
The Memory Behavior of the WWW, or
The WWW Considered as a Persistent Store

Nicolas Richer and Marc Shapiro

INRIA - SOR group, BP. 105,
78153 Le Chesnay Cedex, France

{Nicolas.Richer, Marc.Shapiro}@inria.fr
http://www-sor.inria.fr/

Abstract. This paper presents the perfor-
mance evaluation of five memory allocation
strategies for the PerDiS Persistent Distributed
Object store in the context of allocating two
different web sites in the store. The evalua-
tion was conducted using (i) a web gather-
ing tool, to log the web objects graph, and
(ii) a PerDiS memory simulator that imple-
ments the different allocation strategies. Our
results show that for all the strategies and
parameters we have evaluated, reference and
cycle locality are quiet poor. The best policy
seems to be first sequential fits. Results are
linear with the size of the garbage collection
Unit (a bunch). There is no clear optimum,
but 64K to 128K appear to be good choices.

1 Introduction

PerDiS [FSB+98] is a new technology for sharing infor-
mation over the Internet: Its abstraction is a Persistent
Distributed Object Store. PerDiS provide a simple, ef-
ficient and safe abstraction to the application program-
mer. To attain this goal, it is necessary to understand
the way target applications use the persistent store and
how the different mechanisms and heuristics perform.
This study is the target of task T.C 3 of the PerDiS
project. This paper presents the results we have ob-
tained.

The PerDiS persistent store is logically divided into
clusters. A cluster is the naming and security unit vis-
ible by the programmer. A cluster is attached to a
“home” site1 but can be accessed from any site. From
the garbage collection point of view, cluster is further
subdivided into bunches, i.e. garbage collection Units.
The Garbage Collector always runs on whole bunch
and this unit will be completely replicated at one site
in order for the GC to run on2. This means also that
bunches will be stored in a contiguous area in memory.
A reference inside a bunch is cheaper than between two
bunches (an inter-bunch reference). The latter needs

1 The home site ensures data security and reliability.
2 For latency reasons, bunches could be divided in pages

but the page forming a bunch should be fully located at
a site for the Garbage Collection to operate on.

using stubs and scions. The fewer references will be
inter-bunch, the better the PerDiS system will perform.

1.1 What Are Garbage Collection
Components

A Garbage Collection components is a set of objects
reclaimed by the garbage collector all at the same time.
This could be a single object or several objects link
together in a way that they become unreachable all at
the same time. Typically, this can be a set of objects
with circular references between them.

In this context, Strongly Connected component is
an approximation for Garbage Collection component.
Rigorously, Garbage Collection components are Strongly
Connected component plus all the objects reachable
only from this components, but we don’t make the dif-
ference in this study, because, unfortunately, we are
not able to extract real Garbage Collection components
from an object graph yet. This approximation may
grow up the overall proportion of objects and bytes
included in Garbage Collection components. Studying
Strongly Connected component provide only minimum
proportions, and we don’t currently know the maxi-
mums.

Note also that Garbage Collection components are
often called cycles in this paper because it’s shorter.

1.2 The PerDiS Garbage Collector

The PerDiS Garbage Collector use a reference count-
ing algorithm to handle inter-bunches references, this
to avoid costly distributed Garbage Collection Algo-
rithms. In consequences, some garbage could not be
reclaimed in some situation. This is the case of Garbage
Collection components composed by several objects spread
between different bunches. This kind of garbage could
be reclaimed on the of all the bunch is containing the
objects were run located at the same site. This is, un-
fortunately, the drawback of using reference counting.

The assumption we have made during the design
of the PerDiS Garbage Collector is that such kind of
unreclaimable components are sufficiently rare to be
forgotten and we don’t put any kind of global tracing
collector for them. Of course, this assumption should



be verified in practice and this is precisely why we are
interested by Garbage Collection components in this
study. Depending of our experimental results, the need
for a global tracing collector mechanism will be recon-
sidered. The important point here is the fewer cycles
are inter-bunches, the less garbage will remain unre-
claimable. This suggest that object placement strate-
gies (i.e. allocation algorithms) should minimize inter-
bunch Garbage Collection components and inter-bunch
references. A secondary goal will be to minimize also
the number of scions and store fragmentation.

In the current PerDiS implementation, the initial
allocator clustering is permanent, because PerDiS sup-
port the uncooperative C++ language that does not
provide natively all the informations required to per-
form object relocation. In the future, we plan to im-
plement object relocation in PerDiS using type infor-
mation extracted by typedesc [Sal99], a tool we have
specifically implemented for that.

A complete description of the PerDiS Garbage Col-
lection Algorithm is available in [FS94,FS96]. [BFS98]
describe more deeply the implementation.

1.3 Analysis Methodology

Our methodology is to record the persistent object
graph during application runs, using a log mechanism.
The log subsequently supports simulation of different
strategies and parameters. We focus primarily on eval-
uating memory allocation and clustering strategies. Many
studies of memory allocation and clustering strategies
already exist [WJNB95,WJ98,ZG92a,ZG92b,DDZ93],
but none has been conducted in the context of a per-
sistent distributed garbage collected memory3. This is
probably related to the very few number of existing
persistent store, but even for those that exists, most
of them rely on manual memory deallocation. For ex-
ample, one of the most advanced distributed persis-
tent stores, ObjectStore [LLOW91] is based on manual
persistence, in contrast with persistence by reachabil-
ity [ABC+83] using a distributed garbage collector as
in PerDiS.

