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Conception d’un type de données répliqué commutatif
Résumé : La commutativité des opérations simplifie grandement la cohérence dans les
systèmes répartis. Ce papier aborde la conception visant la commutativité, qui est un sujet
négligé. Nous démontrons que les réplicats tout tout type de données, dont les opérations
concurrent commutent, convergent vers une valeur correcte, sous des hypothèses simples et
courantes. Nous montrons aussi qu’un tel type de données peut exécuter des transactions
à un coût très faible. Nous identifions quelques approches et quelques techniques qui as-
surent la commutativité. Nous réutilisons quelques idées existantes (les mises à jour non
destructives couplées à une identification invariante) mais nous en proposons une réalisation
beaucoup plus efficace qu’auparavant. De plus nous proposons une nouvelle technique, celle
du consensus en tâche de fond. Nous illustrons ces idées sur un example de tampon d’édition
partagé.

Mots-clés : Réplication des données, réplication optimiste, opérations commutatives
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1 Introduction

To share information, users located at several sites may concurrently update a common
object, e.g., a text document. Each user operates on a separate replica (i.e., local copy) of
the document. A well-studied example is co-operatively editing a shared text.

As users make modifications, replicas diverge from one another. Operations initiated
on some site propagate to other sites and are replayed there. Eventually every site executes
every action. Even so, if sites execute them in different orders, their replicas might still not
converge. Various solutions are available in the literature; for instance, serialising the actions
[7] or operational transformation [22]. Such designs are usually complex and non-scalable;
thus, despite an extensive literature, there is still no satisfactory solution to the shared text
editing problem.

We suggest a different approach: design replicated data types such that operations
commute with one another. Let us call such a type a commutative replicated data type or
CRDT. CRDT replicas provably converge. Furthermore, CRDTs support transactions “for
free.” However, designing a non-trivial CRDT is difficult.

Although the advantages of commutativity are well known, the problem of designing
data types for commutativity has been neglected. Recently, Oster et al. proposed a repli-
cated character buffer CRDT called WOOT [14]. WOOT operations commute, because
updates are non-destructive, and because the the identity of a character does not change
with concurrent edits. However, WOOT has some drawbacks: it wastes a lot of space, and
it does not support block operations such as cut-and-paste.

This paper presents the design of a non-trivial CRDT for concurrent editing, called
treedoc. Since it is a CRDT, convergence is guaranteed. It supports block operations. Space
overhead is kept to a minimum: there is no to little internal meta-data; deleted information
can be forgotten; and identifiers are kept short. Common edit operations respond locally and
suffer no network latency. Treedoc is fault-tolerant and supports disconnected operation.

As in WOOT, ordinary editing operations are non-destructive and identification does
not change with concurrent edits, but our implementation is very different from WOOT.
The basic treedoc structure is a binary tree of atoms. The path to a node is a bitstring. For
efficiency, structural operations switch between a flat buffer and a tree. These operations
are potentially non-commutative; to avoid this problem, structure changes rely either on
common knowledge or on consensus. To avoid the latency associated with consensus, it
occurs in the background (not in the critical path of editing operations) and aborts if it
conflicts with an edit.

In summary, the contributions of this paper are the following:

• A design principle: concurrent operations should commute. We prove that any Com-
mutative Replicated Data Type (CRDT) converge, under some simple and standard
assumptions.
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4 Shapiro, Preguiça

• We identify two alternative approaches to commutativity: operation coalescing vs. prece-
dence. Coalescing is better, but is not always possible.

• The design of treedoc, a non-trivial, space-efficient, responsive, coalescing CRDT for
distributed editing.

• We identify some previously-published techniques for coalescing, such as non-destructive
update and invariant identity. We propose a novel implementation of these techniques.

• We propose a novel technique for coalescing: where a consensus is necessary, it is re-
stricted to non-essential operations, occurs in the background, and aborts if it conflicts
with an essential operation.

• We show that a CRDT readily supports transactions at a very low implementation
cost.

The paper proceeds as follows. Section 1 is this introduction. We describe our system
model in Section 2. Section 3 describes the shared buffer abstract data type. We suggest
a simple implementation of this data type in Section 4. In Section 5, we examine how
to convert to a more efficient representation and back. Section 6 explains the full treedoc
implementation, combining the advantages of the two preceding sections. We build trans-
actions on top of a CRDT in Section 7. Section 8 compares with previous work. Section 9
concludes. We provide a proof of convergence in Appendix A.

2 System model

2.1 Replicated execution and eventual consistency

We consider an asynchronous distributed system, consisting of N sites (computers) con-
nected by a network. Communication between connected sites is reliable. A site may
disconnect but eventually reconnects. We assume an epidemic style of communication, i.e.,
a site connects at arbitrary intervals with arbitrary other sites, sending both local updates
and those previously received from other sites. Eventually, every update reaches every site,
either directly or indirectly.

