
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

70
--

FR
+E

N
G

RESEARCH
REPORT
N° 8870
26 February 2016

Project-Team Regal

The CISE Tool:
Proving
Weakly-Consistent
Applications Correct
Mahsa Najafzadeh
Sorbonne-Universités-UPMC & Inria, Paris, France

Alexey Gotsman
IMDEA Software Institute, Spain

Hongseok Yang
University of Oxford, UK

Carla Ferreira
NOVA LINCS, DI, FCT, U. NOVA de Lisboa, Portugal

Marc Shapiro
Sorbonne-Universités-UPMC & Inria, Paris, France





RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt

B.P. 105 - 78153 Le Chesnay Cedex

The CISE Tool:
Proving Weakly-Consistent Applications Correct*

Mahsa Najafzadeh
Sorbonne-Universités-UPMC & Inria, Paris, France

Alexey Gotsman
IMDEA Software Institute, Spain

Hongseok Yang
University of Oxford, UK

Carla Ferreira
NOVA LINCS, DI, FCT, U. NOVA de Lisboa, Portugal

Marc Shapiro
Sorbonne-Universités-UPMC & Inria, Paris, France

Project-Team Regal

Research Report n° 8870 — 26 February 2016 — 9 pages

Abstract: Designers of a replicated database face a vexing choice between strong consistency,
which ensures certain application invariants but is slow and fragile, and asynchronous replication,
which is highly available and responsive, but exposes the programmer to unfamiliar behaviours. To
bypass this conundrum, recent research has studied hybrid consistency models, in which updates
are asynchronous by default, but synchronisation is available upon request. To help programmers
exploit hybrid consistency, we propose the first static analysis tool for proving integrity invariants
of applications using databases with hybrid consistency models. This allows a programmer to find
minimal consistency guarantees sufficient for application correctness.

Key-words: No keywords

* This research is supported in part by European FP7 FET Young Explorers project ADVENT,
and European FP7 Project SyncFree.

http://advent-project.eu/
http://syncfree.lip6.fr/


L’outil CISE :
prouver qu’une application faiblement cohérente est

correcte

Résumé : La conception d’une base de données répliquées fait face à un choix
difficile, entre la cohérence forte, qui garantit certains invariants applicatifs mais
reste lente et fragile, et la réplication asynchrone qui est hautement disponible
mais expose le programmeur à des comportements inattendus. Pour dépasser cet
embarras, des recherches récentes portent sur des modèles de cohérence hybrides,
dans lesquels les mises à jour sont asynchrones par défaut, mais les mécanismes
de synchronisation sont disponibles sur demande. Afin d’aider les programmeurs
à exploiter la cohérence hybride, nous proposons le premier outil statique capable
de prouver les invariants d’intégrité d’applications utilisant une base de donnée
à cohérence hybride. Ceci permet au programmeur de trouver les garanties de
cohérence minimales garantissant que l’application est correcte.

Mots-clés : Pas de motclef



The CISE Tool: Proving Weakly-Consistent Applications Correct 3

The CISE Tool:
Proving Weakly-Consistent Applications Correct

26 February 2016

1 Introduction

To achieve availability and scalability, many modern distributed systems rely on
replicated databases, which maintain multiple replicas of shared data. Clients can
access the data at any of the replicas, and these replicas communicate changes
to each other using message passing. For example, large-scale Internet services
use data replicas in geographically distinct locations, and applications for mobile
devices keep replicas locally to support offline use. Ideally, we would like replicated
databases to provide strong consistency, i.e., to behave as if a single centralised
node handles all operations. However, achieving this ideal usually requires syn-
chronisation among replicas, which slows down the database and even makes it
unavailable if network connections between replicas fail [1, 7].

For this reason, modern replicated databases often eschew synchronisation com-
pletely; such databases are commonly dubbed eventually consistent [14]. In these
databases, a replica performs an operation requested by a client locally without any
synchronisation with other replicas and immediately returns to the client; the effect
of the operation is propagated to the other replicas only eventually. Unfortunately,
this way of processing operations exposes applications to undesirable concurrency
behaviours, which may cause bugs such as state divergence or invariant violation
[6].