1.4 Why Study the Web ?

Wilson in [WJNB95] demonstrates the low represen-
tativity of synthetically generated allocation requests.
Therefore, we chose to evaluate the memory allocation
and clustering strategies using inputs from real appli-
cations. Consequently, we need some significant persis-
tent applications for our evaluation. Unfortunately, ap-
plications that use persistent objects store are rare, and
3 Data in persistent and transient memory is typically not

the same. A lot of data in transient memory (used by
graphical library for example), for intermediate results
will never be persistent.

a few that exists are not easily accessible. Furthermore,
PerDiS is designed to provide easy access to persistent
data over a geographically widely-distributed network.
We need applications running in such a large-scale con-
text. The Web application has attracted our attention
because it is easily accessible and widely distributed.
Hence our decision was to study the behavior of PerDiS
as a distributed storage medium for web sites.

Practically, we have not actually stored the full web
sites in the PerDiS memory, although it is perfectly
feasible to do so4. Instead, we have used the PerDiS
memory simulator. This simulator has been designed
specifically to reproduce the PerDiS memory behavior
against several allocation strategies and parameters.

2 Gathering the Web Object Graph

We briefly present in this section how we gather a
graph of objects from a web server in order to study it.
The basic gathering algorithm is a depth-first top-down
traversal implemented using a stack:

1. Push some root document URL on the fetch stack.
2. Pop an URL from the fetch stack, retrieve the cor-

responding document, and parse it to extract the
URL it contains.

3. Push all the contained URLs that are in scope on
to the fetch stack.

4. Return to step 2 until fetch stack becomes empty.

Starting from an existing mirroring tool seemed a
reasonable approach. We chose the w3mir5 all purpose
HTTP copying tool because its source code is freely
available and we have good experience with it.

The web objects graph is recorded in the generic log
format version 2 of our generic log handling library6.
Since w3mir is written in PERL7, we created a PERL
interface for the generic log library.

We first integrated the recording of the web objects
and references to w3mir by minimizing the modifica-
tions in the mirror algorithm in less than three days.
The result was not acceptable as is because many pro-
cesses and fetch was duplicated, so in a second step we
have modified the w3mir algorithm to remove this.

The following problems, which are inherent to the
World Wide Web, should be noted:

– A document’s “last modified date” is often not
correctly returned by web servers. When this oc-
curs, we take the current date as the “last modified
date”.

4 QMW, a partner of the PerDiS project, did that for an-
other purpose (http://www.dcs.qmw.ac.uk/research/
distrib/perdis/docs/perdisweb.html).

5 http://www.math.uio.no/~janl/w3mir/
6 The documentation of this library is available

from ftp://ftp.inria.fr/INRIA/Projects/SOR/

misc/analysis/doc/log_facilities.ps.gz
7 http://www.perl.com/



– Recording the evolution of the Web Objects Graph
is difficult in practice. Since there is no reliable pro-
tocol for change notification, we need to keep a lo-
cal full copy of the web site. Furthermore, many
web sites are modified rarely; therefore measure-
ments would have to be repeated over very long
periods (maybe 6 months or more) in order to see
significant modifications. Instead, the results pre-
sented in this paper concern a single snapshot of
each studied web site.

– The graph that we obtain, using the mirroring method,
is different from the real Web graph. Several kinds
of document (CGI scripts, Java applets, Netscape
Java-script, etc) could not be handled and further-
more, since documents of this types are sometimes
used to provide the menu to navigate through the
entire web site, a large part of this kind of web sites
could not be visible. As far as we know, all existing
indexing engines has the same problem with this
kind of documents. Nevertheless our partial graph
should be sufficient for evaluation purposes and we
have to take care of this problem when we choose
the web sites to study.

3 Characteristics of the Web Sites
Studied

This initial study involves the two web sites: http://
www.perdis.esprit.ec.org/ and http://www-sor.
inria.fr/. This choice was motivated by three cri-
teria:

1. Network connection quality. Since we need to fetch
the full web site contents each time we gather the
graph, a very fast connection to the servers is cru-
cial.

2. Prior knowledge. Since there are several kinds of
documents that our web gathering tool can’t han-
dle, having some previous knowledge of the web
site content should avoid choosing, for instance, a
site where most of the document cannot bet con-
sidered because they are all only accessible from a
Java applet menu.

3. Total Size. To be able to perform our simulations
sufficient memory resources should be available on
the simulation machine. In our current setup, this
limits the total web site to approximatively 1 Gi-
gabyte.

All the relevant characteristics of the two studied sites
are presented in the next two sections.

3.1 Site 1: http://www.perdis.esprit.ec.org/

The PerDiS web site was studied on Thursday Septem-
ber 23 1999. At this date, it contained 3302 objects,

with 31408 valid references8 for a total size of 109
Mbytes.