With no loss of generality, we consider a single object replicated at any number of sites.
A user accesses the object through his local replica, initiating operations at the current
site.1 The operations execute locally and are logged. Eventually the log is transmitted and
the operations it contains are replayed at other sites. Eventually all sites execute the same
operations (either by local submission or by remote replay), in some sequential order, but
not necessarily in the same order.

1We assume that a given operation is initiated at a unique site.

INRIA



Designing a commutative replicated data type 5

We say operation o happens before o′ (noted o → o′) if some site initiates o′ after the
same site has executed o.2 We require that if o→ o′, then all sites execute o before o′ (not
necessarily immediately before). Common epidemic protocols, such as Bayou’s anti-entropy
[16], ensure this so-called “causal ordering” property. To implement this property, it suffices
to delay the execution of some operation o, until all operations that happen before o have
been executed. Well-known techniques such as vector clocks or version vectors [10] can be
used to track happens-before dependencies.

Operations are concurrent if neither happens before the other: o ‖ o′ def= ¬(o → o′) ∧
¬(o′ → o).

Two operations o and o′ commute iff, whatever the current state of the object, such that
execution of either o or o′ succeeds, executing o immediately followed by o′ also succeeds,
and leads to the same state as executing o′ immediately followed by o.

A Commutative Replicated Data Type (CRDT) is a data type where all concurrent
operations commute with one another. We prove (in Appendix A) that CRDTs guarantee
eventual consistency : provided that every site executes every operation in an order consistent
with happens-before, the final state of replicas is identical at all sites.

Furthermore, CRDTs support serialisable transactions with virtually no overhead. If all
operations commute, so do arbitrary sets of operations. If every site executes transactions
sequentially, in an order consistent with happens-before, the local orders are all equiva-
lent. This ensures serialisability. Furthermore, transactions never abort. Hence, very little
mechanism is needed. We return to transactions in Section 7.

2.2 Ensuring that operations commute

Two operations α and β commute if, for any state T , execution sequences 〈T · α · β〉 and
〈T · β · α〉 are both correct states and are equivalent. There are two basic approaches for
ensuring commutativity, which we call coalescing and precedence.

Intuitively, coalescing means that α preserves the effect of β and vice-versa; i.e., the post-
condition of both operations is satisfied, whatever their relative execution order.3 This is the
standard meaning in mathematics, for instance when we say that addition and subtraction
of integers commute.

The alternative is to define an order of precedence, say β takes precedence over α: when
both operations execute in either order, β takes effect, but not necesariy α. A typical
implementation is that in the order 〈α · β〉, the latter overwrites the results of the former,
and in the order 〈β · α〉, the latter is replaced by a no-op. For instance, most replicated file
systems follow the “Last Writer Wins” rule [19]: when two users write to the same file, the

2The site executes o either because it was initiated locally, or because it was initiated at another site and
delivered here in a message. Thus the → relation is identical to Lamport’s happens-before [7].

3This is sometimes called “intention preservation.”
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6 Shapiro, Preguiça

write with the highest timestamp takes precedence. The write with the lowest timestamp
may be lost. (In contrast, writes to different files coalesce.)

Clearly, the coalescing approach is preferable to precedence; but precedence is much
easier to achieve.

3 Shared buffer replicated data type

We consider a shared, replicated document, consisting of a linear sequence of atoms. An
atom may be a character or some other immutable payload, e.g., a graphical illustration
inserted inside the document. We designed treedoc it to be as unrestricted and flexible as
possible, to enable a variety of applications to use it.

Each user has a copy of the document. Each user can modify his replica independently
by executing two types of edit operations:

• insert(insertpos,newatom, S) visibly inserts atom newatom in the document. (In the
underlying data structure, there may be other data before or after insertpos, but it is
not visible to the user.) All atoms at positions strictly less than insertpos lie to the left
of newatom; all those strictly greater than insertpos lie to its right. The S argument
is the initiating site, as justified later.

• delete(delpos, S) visibly removes the atom existing at position delpos. (The atom may
still be in the data structure but is not visible to the user any more.) The S argument
is the initiating site.

We defer to Section 7 the description of a transaction construct, enabling atomic bulk
operations such as cutting and pasting a block of text, or searching and replacing all instances
of a pattern.

Our treedoc design ensures commutativity by coalescence, i.e., the effect of insert and
delete is the same at all sites.

At a higher level, the application might have stronger requirements. For instance, it
might disallow inserting characters inside deleted text; or it might ensure a proper hierarchy
of chapters, sections and paragraphs; etc. Enforcing such semantic conflicts requires higher-
level conflict detection and resolution mechanisms, which are non-commutative, but are out
of our focus.

Similarly, we emphasise that the stringtree structure is completely decoupled from any
higher-level document hierarchy (e.g., XML tree structure).

INRIA
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3.1 Unique identifiers for positions

Let us assume the existence of unique position identifiers, with the following properties:

• Each postion in the atom buffer has an identifier that is unique with respect to all
other positions, and that remains constant, for the whole lifetime of the document.4

• There is a total order of position identifiers, noted <.

• Given any two identifiers L and R such that L < R, it is possible to generate a fresh
unique identifier N such that L < N < R.