For instance, consider a bank account replicated at different bank branches,
which supports operations deposit and withdraw. A programmer would like to
ensure an integrity invariant that the balance is never negative. Assume that the
balance is initially e100. Eventual consistency will allow two users to concurrently
withdrawe60 at different branches and thus violate the integrity invariant. To ensure
the invariant in this example, we have to introduce synchronisation between replicas,
and, since synchronisation is expensive, we would like to introduce it sparingly.

*This research is supported in part by European FP7 FET Young Explorers project ADVENT, and
European FP7 Project SyncFree.

RR n° 8870

http://advent-project.eu/
http://syncfree.lip6.fr/


4 Najafzadeh, Gotsman, Yang, Ferreira, Shapiro

To allow this, some research [3, 9, 12, 13] and commercial [2, 4, 10] databases
now provide hybrid consistency models that allow the programmer to request
stronger consistency for certain operations and thereby introduce synchronisation.
For example, to preserve the integrity invariant in our banking application, only
withdraw operations need to use strong consistency, and hence, synchronise to
ensure that the account is not overdrawn; deposit operations may use eventual
consistency and hence proceed without synchronisation.

Unfortunately, using hybrid consistency models effectively is far from trivial.
Requesting stronger consistency in too many places may hurt performance and
availability, and requesting it in too few places may violate correctness. Striking the
right balance requires the programmer to reason about the application behaviour on
the subtle semantics of the consistency model, taking into account which anomalies
are disallowed by a particular consistency strengthening and whether disallowing
these anomalies is enough to ensure correctness.

To help programmers exploit hybrid consistency models, we propose the first
static analysis tool (called CISE: ’Cause I’m Strong Enough) for proving integrity
invariants of applications using replicated databases with a range of hybrid models.
Our tool is based on a novel proof rule, which we have proved sound [8]. The tool
automates the proof rule by discharging its obligations using an SMT solver. If an
obligation fails, the tool provides a counter-example, which the developer can use
to understand the source of the problem. Using the tool, we have verified several
example applications that require strengthening consistency in nontrivial ways [8].
These include an extension of the above banking application, an online auction
service and a course registration system. A demo of the tool is available online [11].

In the rest of this paper, we explain our static analysis by the example of the
above banking application.

2 System Model

An application consists of a set of operations Op over some set of objects, and
invariants over the objects. The database system consists of a set of replicas, each
maintaining a full copy of the database state State.

The replication model uses a Read-One-Write-All (ROWA) approach [5]. A
client operation is initially executed at a single replica, which we refer to as its
origin replica. This updates the replica state deterministically, and immediately
returns a value to the client. After this, the replica sends a message to all other
replicas containing the effector of the operation, which describes the updates done
by the operation to the database state. Upon receipt, the replicas apply the effector
to their state. Effectors of causally-dependent operations are executed in the same
order at every replica; effectors of independent (concurrent) operations are executed
in any order.

Inria



The CISE Tool: Proving Weakly-Consistent Applications Correct 5

More precisely, the semantics of operations is defined by a partial function

F ∈Op→ (State⇀ (Val× (State→State)×P(Token))).

Given a state σ ∈ State in which an operation o ∈ Op executes at its origin replica,
F(o)(σ) determines:

• The return value of the operation, from a set Val. We use a special value ⊥
for operations that return no value.

• A function defining the effector of the operation. This will be applied by
every replica to its state: immediately at the origin replica, and after receiving
the corresponding message at all other replicas.

• A set of tokens, used to introduce synchronisation. We explain them later.