The smallest object size is 0 byte and the largest 10
Mbytes. The median is 2.4 Kbytes, for an arithmetic
mean of 33 Kbytes, and a variation coefficient of 9.7.
We present the size frequency distribution in Fig. 1.

Bytes

Fr
eq

(%
)

0.0

5.2

10.5

15.7

20.9

26.2

31.4

36.6

41.8

47.1

52.3

.

0.
0e

+
00

 

2.
6e

+
03

 

5.
2e

+
03

 

7.
8e

+
03

 

1.
0e

+
04

 

1.
3e

+
04

 

1.
6e

+
04

 

1.
8e

+
04

 

2.
1e

+
04

 

2.
3e

+
04

 

2.
6e

+
04

 

2.
9e

+
04

 

3.
1e

+
04

 

3.
4e

+
04

 

3.
7e

+
04

 

3.
9e

+
04

 

4.
2e

+
04

 

4.
4e

+
04

 

4.
7e

+
04

 

5.
0e

+
04

 +
 

Fig. 1. PerDiS: object size class frequency distribution

Objects in the PerDiS web site are aged between 6
seconds old to a little more than 3 years. The median
age is 1.5 years, for an arithmetic mean of 1.3 years
and a variation coefficient of 0.59. We present the age
frequency distribution in Fig. 2.

Seconds

Fr
eq

(%
)

0.00

2.00

3.99

5.99

7.98

9.98

11.97

13.97

15.97

17.96

19.96

.

6.
0e

+
00

 

6.
1e

+
06

 

1.
2e

+
07

 

1.
8e

+
07

 

2.
4e

+
07

 

3.
0e

+
07

 

3.
7e

+
07

 

4.
3e

+
07

 

4.
9e

+
07

 

5.
5e

+
07

 

6.
1e

+
07

 

6.
7e

+
07

 

7.
3e

+
07

 

7.
9e

+
07

 

8.
5e

+
07

 

9.
1e

+
07

 

9.
7e

+
07

 

1.
0e

+
08

 

1.
1e

+
08

 

1.
2e

+
08

 +
 

Fig. 2. PerDiS: object age class frequency distribution

8 references that points to documents that exists, not in-
cluding dangling references that point to unexisting doc-
uments (or protected documents that are not available
for us).



The average density of references9 is 9.5 per object
and 0.28 per Kbyte.

There are 22 Strongly Connected components that
contain 2284 objects (69.2% of total) for a total size
of 15 Mbytes (13.5% of total). The smallest S.C com-
ponent contains 3 objects (7 Kbytes) and the largest
1758 objects (13.6 Mbytes)10. Figure 3 shows the size
frequency, in number of objects, of strongly connected
components. This figure appear quite uniform because
there is only 22 components for 19 size ranges, so there
is only one component in each size range, except for the
seventh bar where there is two and the first bar where
there is three. Figure 4 shows strongly connected size
frequency in bytes.

of Objects
Number

Fr
eq

(%
)

0.00

1.36

2.73

4.09

5.45

6.82

8.18

9.55

10.91

12.27

13.64

.

3.
0e

+
00

 

4.
0e

+
00

 

5.
0e

+
00

 

6.
0e

+
00

 

7.
0e

+
00

 

9.
0e

+
00

 

1.
3e

+
01

 

1.
5e

+
01

 

1.
7e

+
01

 

1.
9e

+
01

 

2.
5e

+
01

 

2.
7e

+
01

 

3.
7e

+
01

 

4.
1e

+
01

 

4.
5e

+
01

 

4.
7e

+
01

 

4.
9e

+
01

 

1.
4e

+
02

 

1.
8e

+
03

 

Fig. 3. PerDiS: size frequency, in number of objects, of
strongly connected components

9 The density of reference is the number of references con-
tained in one object, respectively in one Kilobyte.

10 This component is in reality a mail archive with each
message as an HTML document and this documents con-
tained each a link to the previous and the next message.

Bytes

Fr
eq

(%
)

0.0

7.3

14.5

21.8

29.1

36.4

43.6

50.9

58.2

65.5

72.7

.

7.
0e

+
03

 

4.
6e

+
04

 

8.
6e

+
04

 

1.
3e

+
05

 

1.
6e

+
05

 

2.
0e

+
05

 

2.
4e

+
05

 

2.
8e

+
05

 

3.
2e

+
05

 

3.
6e

+
05

 

4.
0e

+
05

 

4.
4e

+
05

 

4.
8e

+
05

 

5.
2e

+
05

 

5.
6e

+
05

 

6.
0e

+
05

 

6.
4e

+
05

 

6.
8e

+
05

 

7.
2e

+
05

 

1.
4e

+
07

 +
 

Fig. 4. PerDiS: size frequency, in bytes, of strongly con-
nected components

3.2 Site 2: http://www-sor.inria.fr/

The SOR web site was studied on Thursday October
14 1999. At this date, it contained 8823 objects and
222714 valid references, for a total size of 277 Mbytes.

The smallest object is 8 bytes and the largest one
is 8.4 Mbytes. Median is 5.3 Kbytes for an arithmetic
mean of 32 Kbytes and a variation coefficient of 5.4.
We present the size frequency distribution in Fig. 5.

Bytes

Fr
eq

(%
)

0.00

5.38

10.76

16.14

21.53

26.91

32.29

37.67

43.05

48.43

53.81

.