We will call these identifiers UIDs (unique identifiers). Real numbers have the properties
required for UIDs, but the third property requires infinite precision, which is not realistic.
In Section 4 we will present a practical alternative, based on trees.

3.2 Abstract atom buffer CRDT

Consider an abstract data type whose state T is a set of (uid , atom) couples, where uids
are unique. The content of state T is the sequence of all atoms in T ordered by their
uid . Operation insert(u, a, S) adds the pair (u, a) to the set. If a pair (u, a) exists in the
set, operation delete(u, S) removes the pair, whatever a. We now prove that concurrent
operations of this data type commute.
Lemma 1. Insert operations commute. For any data state T , any fresh unique identifiers
u1 and u2, any atoms a1 and a2, and any originating sites S1 and S2: 〈T · insert(u1, a1, S1) ·
insert(u2, a2, S2)〉 ≡ 〈T · insert(u2, a2, S2) · insert(u1, a1, S1)〉.

Proof. After executing the two insert operations, the resulting state includes the two new
atoms. Furthermore, atoms are ordered by unique identifiers. Therefore, the final state is
the same.

Lemma 2. An insert operation commutes with a delete operation when they refer to different
unique identifiers. For any state T , any fresh unique identifier u1, any unique identifier u2 6=
u1, any atom a1, and any originating sites S1 and S2: 〈T ·insert(u1, a1, S1)·delete(u2, S2)〉 ≡
〈T · delete(u2, S2) · insert(u1, a1, S1)〉.

Proof. Two cases must be considered. First, when T includes the atom with identifier u2.
By executing both operations in any order, the final state of T will include an additional
atom identified by u1 and it will not include the atom identified by u2. As atoms are ordered
by their unique identifier, the final state is the same. Second, when T does not include the
atom with identifier u2. By executing both operations in any order, the final state of T
will include an additional atom identified by u1 (the atom identified by u2 was not present
in the original state. As atoms are ordered by their unique identifier, the final state is the
same.

4However, an unused identifier can be garbage-collected and re-used. We do not attempt to formalise
this property.
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8 Shapiro, Preguiça

Lemma 3. If an insert operation and a delete operation refer to the same unique identifier,
then the insert happens-before the delete.

Proof. According to the specification of Section 3, a user may initiate operation delete(u, S)
at site S only if a pair (u, a) exists (for some a) in the current state at site S. This pair
must have been inserted by an insert operation executed previously at site S.

Lemma 4. Delete operations commute. For any state T , any unique identifiers u1 and u2

and any originating sites S1 and S2: 〈T ·delete(u1, S1) ·delete(u2, S2)〉 ≡ 〈T ·delete(u2, S2) ·
delete(u1, S1)〉.

Proof. For any original state T , the final state will not include the atoms identified by u1

and u2, but it will include all other atoms, as no other atom will ever has the same unique
identifier. Thus, the final state will include the same set of atoms and, as atoms are ordered
by their unique identifier, the final state is exactly the same.

Theorem 1. The data type described in this section is a CRDT.

Proof. By the above lemmas, all concurrent operation pairs (insert-insert, delete-delete,
insert-delete) commute.

4 Treedoc abstract data type

We start with a very simple design, which satisfies the coalescence requirement, but has
some limitations. In later sections, we will improve the design.

4.1 Paths

We manage the document as a binary tree. A tree node contains either a single atom, or nil.
The identifier of an atom is its path in the tree. The path to the root is the empty bitstring
ε; the path concatenation operator is noted �. The left child of a node is 0, its right child
is 1. We walk the tree in infix order, skipping nil nodes (but not their descendants).

For example, Figure 1 represents the document state "abcdef", with the following iden-
tifiers: id(a) = [00]; id(b) = [0]; id(c) = []; id(d) = [10]; id(e) = [1]; id(f) = [11].

We define the following partial order over identifiers. Node id1 is to the left of id2 (or,
equivalently, id2 is to the right of id1), noted id1 < id2, iff:

• id1 = [c1...cn] is a prefix of id2 = [c1...cnj1...jm] and j1 = 1, or

• id2 = [c1...cn] is a prefix of id1 = [c1...cni1...im] and i1 = 0, or

• id1 = [c1...cni1...in] has a common prefix with id2 = [c1...cnj1...jm] and i1 = 0. The
prefix may be empty.

INRIA
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Figure 1: Identifiers in a shared text buffer

We also define the ancestry of a node. Node u is the (direct) parent of node v, noted
u/v, iff id(v) = id(u) � 0 ∨ id(v) = id(u) � 1; equivalently, v is a (direct) child of u. Node
u is an ancestor of v (or, equivalently, v is a descendant of u), noted u/+v, if u is a parent,
or grand-parent, or great-grand-parent, etc., of v.

4.2 Deleting

We start with the simplest procedure, deleting an atom: simply replace the content of the
node with nil. Since the identification of the deleted node is unique, it is clear that the
initiator and replay executions will all delete the same node. Sometimes, during replay,
the node to be deleted may not exist, but this can only be because it was already deleted
previously.

