents some of our example applications. We will return to the lessons learned
in a later section.

5.1 Simple Replicated Dictionary

We start with a simple example. Our Simple Replicated Dictionary Application
(SRDA) manages shared dictionaries. SRDA is intended as a building block for
applications such as a shared address book. Users can operate on a dictionary in
either connected or disconnected mode. Telex guarantees that, in spite of node
arrivals, departures or failures, all instances of a given dictionary converge.

A document contains tuples of the form 〈tupleID , attribute1, attribute2, . . .〉,
for any number of attributes. Each attribute is a 〈name, value〉 pair. SRDA
provides these operations:

• insert(tupleID , attrs): inserts a new entry, with identifier tupleID and
attributes attrs, into the dictionary document.

• modify(tupleID , attrs): modifies attributes for the given tupleID .

6 This is not yet implemented in the current version.
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16 Benmouffok et al.

insert ∀ previous remi.TID :
remi.TID → current ins .TID

remove ins .TID
⊳
→ current rem.TID

modify ins .TID
⊳
→ current mod .TID

∀ previous mod i.TID .attr j :
mod i → current mod

Table 2: Sequential execution constraints (Notation: ins = insert , mod =
modify , rem = remove, attr = attribute, TID = tupleID)

• remove(tupleID): deletes the tuple corresponding to the given tupleID .

• read(tupleID): returns the attributes corresponding to the given tupleID .

In the first operation, the tupleID must be previously unused or removed;
for all the others, a tuple identified by tupleID must already exist. The mod-
ify operation assigns the listed attributes if they already exist for the tuple,
otherwise it adds them.

Insert, modify and remove operations translate to a Telex action. Because
Telex does not yet support isolated multi-operation transactions, we manage
write dependencies in the write operations, as explained shortly. Read opera-
tions are treated as local.

5.1.1 Sequential constraints

Table 2 summarises the sequential semantics of SRDA. SRDA logs these con-
straints at the same time as it logs the right-hand action of the constraint.

In the Telex design, the application should log causal dependence only when
the second action truly depends on the first. Hence, a modify action, or a
remove, is causally dependent on the insert that created the tuple. Thus, if
the insert aborts or fails, the dependent modify and remove actions will be
discarded from any sound schedule. Furthermore, we treat every write operation
as a read-compute-write transaction.

In order to ensure read-your-writes session guarantees [16], we set NotAfter
constraints between insert , modify and remove actions in the same user session,
even between different dictionary documents.

Finally, to ensure the correct scheduling of a remove followed by an insert

with the same tuple identifier, we make all previous remove with the same
tuple-id NotAfter the current insert . The SRDA application logs the above
constraints in the multilog, at the same time as it logs the right-hand action.

The SRDA application logs the above constraints in the multilog, at the
same time as it logs the right-hand action.
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ins2 mod2

ins1 ins1.TID = ins2.TID

⇒ ins1 / ins2 –
mod1.TID = mod2.TID∧

mod1 impossible attrs1.TIDs ∩ attrs2.TIDs 6= Ø
⇒ mod1 / mod2

Table 3: SRDA getConstraint

5.1.2 Concurrency constraints

Since it is illegal to insert the same identifier twice, two concurrent insert actions
that refer to the same identifier are NonCommuting. Otherwise, concurrent
inserts commute. Similarly, two concurrent modify operations with the same
identifier and overlapping attributes are also NonCommuting.

Those constraints are added by the application when Telex invokes its
getConstraint method. They are summarised in Table 3, where NonCommuting
is noted /. In order to ensure that Telex upcalls the getConstraint method as
needed, insert and modify actions have an action key, computed as a hash of
the tupleID .

5.2 Shared Calendar

Our Shared Calendar (SC) application is representative of collaborative decision-
making applications. SC illustrates the advantages of Telex for semantically-rich
collaborative applications.

SC helps people organise private events and group meetings collaboratively,
possibly in disconnected and asynchronous mode. Contrary to existing calendar
applications, SC detects conflicts (such as double booking), proposes solutions,
and ensures agreement and eventual consistency.

This would be difficult to achieve without Telex support. Application logic
(i.e., maintaining the data structures and identifying constraints) is well sepa-
rated from the system logic, i.e., persistence, replication, conflict detection and
resolution, commitment, etc.