8.
0e

+
00

 

6.
4e

+
03

 

1.
3e

+
04

 

1.
9e

+
04

 

2.
6e

+
04

 

3.
2e

+
04

 

3.
9e

+
04

 

4.
5e

+
04

 

5.
1e

+
04

 

5.
8e

+
04

 

6.
4e

+
04

 

7.
1e

+
04

 

7.
7e

+
04

 

8.
4e

+
04

 

9.
0e

+
04

 

9.
7e

+
04

 

1.
0e

+
05

 

1.
1e

+
05

 

1.
2e

+
05

 

1.
2e

+
05

 +
 

Fig. 5. SOR: object size class frequency distribution

Objects in the SOR web site are aged from 10 sec-
onds to 4 years. Median age is 0.9 years, the arithmetic
mean 0.8 years for a variation coefficient of 0.67. We
present the age frequency distribution in Fig. 6.

The average density of references is 25.2 per object,
and 0.78 per Kbyte.

There are 89 Strongly Connected components, con-
taining 2819 objects (31.9% of total) for a total size of
40 Mbytes (14.56% of total). The smallest S.C compo-
nent contains 2 objects (1 Kbytes) and the largest 381



Seconds

Fr
eq

(%
)

0.00

3.89

7.77

11.66

15.54

19.43

23.31

27.20

31.08

34.97

38.85

.

1.
0e

+
01

 

5.
9e

+
06

 

1.
2e

+
07

 

1.
8e

+
07

 

2.
4e

+
07

 

3.
0e

+
07

 

3.
5e

+
07

 

4.
1e

+
07

 

4.
7e

+
07

 

5.
3e

+
07

 

5.
9e

+
07

 

6.
5e

+
07

 

7.
1e

+
07

 

7.
7e

+
07

 

8.
3e

+
07

 

8.
9e

+
07

 

9.
5e

+
07

 

1.
0e

+
08

 

1.
1e

+
08

 

1.
1e

+
08

 +
 

Fig. 6. SOR: object age class frequency distribution

objects (16.4 Mbytes). Figure 7 shows sizes frequency
in number of objects, of the strongly connected com-
ponents, whereas Fig. 8 shows their size frequency in
bytes.

of Objects
Number

Fr
eq

(%
)

0.0

5.1

10.1

15.2

20.2

25.3

30.3

35.4

40.4

45.5

50.6

.

2.
0e

+
00

 

1.
5e

+
01

 

2.
9e

+
01

 

4.
3e

+
01

 

5.
7e

+
01

 

7.
1e

+
01

 

8.
5e

+
01

 

9.
9e

+
01

 

1.
1e

+
02

 

1.
3e

+
02

 

1.
4e

+
02

 

1.
5e

+
02

 

1.
7e

+
02

 

1.
8e

+
02

 

2.
0e

+
02

 

2.
1e

+
02

 

2.
2e

+
02

 

2.
4e

+
02

 

2.
5e

+
02

 

3.
0e

+
02

 +
 

Fig. 7. SOR: size frequency, in number of objects, of
strongly connected components

Bytes

Fr
eq

(%
)

0.00

5.39

10.79

16.18

21.57

26.97

32.36

37.75

43.15

48.54

53.93

.

1.
1e

+
03

 

1.
1e

+
05

 

2.
2e

+
05

 

3.
2e

+
05

 

4.
3e

+
05

 

5.
4e

+
05

 

6.
5e

+
05

 

7.
5e

+
05

 

8.
6e

+
05

 

9.
7e

+
05

 

1.
1e

+
06

 

1.
2e

+
06

 

1.
3e

+
06

 

1.
4e

+
06

 

1.
5e

+
06

 

1.
6e

+
06

 

1.
7e

+
06

 

1.
8e

+
06

 

1.
9e

+
06

 

2.
2e

+
06

 +
 

Fig. 8. SOR: size frequency, in bytes, of strongly connected
components

4 Simulating Memory Allocation in
the PerDiS Store

The PerDiS store simulator has been originally imple-
mented to take a graph log, sort the memory alloca-
tion to simulate by document last modifications time,
replay the allocations using the simulated allocation
policy and finally generate a new log with all the old
object locations in the heap replaced by the simulated
new ones.

Sorting document by “last modifications time” in-
troduced an error in the allocation replaying order be-
cause “last modifications time” returned by the web
server is not reliable for every documents. Documents
with unknown real modification dates exist and in this
case, most of the web server return the current date
as “last modifications time”. To put a bound on the
error introduced, we have measured the proportion of
documents that have their “last modifications time”
younger than the time the snapshot gathering begin.
4% of the documents are in this case in the PerDiS web
site and 16% in the SOR web site. Other measurements
on several other web sites shows a very high variability
(2,3% to 100%) of this proportion.

The PerDiS store simulator is also able to replay
the memory allocation in log order. According to the
gathering algorithm we currently use (top-down depth-
first traversal), log is ordered top-down depth-first.