We will say that the delete is stable once it has been executed at all nodes. No operation
that happens-after the delete is stable will ever refer to the node identifier; therefore, if the
node is a leaf, it can be completely forgotten (and so on recursively). Thus a subtree that
contains only stably deleted nodes can be completely removed and forgotten.

To this effect we introduce a gc(N) procedure that removes leaf N if it is stably deleted.
A node may call gc(N) at any time after N is deleted. Operation gc is local only, it does
not have a replay version.

Procedure stabledel(N) tests for stability. Conceptually, stabledel(N) waits for acknowl-
edgments from all sites that have executed deleteN. We refer to Golding [4] for an efficient
implementation of stability that compacts acknowledgments for all past operations into a
single vector clock or matrix clock.

4.3 Implementing inserts

To insert newatom between atomp and atomf , we must grow the tree in a way that satisfies
the relation id(atomp) < id(newatom) < id(atomf ). In this section, we present a very
simple algorithm that does not attempt to balance the tree; later, we will resolve this issue.

RR n° 6320



10 Shapiro, Preguiça

Algorithm 1 New unique identifier for insert
1: function newUID ((atomp, uidp), (atomf , uidf )) // (atomp, uidp): previous atom;

(atomf , uidf ): following atom;
2: Require: uidp < uidf
3: if ∃(atomm, uidm) : uidp < uidm < uidf then return

newUID((atomp, uidp), (atomm, uidm))
4: else if (atomp, uidp)/+(atomf , uidf ) then return uidf � 0
5: else if (atomf , uidf )/+(atomp, uidp) then return uidp � 1
6: else return uidp � 1

Algorithm 1 starts by checking whether there is a node between atomp and atomf . If
so, it recursively looks for the leftmost predecessor of uidf that remains to the right of uidp.
When there is no node between atomp and atomf , three cases may occur:

• Node uidp is an ancestor of uidf , i.e., uidf is a right descendant of uidp. In this case,
uidf has no left child, so we create a new left child of node uidf . The new identifier
is uidf � 0.

• Or, symmetrically, node uidf is an ancestor of uidp. The new identifier us uidp � 1.

• Or, neither is an ancestor of the other. In this case, uidp has no right child, so we
create a new right child of node identified uidp � 1.

In the example of Figure 1, for inserting atom X between c and d, a left child is created
under d with identifier [100], as shown in Figure 2.
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 Figure 2: Identifiers after inserting a new character atom

4.4 Concurrent inserts

In case of concurrent updates, a binary tree becomes insufficient, because two users can con-
currently insert an atom at the same position. We maintain the basic binary tree structure,

INRIA
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but we extend a node to contain any number of side nodes (and their descendence), disam-
biguated by a (siteID , counter) pair, where siteID identifies the initiator site. We assume a
total order of site identifiers, hence of disambiguators, hence of side nodes: (s1, c1) < (s2, c2),
iff c1 < c2 or c1 = c2 and s1 < s2.

Algorithm 1 generates new unique identifiers for insertion. Figure 3 shows an ex-
ample of the situation. Assuming that characters X and Y were inserted with the as-
sociated disambiguator idX and idY respectively, we have id(X) = [(1)(0)(0, idX )] and
id(Y) = [(1)(0)(0, idY )].
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 Figure 3: Side nodes and their identifiers, after concurrent inserts at position [100]

Since a concurrent update can occur at every level, conceptually, every node may
include a disambiguator. Thus, in the example, we could have, for example, id(d) =
[(−−, idC )(1, idE )(0, idD)]. The full state is as in Figure 4.
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Figure 4: Fully expanded identifiers, after concurrent inserts at position [100]

When disambiguators are used, the total order among identifiers is defined as follows:
Node id1 is left of node id2 (or, equivalently, id2 right of id1), noted id1 < id2, iff:

• id1 = [c1...cn] is a prefix of id2 = [c1...cnj1...jm] and j1 = (1, ∗), or

• id2 = [c1...cn] is a prefix of id1 = [c1...cni1...im] and i1 = (0, ∗), or
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12 Shapiro, Preguiça

• id1 = [c1...cni1...in] has a common prefix with id2 = [c1...cnj1...jm] and i1 = (0, ∗) ∧
j1 = (1, ∗) or i1 = (k, d1) ∧ j1 = (k, d2) ∧ d1 < d2. The prefix may be empty.

To generate a new unique identifier, the algorithm 1 is used, with the returned identifier
extended with a freshly generated disambiguator.

Once all concurrent inserts at the same location have executed at some site, redundant
disambiguators can be removed. We will say that an insert is stable at some site, once that
site has received from all other sites some operation that happens-after the insert. At that
point, it is guaranteed not to receive another concurrent insert at the same node. (To ensure
this happens quickly, sites that are not actively editing should send out occasional no-ops.)
Procedure cleanside removes redundant disambiguators; it is a local procedure (it has no
replay version).