5.2.1 SC logic

Each user or location has an associated calendar document. Each event (e.g., a
meeting) is a separate document. A calendar may be read or updated by other
users, who can (if so authorised) create or manage events, invite people to an
event, or identify conflicts and free time.

We use the following notations. An event e is unique, has a name e.name,
and a datee.date, and is materialised by a Telex document e.dox.

A user A creates an event e by creating the document e.dox, and by logging
an open-event action in his own calendar and an invite(A) actions in e.dox. He
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Figure 6: Execution scenario for the Shared Calendar application

also logs an enable-event action in e.dox that symbolises the creation of the
event. This action is used to specify constraints on the event creation as shown
next.

Later, user A may invite other users by logging an open-event action in his
log within their calendars, and a corresponding invite action in e.dox.

Once a user has opened an event document, he may invite more users. He
also can cancel the event or some user invitation by logging a cancel-event or a
cancel-invitation action in e.dox.7

The action keys identify the event and its time-slots. Therefore, actions in
the same calendar for the same event, or for different events at the same time,
will have overlapping keys, causing Telex to invoke the getConstraint upcall
interface of SC.

A calendar document action commutes with all other calendar document
actions. Constraints between event document actions are similar to the SRDA
constraints, where enable-event, cancel-event and invite (or cancel-invitation)
are like like insert , remove and modify respectively.

To avoid double bookings, concurrent invite actions are antagonistic, if they
concern the same user at the same time but different events.

5.2.2 Use case

Consider the scenario in Figure 6. Users Jean-Michel, Lamia and Marc are
working separately and communicate only via the SC application.

7 Currently it is not possible to collaboratively change the time of an event. This will
require extensions to Telex to associate the time updates with some user invitation to detect
a double booking, which is future work.
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Figure 7: Marc’s site at t3

Jean-Michel organises meeting Networking Seminar NS with Marc. He pro-
poses two alternative dates, Monday and Tuesday (Operation 1 in the figure).

Lamia also organises a meeting Greek Lesson GL with Marc on Monday
(Operation 2).

SC creates the event documents and logs the actions and constraints to
Telex, as detailed in Figure 7, depicting the state of Marc’s site at time t3.

Lamia’s SC instance creates GL.dox document, imports Marc’s calendar,
and logs the following actions:

• On Marc’s and Lamia’s calendar: open-event (e2).

• On GL.dox: A = enable-event, B = invite(Lamia), C = invite(Marc). SC

groups them atomically: A
⊳

⊲ B ∧B
⊳

⊲ C.

To express the alternative Jean-Michel’s SC instance transparently creates
two events NS1 and NS2 with conflicting enable-event actions. For both events,
SC generates similar actions as for the GL event.

Suppose that, at some point in time t1, Marc has received Jean-Michel’s
actions, but not yet Lamia’s. This may happen, for instance, if Lamia is working
offline. Telex computes the schedules corresponding to two possible solutions:
(i) holding NS on Monday and aborting NS on Tuesday; or (ii) holding NS on
Tuesday, and aborting NS on Monday. Since the former solution contains more
actions, it will be proposed first.
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Later, at t2 Marc knows Lamia’s actions. Telex checks the keys of Lamia’s
actions with Jean-Michel’s. C = invite(Marc) on GL.dox and E = invite(Marc)
on NS1.dox both have a key representing the Monday slot. Therefore, Telex
asks SC for the corresponding constraints. SC returns an antagonism constraint
C
←
→ E. This ensures that no view contains both C or E, and that one or the

other (or both) eventually abort.

Finally, Telex offers the two possible solutions: (i) NS on Tuesday and GL
on Monday, aborting NS on Monday; or (ii) NS on Monday, aborting GL on
Monday and aborting NS on Tuesday.

Lamia is not invited to event NS, she may not read NS1.dox nor NS2.dox.
Nevertheless, Telex ensures that she eventually gets notified of a conflict occur-
rence that may abort GL. The same goes for Jean-Michel. The reconciliation
phase ensures that Marc, Lamia and Jean-Michel eventually see a consistent
state for GL and NS events.

5.3 Shared wiki

For lack of space, we describe our Shared Wiki Application (SWA) only briefly.

Each wiki page is a separate document. Every user currently editing it has
a log in the document. His site keeps a local replica of the wiki text, which the
user modifies locally using a standard text editor. Every time the user saves,
the SWA computes the difference from the previous version, and translates it
into insert-line and delete-line actions. Modifying a line is interpreted as an
atomic grouping of delete-line and insert-line.