5 PerDiS Memory Allocation
Strategies

The current PerDiS API has applications explicitly place
a specific object in a specific cluster. A cluster allocates
an object in one of two kinds of bunches, depending
on size. Under a certain threshold, it is allocated in
a “standard” bunch of fixed size. Any layer object in



a “special” bunch, containing only this object. This
structure is based on the assumption that big objects
are rare. This seems to be confirmed in our measure-
ments (Fig. 1 for site 1 and Fig. 5 for site 2). In our
simulations, the maximum proportion of large objects
remain under 8% (with standard bunches of 32K).

Bunches are referenced in two doubly linked list,
one for the standard bunches and one for the special
ones. In the two following sections, we compare differ-
ent strategies to allocate inside standard bunches and
to select the standard bunch to allocate. Since stan-
dard bunch have a fixed size, we evaluate the allocation
strategies using seven typical bunch size: 32K, 64K,
128K, 256K, 512K, 1024K and 2048Kbytes.

5.1 Strategies for Allocation Inside Bunches

In our PerDiS memory simulator, five strategies to al-
locate an object inside a bunch are currently imple-
mented.

The fixed size strategy allows only allocation of ob-
ject of the same size (or of the same size class) in the
bunch. The free list uses a bitmap that keeps track
of allocated and free blocks. This strategy is used in
the PerDiS memory simulator in conjunction with the
segregated bunches selection (see Sect. 5.2).

The other four use an address-ordered free list with
deferred coalescing of the free block. The free list is
doubly linked. When an allocation request can not be
successfully completed because there is no large enough
free block, contiguous free blocks in memory are coa-
lesced and the free list is scanned again. There are four
strategies to search for a free block in the free list:

– first fit: Walk through the free list from the begin-
ning to first large enough free block, and allocate
there.

– best fit: Walk through the whole list and allocate
in the smallest large enough free block.

– roving pointer: Walk through the free list from the
position where the last allocated object was taken
from the free list.

– linear allocator: the same as roving pointer but never
re-use the memory. This kind of allocator could be
used only in conjunction with a copying garbage
collection algorithm.

5.2 Strategies for Bunch Selection

The five strategies for selecting a standard bunch avail-
able in our simulator are all inspired by the strategies
for allocating inside bunch:

– First available bunch: Bunches are stored in a list
and allocation is done in the first satisfactory bunch.

– Best available bunch: Bunches are stored in a list
and allocation is done in the best satisfactory bunch.

– Last available bunch: Bunches are also stored in a
list but it is scanned from the last bunch where an
allocation has been successfully completed.

– Linear bunch: Basically the same than Last avail-
able bunch, but never re-use the previous bunch in
the list, allocate a new one. The same remark than
for linear inside bunch allocation strategy apply.

– Segregated bunch: Use different bunches to allocate
object of different size classes. Sizes are rounded up
to the nearest power of two.

The first four strategies can be used in conjunction
with first fit, best fit, roving pointer or linear allocator
inside bunch allocation strategies. Segregated bunch can
be used only with fixed size inside bunch allocation
strategy.

6 Allocation Simulations Using
Significant Strategies

For the simulations presented in this section, five allo-
cation strategies have been selected. They correspond
to the five available bunches selection strategies. The
inside bunch allocation strategy is not significant in
this set of simulations because only one single snap-
shot is considered and, by the way, there is no memory
deallocation.

In the rest of the paper, the five strategies will be
referenced using the following names:

1. cluster first: allocate in the clusters using First avail-
able bunch strategy.

2. cluster best: allocate in the clusters using Best avail-
able bunch strategy.

3. cluster roving: allocate in the clusters using Last
available bunch strategy.

4. cluster linear: allocate in the clusters using linear
bunch strategy.

5. cluster segregated: allocate in the clusters using seg-
regated bunch strategy.

6.1 Memory Allocation Simulations in Order
of Last Modifications Date

In this section, the simulation results we present has
been obtained using the five selected allocation strate-
gies with data allocation ordered by last modifications
date.

Site 1: http://www.perdis.esprit.ec.org/ Figure 9
shows the proportion of inter-bunch references for the
five allocation strategies and for seven bunch sizes. Pro-
portion of inter-bunch references is the percentage of
all references that are to objects in a different bunch.
Clearly cluster segregated is the worse strategy from the



cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+

+
+

+

+ + +

×

×

×

×
×

× ×

⊕

⊕
⊕

⊕

⊕ ⊕ ⊕

♦

♦

♦
♦ ♦

♦
♦

◊
◊

◊ ◊ ◊ ◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

R
at

io
(%

) 

Bunch Size (KBytes) 

Fig. 9. PerDiS: proportion of inter-bunch references

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+

+ +

+

+

+ +

×

×

×

×

×

×

×

⊕

⊕

⊕

⊕

⊕ ⊕ ⊕

♦

♦

♦

♦

♦

♦ ♦

◊ ◊ ◊ ◊ ◊ ◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

R
at

io
(%

) 

Bunch Size (KBytes) 

Fig. 10. PerDiS: proportion of inter-bunches cycles

point of view of reference locality but this is not a sur-
prise. The best strategies from locality point of view
(cluster linear or cluster roving, depending on bunch
size) have proportion of inter-bunch references between
50%, for 2048K bunches, to 70%, for 32K ones, that
is very high. The good locality results of the clus-
ter roving policy should be taken with care, because
there is no freeing in our simulations and unfortunately,
the roving policy is known to strew new objects among
the old ones whose neighbors have been freed. The
inter-bunches cycles proportion is the percentage of cy-
cles which span bunches. Looking at this proportion,
in Fig. 10, it appear that they are not more encourag-
ing. cluster segregated still give the worse results with
100% of inter-bunches cycles but the best strategy gives
a proportion between 30% to 78% depends on bunch
size. Figure 11 shows the number of scions, i.e. the
number of objects that have incoming references from
different bunches. This number is comparable to the
number of objects for small bunches and go down by
only 20% for large bunch and best allocation policy.