4.5 Treedoc abstract data type

Algorithm 2 contains detailed specification of the simple treedoc data type. In addition to
the operations given at the beginning of Section 3, we specify gc and cleanside as explained
above.

The initiator versions of insert and delete have pre-conditions, to make sure that the
user only addresses valid nodes, and to avoid wastage of space. However, there may be no
restrictions on the replay version. Therefore, the replay version has no precondition, and
simply re-creates any nodes that it may be missing.

This data type satisfies the coalescence requirement. Since every atom has an identifier
that does not change with other operations, replaying a delete removes the intended atom.
Inserting an operation with a path positions it with respect to its left and right neighbours,
replaying an insert preserves the intended location. Since this data type is a CRDT, replicas
are guaranteed to converge to the same (correct) value.

In Algorithm 2, the notation N [siteID ] stands for the side node of N identified by siteID .
The notation N [[siteID ]] stands for N [siteID ], if it exists, and N otherwise. IamInitiator is
true on the initiator site, and false on all replay sites.

5 Identifying a sequential buffer to a binary tree

The approach so far has a number of limitations. Paths are variable length and can become
very inefficient if the tree is unbalanced (e.g., if users always append to the end of the buffer).
Concurrent inserts complicate the structure and the paths. The tree metadata consumes
memory; for instance, if atoms are one-byte characters the overhead can be several times
the payload. Finally, deleted atoms that cannot be garbage-collected waste space.

Rather than attempt to fix each of these issues individually, we propose a more radical
solution. In this section, we discuss structural operations that switch between the efficient

INRIA
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Algorithm 2 Simple treedoc
1: procedure contents (N) // N : a treedoc node
2: Walk subtree rooted at N in infix order
3: Return the atoms of the non-empty nodes

4: procedure insert (A,N, S)
5: // A: atom to insert
6: // N : insertion position, chosen by newUID
7: Require: S = the initiator site
8: Require: A 6= nil
9: Require: IamInitiator ⇒ all ancestors of node N exist

10: Require: IamInitiator ⇒ N [[S]] does not exist
11: Create any missing ancestors of N
12: If necessary, create node N
13: Create side node n = N [siteID ] with n.contains = A

14: procedure delete (N,S) // N : node to be deleted
15: Require: IamInitiator ⇒ N [[S]] exists and N [[S]].contains 6= nil
16: Require: S = the initiator site
17: Create any missing ancestors of N
18: If necessary, create node N
19: N [[S]].contains := nil
20: Send acknowledgment of delete(N,S) to all sites

21: procedure stabledel (N) // Await stable delete of node N
22: if acknowledgment for delete(N, ∗) received from all sites then return true
23: else return false

24: procedure gc (N) // N : a treedoc leaf
25: Require: N.contents(=)nil
26: Require: stabledel (N)
27: Require: IamInitiator
28: Remove N

29: procedure cleanside (N) // N : a treedoc node
30: Require: stableinsert (N)
31: Require: IamInitiator
32: if |{N [S]|∀S}| = 1 then // There is a single side node
33: N := N [S] // Remove redundant disambiguator

34: procedure stableinsert (N)
35: if current site has received some operation that happens-after insert(∗, N, ∗) from

every site then
36: return true
37: else return false

RR n° 6320



14 Shapiro, Preguiça

Algorithm 3 explode and flatten
1: procedure explode (atomstring)
2: depth = dlog2(length(atomstring) + 1)e
3: T = Allocate a complete binary tree of depth depth
4: Populate T in infix order with the atoms of atomstring
5: Remove any remaining nodes
6: Return T

7: procedure flatten (N) // N : root of a subtree to be flattened
8: Walk subtree in infix order
9: Return a linear buffer containing the atoms of the non-empty nodes

flat buffer representation, and the edit-oriented tree representation. The specification of
these operations is as follows.

• explode(atomstring). Returns a treedoc whose contents is identical to atomstring .

• flatten(path) Returns an atom string whose contents is identical to the sub-treedoc
rooted at path.

The initiator and replay versions of these operations must have identical effect. In
particular, explode must return exactly the same structure at all sites.

Different implementations of explode are possible, as long as it has the same effect
at every site. Observing that the capacity of a complete binary tree with depth levels is
2depth − 1, we suggest the simple implementation in Algorithm 3.

With these two operations, we can choose the string representation or the treedoc rep-
resentation. The former is compact and efficient, but it does not readily support concurrent
edits. When a treedoc becomes unbalanced or contains many nil nodes, it suffices to flatten
then explode it to fix the problem.

However, these structural operations do not commute with edit operations. We study
the solution of this problem next.

6 Mixed tree

In this section, we study how to combine edit operations and structural operations, while
still retaining the advantages of a CRDT.