For instance, consider the naïve banking application in Figure 1. A client
can read the balance from the local replica, make deposits to and withdrawals
from the account, and compute interest, all without communicating with the other
replicas. Each operation is associated with a precondition—a predicate over the
state of its origin replica and parameters that determines when the operation can
be safely executed (and the F function defined). A minimal precondition of the
deposit(amount) and withdraw(amount) operations is amount ≥ 0. Their ef-
fectors add amount to (respectively, subtract it from) the balance. The interest

operation’s precondition is true and its effector multiplies the balance by the interest
rate. (As we will see later, the analysis shows that the precondition of withdraw
needs to be strengthened, and that this effector of interest is unsafe.)

3 CISE Analysis

3.1 Effector Safety Analysis

The first CISE proof obligation, called the effector safety analysis, verifies that the
effector of every operation maintains the invariant when applied to any state where
the operation’s precondition is true (not necessarily the one in which the operation
was generated).

Let’s try out the effector safety analysis on the simple banking application of
Figure 1. According to the analysis, the effectors of deposit and interest always
maintain the invariant. However, for withdraw, the obligation fails and our tool
produces a counter-example: if the balance is zero, a non-zero withdraw operation
makes the balance negative. Therefore, we must fix the issue by strengthening its
precondition, so that the amount debited is less or equal than the current balance.

With this correction, the effector safety analysis succeeds. The corrected pre-
conditions are shown at the bottom of Figure 2.

RR n° 8870



6 Najafzadeh, Gotsman, Yang, Ferreira, Shapiro

σinit = 0

I = (balance ≥ 0)

Token = ∅
Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+

amount), ∅)
Finterest()(balance) = (⊥, (λbalance′. (1.05∗

balance′)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), ∅)

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()

amount ≥ 0 withdraw(amount)

Figure 1: Simple banking application (incorrect).

3.2 Commutativity Analysis

Effectors of concurrent operations may execute in different orders at different
replicas. The second CISE obligation, called the commutativity analysis, checks
if all pairs of effectors of such operations commute: executing them in any order
yields the same result, whatever the starting state.

Let us check this obligation for the specification in Figure 1. Predictably,
applying the commutativity analysis proves that deposit and withdraw effectors
commute. However, the effector of interest does not commute with that of the
other operations, and the tool returns a counter-example. Consider two replicas
1 and 2. The balance is initially e100. Replica 1 is the origin for an interest

operation. Replica 2 is the origin for a deposit(20) operation. Replica 1 first applies
the effector of interest and then that of deposit, whereas replica 2 applies them in
the opposite order. Depending on the order of execution, the result is different, and
the replicas diverge.

We fix this by changing the interest operation to compute the absolute interest
at the origin replica and letting its effector add this amount to the local balance of
every replica (Figure 2). With this corrected specification, our tool proves that the
effector of interest does commute with those of the other operations.

3.3 Stability Analysis

The effector safety analysis verified that that the effector of each operation o main-
tains the invariant when executed in a state satisfying the precondition of the
operation. The precondition holds at o’s origin replica, but how do we know that

Inria



The CISE Tool: Proving Weakly-Consistent Applications Correct 7

σinit = 0

I = balance ≥ 0

Token = {τ}
./ = {(τ, τ)}

Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+
amount), ∅)

Finterest()(balance) = (⊥, (λbalance′. (balance′ + 0.05

∗balance)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), {τ})

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()

balance ≥ amount ≥ 0 withdraw(amount)

Figure 2: Corrected banking application.

it will hold when o’s effector is applied at a different replica, which concurrently
executes effectors of other operations? The third obligation of CISE analysis, called
stability analysis, checks if executing the effector of any other operation o′ maintains
the precondition of o.

Let us illustrate the stability analysis of the withdraw operation in Figure 1. The
precondition of the withdraw operation is stable under the effectors of deposit and
interest, but it is not stable under the effector of withdraw. The tool returns the
following counter-example. Let the balance bee2. The precondition to withdraw(1)

is verified. However, a concurrent withdraw(2) (whose precondition is also OK)
at a different replica makes the balance zero, now violating the precondition of
withdraw(1). If we were to continue, and to apply the effector of the first withdrawal
operation at the second replica, the balance would become negative.