This signify that, even in the best case, 80% of the
objects have incoming references from different bunch,
that is a high proportion.

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

328

656

984

1312

1640

1968

2296

2624

2952

3280
+

+
+

+

+ + +

×
×

×
×

×
× ×

⊕

⊕
⊕

⊕

⊕ ⊕ ⊕

♦ ♦

♦

♦ ♦
♦

♦

◊ ◊ ◊ ◊ ◊ ◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

Bunch Size (KBytes) 

N
um

be
r 

of
 s

ci
on

s 

Fig. 11. PerDiS: number of scions

Finally, Fig. 12 gives an overview of memory frag-
mentation (internal and external combined) at the end
of a snapshot simulation. This is the moment where
the maximum of memory is allocated. Since there is no
deallocation in our single snapshot, results about mem-
ory fragmentation are not significant, but they show
that fragmentation increase with bunch size, as ex-
pected. They show also that policy known to be poor on
fragmentation, the cluster segregated strategy [WJ98],
give the worse fragmentation result, even for small stan-
dard bunch sizes. This last result need to be confirmed
by other simulations using several snapshots, represent-
ing the evolution (including deallocation) of the web
site.

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+ + + + + + +× × × × × × ×⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕♦ ♦ ♦ ♦ ♦ ♦ ♦◊ ◊
◊

◊
◊

◊

◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

Bunch Size (KBytes) 

R
at

io
(%

) 

Fig. 12. PerDiS: memory fragmentation



cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+ +

+

+

+

+

+

× ×
×

×

×

×

×

⊕
⊕

⊕

⊕

⊕

⊕

⊕

♦
♦

♦

♦

♦

♦

♦

◊ ◊ ◊
◊

◊
◊

◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

R
at

io
(%

) 

Bunch Size (KBytes) 

Fig. 13. SOR: proportion of inter-bunch references

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+

+ +

+

+

+

+

× ×

× ×

× ×

×

⊕

⊕
⊕

⊕

⊕

⊕

⊕

♦
♦ ♦

♦
♦

♦

♦

◊ ◊ ◊ ◊ ◊
◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

R
at

io
(%

) 

Bunch Size (KBytes) 

Fig. 14. SOR: proportion of inter-bunches cycles

Site 2: http://www-sor.inria.fr/ The second set of
simulations, (on the second studied web site) shows
many similarities with results for Site 1. Figure 13
shows the proportion of inter-bunches references. Clus-
ter segregated is still the worse strategy. The best pro-
portion is between 30% to 79% for bunches respectively
from 2048K to 32K. The inter-bunch cycles proportion,
in Fig. 14, gives mostly the same results as for site 1,
cluster segregated is the worse and best proportion vary
between 80% for 32K bunches to 50% for 2048K ones.
Figure 15 show the number of scions. As for the PerDiS
site, this number is comparable to the number of ob-
jects for small bunches, but go down more significantly
(40%) for large bunch.

On the fragmentation front (Fig. 16), the tendency
is almost the same as for site 1, except that the clus-
ter linear strategy gives worse results than cluster first,
cluster best or cluster roving. However, cluster segregated
is still the worse.

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

875

1750

2626

3501

4376

5251

6126

7002

7877

8752 +
+

+
+

+

+

+

× ×
×

×

×

×

×

⊕
⊕ ⊕

⊕

⊕

⊕

⊕

♦
♦

♦

♦

♦

♦

♦

◊ ◊ ◊ ◊ ◊ ◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

N
um

be
r 

of
 s

ci
on

s 
Bunch Size (KBytes) 

Fig. 15. SOR: number of scions

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+ + + + + + +× × × × × × ×⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

♦
♦ ♦ ♦ ♦ ♦

♦◊
◊

◊

◊

◊

◊
◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

R
at

io
(%

) 

Bunch Size (KBytes) 

Fig. 16. SOR: memory fragmentation



6.2 Memory Allocation Simulations in
Depth-first Top-down Order

The simulation results presented here has been ob-
tained using the same five selected allocation strate-
gies as in Sect. 6.1 but with data allocation ordered
by graph topology, in depth-first top-down order. For
both PerDiS and SOR web site, we present only re-
sults about proportion of inter-bunch references and
proportion of inter-bunch cycles as they are the most
significant. Results about number of scions and frag-
mentation are omitted because they are almost similar
to those presented in Sect. 6.1, using data allocation or-
dered by last modifications date and by the way there
is not enough space in the paper for them.