A first observation is that the explode operation is not really necessary. Algorithm 3 can
be interpreted as a mapping from a string to a canonical treedoc representation. Applying
a path to a string implicitly converts the string to the canonical treedoc. Eliminating the
explicit explode operation removes the need to make it commute with edits.
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A second observation is that flatten is not an essential operation. Aborting a flatten
(leaving no side-effects) causes no harm. Therefore, if flatten is concurrent with an edit
operation in the same subtree, we abort it. More precisely, for flatten to take effect, it
executes a distributed commitment procedure. When executing flatten at some site, if
this site observes the execution of a concurrent insert or delete, that site votes “No” to
commitment, otherwise it votes “Yes.” The operation succeeds only if all sites vote “Yes,”
otherwise it has no effect.

Any distributed commitment protocol from the literature will do, for instance two-phase
commit or Gray and Lamport’s fault-tolerant protocol [5].

We may now envisage a mixed tree, where parts that are currently being edited are in
treedoc representation, and parts that are currently quiescent are represented as strings.

6.1 Fault tolerance and disconnected operation

Ensuring fault tolerance and disconnected operation for disconnected edits is straightfor-
ward. Every site logs all its operations (whether locally initiated or remote) on persistent
storage. When a site that was disconnected for some time reconnects with the rest of the
system, it simply exchanges with other sites the missing information. If a site fails and
recovers the situation is the same. If a site crashes, losing its memory, then when it restarts
it behaves like a new site, and copies over the state of some other site; operations that it
initiated before the crash and never sent to another site are lost.

The situation is more complex for flattens, since they require a consensus. To ensure that
consensus is solvable in the presence of crashes, we assume the existence of fault detectors
[2].

To allow disconnected operation, fault detectors must be capable of distinguishing dis-
connection from a crash. During the commit phase of flatten, a disconnected site is assumed
to be voting No, and flatten aborts. This is distinct from a crashed site, which does not
participate in the commitment.

Similarly, stabledel should be modified to return true if all non-crashed sites have ac-
knowledged, and stableinsert should return true if all non-crashed sites have sent an opera-
tion that happens-after the insert.

Note that if a disconnected site is falsely diagnosed as crashed, any operations that it
initiated within a sub-tree that was flattened cannot be replayed, because they use now-
forgotten node identities. Such operations are lost. Similarly, if this site initiated operations
that depend on a node that was deleted and garbage-collected, then these operations are
lost.
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7 Block edits and transactions

In practice, single-character edit operations are insufficient for concurrent editing. Users
working on the same portion of text may find it unpleasant to see their edits mixed together.
Furthermore, common operations such as as cutting and pasting, or global replacement, are
block operations. We need transactions, to allow a user to insert, delete, replace or move
a block of text, without concurrent operations destroying the integrity or location of the
block.

Fortunately, a CRDT is ideal for building complex transactions out of simple operations.
Since individual operations commute when concurrent, concurrent groups of operations com-
mute as well. To ensure serialisability, it is sufficient to ensure that transactions are executed
sequentially (in any order compatible with happens-before), whether at the initiator site or
during replay.5

A transaction executes atomically (all-or-nothing), indivisibly (its intermediate results
cannot be observed) and durably (its results are observable by all later operations). We do
not see any need for nested transactions.

Since individual operations commute, a transaction never aborts, therefore transaction
support can be very cheap. All that is needed is some book-keeping of the beginning and
end of transactions, and buffering received operations to ensure sequential execution. While
a site is executing a locally-initiated transaction, it buffers remote operations, delaying their
replay until the end of the transaction. When a site receives a remote transaction, it buffers
the operations it contains until the end of the transaction is received, and replays them
all at once. Thus, begin transaction and end transaction are basically no-ops used only as
place-holders in the log.

• begin transaction opens a transaction. At the initiator site, the transaction will in-
clude all operations initiated at the same site, until the next end transaction. It is
illegal to initiate two successive begin transaction operations without an intervening
end transaction.

• end transaction closes the current transaction by the same initiator. It is illegal to
initiate a end transaction unless a transaction is open.

Considering any two transactions (or isolated operations), either one happens-before
the other, or they are concurrent. In particular, if a transaction contains an operation that
edits node N , and any operation of the same transaction is concurrent with flatten(N ′), and
N ′/+N ∨N = N ′, then the flatten operation aborts.

Note that we could now define block operations such as a block move or a global search-
and-replace. From the commutativity perspective, such new operation types are considered
equivalent to a transaction of insert and delete operations, but they can be implemented
much more efficiently.

5For the purpose of sequential execution, an operation that is not part of any transaction is considered
as a separate transaction of itself.
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8 Related work

A comparison of several approaches to the problem of collaboratively editing a shared text
was written by Ignat et al. [6].

Operational transformation (OT) [22] considers collaborative editing based on non-
commutative single-character operations. To this end, OT transforms the arguments of
remote operations to take into account the effects of concurrent executions. OT requires
two correctness conditions [22]: the transformation should enable concurrent operations to
execute in either order, and furthermore, transformation functions themselves must com-
mute. The former is relatively easy. The latter is more complex, and Oster et al. [13] prove
that all existing transformations violate it.

OT attempts to make non-commuting operations commute after the fact. We believe
that a better approach is to design operations to commute in the first place. This is more
elegant, and avoids the complexities of OT.