The SWA uses the WOOTO operational transformation algorithm [7] to
ensure that concurrent edit operations commute. A delete-line action depends
causally on the action that inserted the line. Inserting a line between two other
lines depends causally on the two corresponding line insert operations.

Since all concurrent operations inside a document commute, there will never
be any conflicts. Therefore, edit actions carry no keys, and Telex never upcalls
getConstraint to the SWA. Schedule computation is trivial, since all schedules
that are compatible with causal dependence order are equivalent.

Existing wiki editors maintain the set of past versions of a page. Thanks
to Telex, SWA can reconstruct any past version, and additionally maintains
the relations between versions. In the future, we could extract more history
information from the persistent multi-log, including page splits and merges,
and copy-paste between pages.

From the perspective a single page, Telex serves mainly to reliably broadcast
actions and replay them in causal order. One added value of Telex for SWA is
the ability to perform multi-document updates, e.g., a global replace through
all wiki pages consistently. Telex also enables multi-application scenarios, e.g.,
ensuring that a wiki page contain the details of a meeting agreed in the shared
calendar application.
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Config Name 1x8M 8x8M 1x8L 8x8L

Writers 1 8 1 8
Log size (MB) 50 50 5 5

RX limiting no no yes yes
runtime (sec) 3.4 9.3 306.48 309.31

avg RX+TX (B/s) 102.9M 75.3M 228.4K 226.3K

Table 4: Representative results for shared multilogs with 1 and 8 writers, with
and without limiting receiving traffic
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6 Performance evaluation

6.1 Multilog experiment

The multilog toolkit is a simple set of tools and dæmons that create, access
and connect logs in multilogs. It is written in Python and uses TCP/IP for
networking. It straightforwardly implements the design illustrated in Figure 2.

There are four main utilities in the toolkit. LogServer monitors a log and
propagate updates. LogClient contacts a list of LogServers and locally replicates
their logs. LogTool is a utility that can read or write a log. MultilogD is a simple
dæmon that given a list of participants, combines the log-tools to implement a
multilog.
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6.1.1 Evaluation summary

The multilog structure decouples reads and writes and promotes mostly-linear
access patterns. Therefore, the read/write performance of multilogs is domi-
nated by the local filesystem and of the network stack. The purpose of this
evaluation is to demonstrate this fact; the results are summarised in Table 4

Our performance goals are to scale to very large numbers of readers. The
numbers of writers for a single document is expected to remain relatively small,
on the order of tens of participants. This is typical for the internet society.

Efficient propagation from a small number of writers to a huge number of
readers is possible in peer-to-peer networks, where recipients of data propagate
them further. The net effect of such a solution is a high outgoing bandwidth
and limited incoming bandwidth. In some of our experiments, we emulate this
effect by severely limiting incoming traffic of participants while leaving outgoing
traffic unlimited.

6.1.2 Detailed Results

The experimental setup involves one participant installed on each of 8 nodes
interconnected with Gigabit Ethernet. The scenario is simple; Either one or all
8 participants begin to log a specific amount of data as fast as possible. At the
same time, each participant reads his logs and records its replication progression
over time. The writers and readers are implemented with LogTool instances,
logs are served by LogServers and propagated updates are received and written
to replicas by LogClients.

Table 4 lists representative results for running 1 and 8 concurrent writers
both with and without limiting the incoming traffic. The average traffic is the
sum of the incoming and outgoing traffic combined.

Our conclusion is that, when there is no limit in effect, multilog propagation
performance is comparable to the maximum network bandwidth. When limits
are in place, although overall bandwidth drops as expected, we observe that
varying the number of writers between 1 and 8 has no effect. Furthermore, in all
the experiments, disconnection of a participant does not disrupt the remaining
ones, as illustrated in Figure 8.

6.2 Synthetic benchmarks

Sound schedules computation Telex computes sound schedules using the
IceCube algorithm [9]. For a randomly generated graph containning 10000 ac-
tions and 20000 constraints, our algorithm computes a sound schedule in 200
ms. In running mode Telex uses incremental mode, and the computation is
around a millisecond.
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Reconciliation time We test the time to decide newly proposed actions.
During this experience we compute a schedule every 100ms, and a proposal
every 100ms. Each site submits 20 actions per second. The average time to
commit an action using the FIFO algorithm (see Section 4.3) is 64ms.