Site 1: http://www.perdis.esprit.ec.org/ Figure 17
and Fig. 18 shows respectively proportion of inter-bunch
references and proportion of inter-bunch cycles for the
PerDiS web site. The proportion of inter-bunch refer-
ences is 1% to 7% lower than the proportion we have
using the last modifications date order, depend on the
bunch size. For proportion of inter-bunch cycles, the
difference is between 10% higher for 32K bunches to
10% lower for bunches of 1024K and 2048K.

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+

+
+

+

+

+
+

×

×

×
×

×
×

×

⊕

⊕
⊕

⊕

⊕

⊕ ⊕

♦

♦

♦
♦

♦

♦

♦

◊
◊ ◊ ◊ ◊ ◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

Bunch Size (KBytes)

R
at

io
(%

) 

Fig. 17. PerDiS: proportion of inter-bunch references

Site 2: http://www-sor.inria.fr/ Figure 19 and Fig. 20
shows respectively proportion of inter-bunch references
and proportion of inter-bunch cycles for the SOR web
site. The proportion of inter-bunch references is 0% to
10% lower than the proportion we have using the last
modifications date order, depend on the bunch size.
For proportion of inter-bunch cycles, the difference is
between 3% lower for 32K bunches to 15% lower for
2048K bunches.

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+ +

+ +

+

+

+

× ×

×

×

×

× ×

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

♦

♦

♦

♦

♦

♦

♦

◊ ◊ ◊ ◊ ◊ ◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

Bunch Size (KBytes)

R
at

io
(%

) 

Fig. 18. PerDiS: proportion of inter-bunches cycles

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+
+

+

+

+

+

+

×
×

×

×

×

×

×

⊕
⊕

⊕

⊕

⊕

⊕

⊕

♦
♦

♦

♦

♦

♦

♦

◊ ◊ ◊
◊

◊
◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

Bunch Size (KBytes) 

R
at

io
(%

) 

Fig. 19. SOR: proportion of inter-bunch references

cluster_first+
cluster_best×
cluster_roving⊕

cluster_linear♦
cluster_segregated◊

0

10

20

30

40

50

60

70

80

90

100

+
+

+
+

+

+

+

×

×
×

×

×

×

×

⊕
⊕

⊕
⊕

⊕

⊕

⊕

♦

♦ ♦

♦

♦

♦

♦

◊ ◊ ◊ ◊ ◊ ◊ ◊

 

 

32K 64K 128K 256K 512K 1024K 2048K 

Bunch Size (KBytes) 

R
at

io
(%

) 

Fig. 20. SOR: proportion of inter-bunches cycles



7 Conclusion

In this paper, we have analyzed the intrinsic graph
characteristics of two web sites (see Sect. 3) and evalu-
ated the respective performance of five memory alloca-
tion strategies for a persistent store by simulating their
behavior against the two web sites.

From the analysis of graph characteristics, we learned
that most of the objects are small (around 80% are
less than 50 Kbytes) and reference density is low. This
confirms some known results. On the other hand, we
learned that a large proportion of the objects is in-
cluded in cycles (70% for site 1 and 30% for site 2)
and the proportion of bytes involved is not negligible
(12% to 14%). If we look at the characteristics of the
individual cycles, it appears that most cycles are rel-
atively small, both in number of objects and in bytes.
This result contradict our assumption of a relatively
small proportion of cycles. However, since the cycles
are quiet small, this is not really a problem.

From the memory allocation simulations, we learned
that a large proportion of references are inter-bunch: a
large proportion of the cycles are inter-bunches what-
ever the bunch size and whatever allocation strategies
we choose. This is not the results we expected. However
these results need to be interpreted with caution be-
cause, first, we have studied only two web sites, which
are not guaranteed to be representative of other web
sites. Second, web application might not be represen-
tative of applications that use a persistent object store.

Finally, the simulation we have done with the al-
location sorted by graph topology in depth-first top-
down order shows that this order give always better
locality results than the last modifications date order,
but the difference is not so big. Most often, it stay be-
tween 5% to 10% and by the way using the allocation-
order clustering policy seem to be feasible according to
this set of simulations.

8 Future Work

This paper presented a first evaluation of the mem-
ory allocation strategies for the PerDiS Persistent Dis-
tributed Object Store. Future work direction are nu-
merous.

One is to study the evolution of web sites over a
long time period, by recording several snapshot un-
til we are able to see significant graph modifications
and deallocations. This is especially relevant for the
measurements of memory fragmentation. Another di-
rection is to implement more allocation strategies in
our simulator, such as Buddy Systems [Kno65,PN77],
Indexed Fits [Ste83], or Bit-mapped Fits [BDS91]. Ex-
tending our measurements on the web to many other
web sites will be also interesting in the future. Another
point is to study applications specifically targeting a

persistent objects store and written in an object ori-
ented fashion. More specifically, we plan to study the
port to PerDiS of the Atlantis application from IEZ11.
Comparing many other known dynamic re-clustering
strategies (breath-first, depth-first, hierarchical decom-
position, type directed, other ?) with our current allo-
cation time placement strategy will be very interesting.
In the more distant future, we may design and evalu-
ate a new strategy where the specific target will be to
minimize cross-bunches references. Those re-clustering
strategies may be used in the PerDiS store if it appears
that the static heuristics we have evaluated first are not
efficient enough.