A number of papers study the advantages of commutativity for concurrency and con-
sistency control [1, 23, for instance]. Systems such as Psync [11], Generalized Paxos [9],
Generic Broadcast [15] and IceCube [17] make use of commutativity information to relax
consistency or scheduling requirements. However, these works do not address the issue of
achieving commutativity.

Weihl [23] distinguishes between forward and backward commutativity. They differ
only when operations fail their pre-condition. In this work, we consider only operations that
succeed at the submission site, and ensure by design that they won’t fail at replay sites.

Roh et al. [18] were the first to suggest the CRDT approach. They give the example of
an array with a slot assignment operation. To make concurrent assignments commute, they
propose a deterministic procedure (based on vector clocks) whereby one takes precedence
over the other.

This is similar to the well-known Last-Writer Wins algorithm, used in shared file systems.
Each file replica is timestamped with the time it was last written. Timestamps are consistent
with happens-before [7]. When comparing two versions of the file, the one with the highest
timestamp takes precedence. This is correct with respect to successive writes related by
happens-before, and constitutes a simple precedence rule for concurrent writes.

In the precedence design of Roh et al., concurrent writes to the same location are lost.
This is inherent to the destructive assignment operation that they consider. In ours, con-
current inserts are always coalesced, which is important in order to support co-operative
work.

In Lamport’s replicated state machine approach [7], every replica executes the same
operations in the same order. This total order is computed either by a consensus algorithm
such as Paxos [8] or, equivalently, by using an atomic broadcast mechanism [3]. Such
algorithms can tolerate faults. However they are complex and scale poorly; consensus occurs
within the critical execution path, adding latency to every operation.
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The precedence approach can be viewed as a poor-man’s total order. It does not require
an online consensus algorithm, but it loses work.

In the treedoc design, common edit operations execute optimistically, with no latency; it
uses consensus in the background only. Previously, Golding relied on background consensus
for garbage collection [4]. We are not aware of previous instances of background consensus for
structural operations, nor of aborting consensus when it conflicts with essential operations.

9 Conclusion

It was known previously that commutativity simplifies consistency maintenance, but the
issue of designing systems for commutativity was neglected. This paper suggested a new
paradigm for replication: the Commutative Replicated Data Type or CRDT, designed such
that concurrent operations commute. We prove that, under some simple and standard execu-
tion conditions, replicas of any CRDT eventually converge. This makes the implementation
of replicated systems much simpler than before. Furthermore, CRDTs support transactions
at very low cost.

However, designing a CRDT with the desirable property that no work is lost (coales-
cence) is not easy. We give a coalescing CRDT solution to the problem of a shared edit buffer,
by implementing some known techniques in a novel way (using paths in a binary tree as
invariant identifiers) and by some new techniques (abortable consensus in the background).
This is possible only because updates are not destructive.

Our techniques are not limited to this particular problem, and are generaliseable non-
destructive updates in other data structures, such as directories.

We purposely designed treedoc to support arbitrary mixtures of edit operations. We
separate out the issue of semantic constraints and conflict detection, which we study else-
where [12, 17, 20, 21]. We interpret conflicts as cases of irreducible non-commutativity. Any
real system must support a mix of data types, some coalescing, some using precedence, and
some not commutative.

Our next step in this research will be to enable peer-to-peer co-operative editing at a
large scale, by implementing treedoc within an existing text editor or wiki system. This will
enable a deeper investigation of pragmatic issues and performance studies.

A Proof of eventual consistency

We prove the following property. Assuming:

• That every operation, initiated at any site, eventually executes at all sites,

• That if o→ o′, then o executes before o′ at every site,
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• That all concurrent operations commute,

then the state of the object eventually converges at all sites.

Our proof is by recurrence over all legal execution schedules.

A.1 Notation

A multilog M = (V,H) is a directed graph, consisting of a set of operations V = {α, β, . . . }
connected by the happens-before relations H = {(x, y) ∈ V × V : x→ y}.

A schedule T = 〈α · β · . . . 〉 of a multilog is a sequential enumeration of operations
in some order consistent with happens-before. Formally, T = (L,<T ) ∈ sched((V,H)) ⇔
∀x, y ∈ L, (x, y ∈ V ) ∧ (x <T y ⇒ x 6= y) ∧ (x → y ⇒ x <T y). The sequence operator is
noted ·.

A schedule T = (L,<T ) ∈ sched((V,H)) is said complete with respect to its multilog,
iff it contains all operations, i.e., iff L = V .

Operation v extends schedule T ∈ sched(M) if 〈T · v〉 is in sched(M).

A state quasi-state is a schedule T ∈ sched(M) whose initial element is distinguished op-
eration init (denoting the common initial state). We assume that we can further distinguish
(in some application-specific manner) between illegal and legal quasi-states. Any extension
of an illegal quasi-state is itself illegal. A legal quasi-state will be called a state henceforth:
T ∈ state(M). We assume the existence of an equivalence relation between states ≡. Like
legality, equivalence is application dependent.