6.3 STMBench

We run the STMBench7 benchmark [2], which emulates an application with
a rich data structure and many different operations. We chose STMBench7
mainly because it demonstrates concurrency and conflicts. It also serves as an
illustration of the use of Telex on a complex data structure.

STMBench7 was developed to exercise software transactional memories,
based on the previous OO7 benchmark for object-oriented databases. STM-
bench7 builds an object graph with millions of objects and connected by nu-
merous pointers. It contains 45 operations (21 read-only, 24 read-write) with
various scope and complexity. We ported to Telex the read-write operations
only. They all operate in a similar manner: traverse the data structure, reading
one or many attributes of one or many objects, and modify an object.

An STMBench7 benchmark consists of two phases: creating a randomised
object graph, and invoking operations. We measure only the second phase.
There are four four main categories of operations:

• Long traversal: access large parts of the object graph, typically all “as-
semblies” and “atomic parts”.

• Short traversals: access fewer objects, traversing the graph along a ran-
domly chosen path.

• Short operations: choose a small number of objects, and perform an op-
eration on these objects or in their neighbourhood.

• Structure modifications: randomly create or delete objects, or create or
delete pointers between objects.

Each STMBench7 operations is mapped to a single action, hence will be
isolated from concurrent operations.

Unexpectedly, in the original code, operations always commute, because the
updates either swap two shared pointers, or add 1 modulo 2 to a shared integer.
We therefore modified the benchmark so that, with some probability, updates
either commute or do not commute.

Due to the large number of operations, we will not present a comprehen-
sive list of constraints. Instead, we explain the rules we follow to define the
constraints.

• Any modification to an object is causally dependent on the creation of the
same object.

• Two actions that modify the same data are NonCommuting.
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Number of sites Time to benchmark (s)
1 20
2 21
3 21
4 21
5 21
6 21

Table 5: STMBench7 results

• If an action reads some data, and another action concurrent writes the
same data, the former is NotAfter the latter. This ensures that, at all
sites, the read will see the value before the write.

The results of the benchmark are shown in Table 5, executing the operations
that modify data (not the structure). Performance is independent of the number
of sites.

7 Lessons learned

Experience with applications and benchmarks has given us useful feedback,
both regarding the implementation of Telex, as well as guidelines for application
developers.

The current implementation of Telex suffers from excessive memory con-
sumption. The ACG can quickly reach sizes of several tens of thousands of
nodes, and is accessed concurrently by many threads. For instance, the sched-
uler parses the ACG at the same time as local and remote applications are
modifying it. To avoid concurrency issues, the scheduler takes a full copy of the
current ACG, which both consumes memory and is slow (in Java). Similarly,
forward execution and rollback of applications involves copying their internal
state, which can be very large. In both cases, an obvious solution (and future
work) is to copy-on-write instead.

Translating application semantics into actions and constraints is a skill that
takes time to acquire. We present some guidelines derived from our own expe-
rience. Note that these are not hard rules, and even may be conflicting.

The most important suggestion is to leverage commutativity as much as
possible. As noted in the SWA, if all operations commute, consistency is trivial.
The SWA example also shows that, sometimes, operations that appear non-
commuting intuitively, can be designed or transformed to commute.

We learned that it is important to turn every piece of shared information
into a separate document. In the initial design of SC, calendars were the only
documents, and events were implicit in the calendars. This raised a number
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of problems, because there was no obvious way to detect when a meeting con-
flict would impact another user indirectly. Separating out events as distinct
documents solved this.

It is important to distinguish the sequential constraints (mainly, NotAfter
and Causal) from the concurrency constraints (conflicts). The former are logged
with their right-hand action; the latter are logged in response to getConstraint.
Concurrency constraints are derived from the application invariants. For in-
stance, in SRDA, the sequential specification forbids two tuples with the same
identifier; it follows that concurrent inserts with the same identifier are in
Antagonism.

One lesson from STMBench7 is to reason about high-level operations rather
than low-level ones, in order to deal with fewer combinations. Furthermore,
it is sometimes the case where high-level operations commute (for instance,
increment and decrement a shared integer) even though their low-level imple-
mentations (e.g., reads and writes) do not.

However, in some cases, it may be simpler to reason about a small number
of low-level primitives when they may be combined into a large number of op-
erations. Currently, this kind of approach is complicated by the lack of support
for transactional isolation, which is future work.