References

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm,
P. W. Cockshott, and R. Morrison. An ap-
proach to persistent programming. The Com-
puter Journal, 26(4):360–365, 1983.

[BDS91] Hans-J. Boehm, Alan J. Demers, and Scott
Shenker. Mostly parallel garbage collection.
In Proc. of the SIGPLAN’91 Conf. on Pro-
gramming Language Design and Implementa-
tion, pages 157–164, Toronto (Canada), June
1991. ACM.

[BFS98] Xavier Blondel, Paulo Ferreira, and Marc
Shapiro. Implementing garbage collection in the
perdis system. In Proceedings of the Eighth In-
ternational Workshop on Persistent Object Sys-
tems, August 1998. http://www-sor.inria.fr/
publi/IGCPS_pos8.html.

[DDZ93] David Detlefs, Al Dosser, and Benjamin Zorn.
Memory allocation costs in large C and
C++ programs. Technical Report CU-CS-
665-93, Dept. of Comp. Sc., Colorado Uni-
versity, Boulder, Colorado (USA), August
1993. ftp://ftp.cs.colorado.edu/pub/cs/

techreports/zorn/CU-CS-665-93.ps.Z.

[FS94] Paulo Ferreira and Marc Shapiro. Garbage
collection and DSM consistency. In Proc.
of the First Symposium on Operating Sys-
tems Design and Implementation (OSDI),
pages 229–241, Monterey CA (USA), Novem-
ber 1994. ACM. http://www-sor.inria.fr/

publi/GC-DSM-CONSIS_OSDI94.html.

[FS96] Paulo Ferreira and Marc Shapiro. Larchant:
Persistence by reachability in distributed shared
memory through garbage collection. In Proc.
16th Int. Conf. on Dist. Comp. Syst. (ICDCS),
Hong Kong, May 1996. http://www-sor.

inria.fr/publi/LPRDSMGC:icdcs96.html.

[FSB+98] Paulo Ferreira, Marc Shapiro, Xavier Blondel,
Olivier Fambon, Joâo Garcia, Sytse Kloost-
erman, Nicolas Richer, Marcus Roberts, Fadi
Sandakly, George Coulouris, Jean Dollimore,

11 IEZ is an industrial partner involved in the PerDiS
project, see http://www.perdis.esprit.ec.org/

members/.



Paulo Guedes, Daniel Hagimont, and Sacha
Krakowiak. PerDiS: design, implementation,
and use of a PERsistent DIstributed Store.
Technical Report QMW TR 752, CSTB ILC/98-
1392, INRIA RR 3525, INESC RT/5/98,
QMW, CSTB, INRIA and INESC, Octo-
ber 1998. http://www-sor.inria.fr/publi/

PDIUPDS_rr3525.html.
[Kno65] Kenneth C. Knowlton. A fast storage alloca-

tor. Communications of the ACM, 8(10):623–
625, October 1965.

[LLOW91] Charles Lamb, Gordon Landis, Jack Oren-
stein, and Dan Weinreb. The ObjectStore
database system. Communications of the ACM,
34(10):50–63, October 1991.

[PN77] J. L. Peterson and T. A. Norman. Buddy sys-
tems. Communications of the ACM, 20(6):421–
431, June 1977.

[Sal99] Alexandru Salcianu. Extraction et util-
isation des informations de type pour le
support des objets répartis. Mémoire de
dea, DEA d’Informatique de Lyon, IN-
RIA, Rocquencourt (France), July 1999.
http://www-sor.inria.fr/publi/EUITSOR_

dea-salcianu-1999-07.html.
[Ste83] C. J. Stephenson. Fast Fits: New methods

for dynamic storage allocation. In Proceedings
of the Ninth Symposium on Operating Systems
Principles, pages 30–32, Bretton Woods, New
Hampshire, October 1983.

[WJ98] Paul R. Wilson and Mark S. Johnstone. The
memory fragmentation problem: Solved? In
Proc. Int. Symposium on Memory Management
(ISMM’98), pages 26 – 36, Vancouver, Canada,
October 1998. ftp://ftp.cs.utexas.edu/pub/
garbage/malloc/ismm98.ps.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael
Neely, and David Boles. Dynamic storage alloca-
tion: A survey and critical review. In Proc. Int.
Workshop on Memory Management, Kinross
Scotland (UK), September 1995. ftp://ftp.

cs.utexas.edu/pub/garbage/allocscr.ps.
[ZG92a] Benjamin Zorn and Dirk Grunwald. Empir-

ical measurements of six allocation-intensive
C programs. Technical Report CU-CS-
604-92, Dept. of Comp. Sc., Colorado
University, Boulder, Colorado (USA), July
1992. ftp://ftp.cs.colorado.edu/pub/cs/

techreports/zorn/CU-CS-604-92.ps.Z.
[ZG92b] Benjamin Zorn and Dirk Grunwald. Evalu-

ating models of memory allocation. Techni-
cal Report CU-CS-603-92, Dept. of Comp. Sc.,
Colorado University, Boulder, Colorado (USA),
July 1992. ftp://ftp.cs.colorado.edu/pub/

cs/techreports/zorn/CU-CS-603-92.ps.Z.