A.2 Recurrence proof

We require that all concurrent operations commute, i.e., given any state T and concurrent
operations x and y that extend T , the sequences 〈T · x · y〉 and 〈T · y · x〉 are states and are
equivalent. Formally: ∀T ∈ state((V,H)), ∀x, y ∈ V : x ‖ y∧〈T ·x〉 ∈ state((V,H))∧〈T ·y〉 ∈
state((V,H)), 〈T · y · x〉 ∈ state((V,H)) ∧ 〈T · x · y〉 ≡ 〈T · y · x〉

Given a set of natural numbers N = {1, 2, . . . , n − 1}, we note ρ some permutation of
N , with elements ρ(1), ρ(2), . . . , ρ(n− 1).
Theorem 2 (All complete states of M are equivalent). Let M = (V,H) be a multilog
of size |V | = n. Let T = 〈init · α1 · . . . · αn−1〉 be a complete state of M , i.e., T ∈
state(M)∧{init, α1, . . . , αn−1} = V . Let ρ be some arbitrary permutation of {1, 2, . . . , n−1},
and let Tρ denote the sequence 〈init·αρ(1) ·. . . αρ(n−1)〉. Then, if Tρ is a state, it is equivalent
to T : Tρ ∈ state(M)⇒ T ≡ Tρ.
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The proof is by recurrence. The theorem is obviously true for n = 1 and n = 2. Assume it
is true for abitrary n; we shall prove that it remains true for n+1. Let T = 〈init·α1·. . . ·αn−1〉
be a complete state of M = (V,H) where n = |V |.

Consider M ′ = (V ′, H ′) such that M ⊆ M ′ ∧ |V ′| = n+ 1. V and V ′ differ by a single
element, β. With no loss of generality, we assume that β does not happen before any element
of V , i.e., 6 ∃x ∈ V , (β, x) ∈ H ′.6 Note T ′ = 〈T · β〉.

If T ′ /∈ state(M ′) the theorem is trivially true, because T ′ is not a state. Therefore,
assume T ′ ∈ state(M ′). It follows that T ′ is a complete state of M ′.

For some permutation ρ, let T ′ρ = 〈init · αρ(1) · . . . · αρ(n−1) · β〉. Consider now the set
of sequences derived from T ′ρ by permuting the position of β:

init ;αρ(1) ;αρ(2) ; . . . ;αρ(n−2) ;αρ(n−1) ; β
init ;αρ(1) ;αρ(2) ; . . . ;αρ(n−2) ; β ;αρ(n−1)

init ;αρ(1) ;αρ(2) ; . . . ; β ;αρ(n−2) ;αρ(n−1)

. . .
init ;αρ(1) ; β ; . . . ;αρ(n−3) ;αρ(n−2) ;αρ(n−1)

init ; β ;αρ(1) ; . . . ;αρ(n−3) ;αρ(n−2) ;αρ(n−1)

If the sequence on any line is not a state, then none of the following lines is a state
either; for these, the theorem is trivially true.

The first line is precisely T ′ρ. If T ′ρ ∈ state(M ′), then, by assumption, T ′rho = 〈Tρ · β〉 ≡
〈T · β〉 = T ′.

Now examine the second line. Either αρ(n−1) ‖ β, and they commute, and therefore it
is a state equivalent to the first line, and hence to T ′; or αρ(n−1) → β, and the second line
is not a state. Similarly for all the following lines: each sequence is either not a state, or is
a state equivalent to T ′.

Thus we have proven the recurrence clause for all permutations of {1, 2, . . . , n} that are
in the same order as ρ. Furthermore, since the recurrence clause is true for all permutations
ρ of {1, 2, . . . , n− 1}, it is true for all permuations of {1, 2, . . . , n}. QED.

A.3 Eventual consistency

The above proves that, if different sites execute schedules consisting of the same set of
operations, the order of every schedule is consistent with happens-before, and concurrent
operations commute, then their final states are equivalent.

If all clients stop initiating operations, and assuming that the system transmits and
executes every operation at all sites, then all replicas converge to the same state. This is

6In other words, the operations are sorted in → order before constructing the successive multilogs.
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the traditional definition of Eventual Consistency. Our result is actually stronger, since the
final state is a correct state, and it includes all the submitted operations.

However, in a practical system, clients don’t stop initiating operations. We can prove
nonetheless that, for any time t, the state at every site eventually includes a an equivalent
prefix containing all operations up to t. Assume that initiating an operation is atomic.
Consider the set O of operations initiated at all sites up to time t, and the set O′ of
operations initiated after t. (As sites do not have access to a common clock, these sets
cannot be computed, but they exist nonetheless.)

Any operation o ∈ O is either concurrent or happens-before any operation o′ ∈ O′. If
o ‖ o′, then 〈o · . . . · o′〉 ≡ 〈o′ · . . . · o〉; we need consider only the former. If o → o′, then
the only legal order is 〈o · . . . · o′〉. The operations in O are eventually executed at all sites,
and the operations in O′ execute after. Thus the state at all sites has as common prefix the
operations in O.
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