To fix the problem, the developer of the banking application may disallow the
execution of withdrawals without synchronisation. To model such concurrency
control, we use tokens Token = {τ, . . .} and a symmetric conflict relation ./ ⊆
Token× Token between pairs of them. In the banking application, we associate a
token τ to withdraw such that τ ./ τ (similarly to a mutual exclusion lock). This
ensures that any two withdrawals synchronise.

Figure 2 presents the corrected banking application, incorporating all the
changes outlined above. Our static analysis confirms that this application indeed
maintains the integrity invariant.

RR n° 8870



8 Najafzadeh, Gotsman, Yang, Ferreira, Shapiro

4 Future Work

In the future, we plan to study proof rules for reasoning about integrity invariants on
consistency models weaker than causal consistency. We also intend to automate the
analysis of counter-examples in order to generate corrections semi-automatically.

References
[1] D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP

is only part of the story. IEEE Computer, 45(2), 2012.

[2] Amazon. Supported operations in DynamoDB. http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/APISummary.html, 2015.

[3] V. Balegas, N. Preguiça, R. Rodrigues, et al. Putting consistency back into eventual
consistency. In Euro. Conf. on Comp. Sys. (EuroSys), pp. 6:1–6:16, Bordeaux, France,
Apr. 2015.

[4] Basho Inc. Using strong consistency in Riak. http://docs.basho.com/riak/
latest/dev/advanced/strong-consistency/, 2015.

[5] P. Bernstein, V. Radzilacos, and V. Hadzilacos. Concurrency Control and Recovery in
Database Systems. Addison Wesley Publishing Company, 1987.

[6] J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s globally-distributed
database. In Symp. on Op. Sys. Design and Implementation (OSDI), pp. 251–264,
Hollywood, CA, USA, Oct. 2012.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. ISSN 0163-5700.

[8] A. Gotsman, H. Yang, C. Ferreira, et al. ’Cause I’m strong enough: Reasoning about
consistency choices in distributed systems. In Symp. on Principles of Prog. Lang.
(POPL), pp. 371–384, St. Petersburg, FL, USA, 2016.

[9] C. Li, D. Porto, A. Clement, et al. Making geo-replicated systems fast as possible,
consistent when necessary. In Symp. on Op. Sys. Design and Implementation (OSDI),
pp. 265–278, Hollywood, CA, USA, Oct. 2012.

[10] Microsoft. Consistency levels in DocumentDB. http://azure.microsoft.com/
en-us/documentation/articles/documentdb-consistency-levels/, 2015.

[11] M. Najafzadeh and M. Shapiro. Demo of the CISE tool, Nov. 2015. https://youtu.
be/HJjWqNDh-GA. Video of demo, with explanations.

[12] Y. Sovran, R. Power, M. K. Aguilera, et al. Transactional storage for geo-replicated
systems. In Symp. on Op. Sys. Principles (SOSP), pp. 385–400, Cascais, Portugal,
Oct. 2011.

Inria

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html
http://docs.basho.com/riak/latest/dev/advanced/strong-consistency/
http://docs.basho.com/riak/latest/dev/advanced/strong-consistency/
http://azure.microsoft.com/en-us/documentation/articles/documentdb-consistency-levels/
http://azure.microsoft.com/en-us/documentation/articles/documentdb-consistency-levels/
https://youtu.be/HJjWqNDh-GA
https://youtu.be/HJjWqNDh-GA


The CISE Tool: Proving Weakly-Consistent Applications Correct 9

[13] D. B. Terry, V. Prabhakaran, R. Kotla, et al. Consistency-based service level agree-
ments for cloud storage. In SOSP, 2013.

[14] W. Vogels. Eventually consistent. CACM, 52(1), 2009.

RR n° 8870



RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt

B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	System Model
	CISE Analysis
	Effector Safety Analysis
	Commutativity Analysis
	Stability Analysis

	Future Work