Constraints are hard to validate. We suggest two complementary approaches
for future work. A compiler could generate actions and constraints from a
high-level specification, and a checker could verify that all action-constraint
combinations verify the application invariants.

8 Related work

State-machine replication [5] is based a total order of operations. This ensures
consistency and correctness, but requires consensus at each operation, in the
critical path of the application. In contrast, Telex’s optimistic approach per-
forms consensus in batches, in the background.

Optimistic replication [11] has been widely used, e.g., in replicated file sys-
tems (for instance, Coda [3] or Roam [10]) and for collaborative work (e.g.,
Bayou [17]). In these systems, replicas eventually converge, but they generally
do not ensure any high-level correctness. For instance, the widely-used “last-
writer-wins” (LWW) loses updates when conflicts occur, and does not maintain
consistency between objects. Our constraints additionally ensure that applica-
tion invariants are preserved.

Many replicated systems transmit new values or deltas (the state-based
model). The operation-based model used in Telex (i.e., the system stores,
transmits and replays logs of operations) retains more useful information for
reconciliation. This is especially advantageous when high-level operations log-
ically commute despite reading and writing the same physical data, as in our
SC and SWA applications.
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The literature on computer-supported co-operative work is widely based
on operational transformation (OT) [14]. OT ensuring commutativity between
concurrent operations by modifying them at replay time. Combined with reli-
able causal-order broadcast, this ensures convergence with no further concur-
rency control, but unfortunately OT appears limited to very simple text-editing
scenarios. Telex takes advantage of commutativity when it is available, and
supports any mix of commutative and non-commutative operations.

Coda’s application-specific resolvers [4] or Bayou [17] give applications full
control over conflicts. However, this requires developers to have a deep under-
standing of distributed systems issues. Instead, Telex requires stylised concur-
rency constraints from applications and takes care of conflict resolution in an
application-indendent manner.

Telex has many similarities with Bayou [17] and also many differences.
Bayou is an operation-based system that provides commitment; the commit-
ted state is guaranteed correct. However, Bayou relies on a primary site for
commitment and the committed schedule is unpredictable. Furthermore, the
system offers no help for reconciliation.

Constraints were used for reconciliation in the IceCube [9] system. IceCube
relies on a primary site for commitment. In Telex, each site runs an IceCube
engine (or any alternative) to propose schedules, and the commitment protocol
ensures consensus based on these proposals. IceCube supports a richer set of
constraints and can extract them from the applications’ source code [8].

The Ivy peer-to-peer file system [6] reconciles the current state of a file
from single-writer, append-only logs. There are several differences between Ivy
and Telex. Ivy is designed for connected operation. Ivy is state-based and
reconciles using a per-byte LWW algorithm by default. Whereas Telex localises
logs per document, in Ivy there is a single global log for all the updates of a
given participant. Reading any file requires scanning all the logs in the system,
which does not scale well, although this is offset somewhat by caching. Ivy has
no commitment protocol, therefore a state may remain tentative indefinitely.

The Ivy authors suggest that malicious updates can be removed after the
fact, by ignoring the corresponding log. However, since Ivy does not record
constraints, it cannot reconstruct a correct state: for instance, an update by
an innocent user that depends on a previous but malicious update cannot be
removed.

9 Conclusion

We presented the Telex system for shared mutable documents in a distributed
system. We presented our motivations, its formal principles, the engineering
design and implementation, and a number of prototypical applications. We also
provided some performance measurements.
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Our two main innovations are our principled approach based on action-
constraint graph, and the multilog structure. The former enables Telex to
provide correctness guarantees while maintaining application concurrency in-
variants. It also allows a clear separation between the responsibilities of appli-
cations, and those of the system. Thanks to constraints, applications specify
precisely the level of consistency that they need, and the system enforces that
level efficiently, and no more.

Independently of the ACG, we argue that the multilog structure is better
adapted to shared, mutable documents than ordinary files, especially in a collab-
orative environment. A file system may provide guarantees for directories, but
generally only best-effort consistency for files. Furthermore, the design goals of
a file system are likely to be different from the needs of actual applications.

The multilog structure decouples reads and writes, avoids contention, en-
courages locality, and allows efficient linear access. Software at a higher level
interprets the logs to reconstruct the application state. In our case, this is
Telex, but it could be the application directly. Multilogs do not impose any
unnecessarily limitations.

Telex is open source software, available at gforge.inria.fr/projects/telex2.
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