A Framework for the Design Configuration of
Accountable Selfish-Resilient Peer-to-Peer Systems

Guido Lena Cota*, Sonia Ben Mokhtar', Julia Lawall}, Gilles Muller?,
Gabriele Gianini*, Ernesto Damiani*, Lionel Brunie'
*Universita degli Studi di Milano, TLIRIS-CNRS-INSA Lyon, *Inria/LIP6-Whisper

Abstract—A challenge in designing a peer-to-peer (P2P) system
is to ensure that the system is able to tolerate selfish nodes that
strategically deviate from their specification whenever doing so is
convenient. In this paper, we propose RACOON, a framework for
the design of P2P systems that are resilient to selfish behaviours.
While most existing solutions target specific systems or types of
selfishness, RACOON proposes a generic and semi-automatic ap-
proach that achieves robust and reusable results. Also, RACOON
supports the system designer in the performance-oriented tuning
of the system, by proposing a novel approach that combines
Game Theory and simulations. We illustrate the benefits of using
RACOON by designing two P2P systems: a live streaming and
an anonymous communication system. In simulations and a real
deployment of the two applications on a testbed comprising
100 nodes, the systems designed using RACOON achieve both
resilience to selfish nodes and high performance.

I. INTRODUCTION

Today, peer-to-peer (P2P) systems, such as file sharing (e.g.,
BitTorrent, eDonkey), live streaming (e.g., PPLIVE, Popcorn
Time), and instant messaging and voice over IP (e.g., Skype),
are among those generating the most Internet traffic [7], [8],
[9]. The success of these systems mainly resides in their
high scalability and robustness to failure, without requiring
costly dedicated servers. Common to all P2P systems, is the
assumption that nodes are willing to share their communi-
cation and computational resources with others. However, in
practice [11], [14], [20], real systems suffer from selfish nodes
that decide whether to cooperate depending on the behaviour
that increases their utility. For example, a selfish node may
choose to receive video data without sharing their data with
others, in order to save bandwidth.

A number of solutions have been proposed to deal with
selfishness in P2P systems [1], [2], [3], [17], [24], [25].
Most of these solutions rely on Game Theory for modelling
and reasoning about selfish behaviours. The classical process
for designing selfish-resilient P2P systems first requires that
the system designer exhaustively list the set of deviations
that can be performed by selfish nodes. Then, the designer
has to carefully provide an incentive/countermeasure for each
deviation he has identified. Finally, the designer uses game
theoretic arguments to prove that the resulting system is a Nash
Equilibrium [27]. This proof guarantees that the best strategy
for selfish nodes, with respect to a known utility function,
is to conform to the system specification. However, carrying
out this process is complex, time consuming, and error prone,
especially for designers that are not experts in Game Theory.

An alternative solution to the above static approach, is
to employ recent accountability mechanisms (e.g., FullRe-
view [13], Lifting [17], and PeerReview [19]), with the goal of
dynamically forcing nodes to be responsible for their actions.
Noteworthy among these mechanisms is FullReview, which
appears to be the only one specifically designed for dealing
with selfish nodes. In an accountable system, each node main-
tains a secure log to record its interactions with other nodes.
Each node is further associated with a set of monitor nodes,
which periodically check whether the log entries correspond to
a correct execution of the underlying protocol. If any deviation
is detected, then the monitors build a proof of misbehaviour
that can be verified by any correct node, and a punishment
is inflicted on the misbehaving one. However, while making
nodes accountable for their actions may constitute an effective
incentive for selfish nodes to be cooperative, configuring
accountability mechanisms for building a selfish-resilient P2P
system is a challenging task.

The configuration of accountability mechanisms requires
that the system designer select values for a number of pa-
rameters (e.g., number of monitors, frequency of audit, degree
of punishment) that directly affect the system performance
(e.g., bandwidth utilization and delay). In the literature [13],
[18], [19], no indication is provided for the setting of these
parameters. Indeed, the calibration of accountability mecha-
nisms should satisfy conflicting requirements: on the one hand,
it should provide the desired resilience to selfish behaviours
without wrongly penalizing correct nodes, and on the other
hand, it should impose minimal overhead. Resolving these
constraints requires the systematic analysis of a large number
of experiments/simulations, exploring the impact of the value
of each parameter on the system performance. Moreover, such
experiments require the ability to inject and to automatically
reason about selfish deviations, which is not currently sup-
ported by existing simulators (e.g., PeerSim,! NS-3%).

In this paper, we propose RACOON, a design and simulation
framework to stimulate cooperation in a P2P system with
selfish nodes, while achieving desired performance objectives.
Specifically, RACOON provides a semi-automatic methodol-
ogy, along with a set of internal and external tools, that offers
an end-to-end and easy-to-use support for system designers.

The integrated framework is composed of two parts. The

PeerSim: http:/peersim.sourceforge.net/
2NS-3: https://www.nsnam.org/

design part first allows the system designer to specify the
communication protocols of a desired P2P system, along
with a set of performance and selfish-resilience objectives.
Then, this part integrates into the specification two cooperation
enforcement mechanisms, namely, an accountability system
for detecting misbehaviours, and a reputation system to assign
rewards and punishments. The design part proceeds automat-
ically and extends the specification of the communication
protocols with selfish deviations, assuming a common utility
function for all nodes. Similarly to previous work [1], [25], the
shape of this function accounts for the costs and benefits that
a node derives from sharing resources with others. Finally,
the design part includes an automatic tool to transform the
extended specifications of communication protocols into a set
of games (one per protocol), which provide the mathematical
framework to reason about the behaviour of a selfish node.

The game models are the input of the second part of the
framework, which automatically configures the cooperation
enforcement mechanisms. To this end, RACOON includes a
simulation module to explore the configuration space, using
the game models to drive the behaviour of selfish nodes. The
simulator returns a configuration file, such that, when applied,
the resulting system can meet the objectives specified in the
design part. Based on this result, the system designer can
implement the P2P system, as well as its actual integration
with the cooperation enforcement mechanisms.

We demonstrate the simplicity and effectiveness of using
RACOON by designing two selfish-resilient P2P systems:
a live streaming system and an anonymous communication
system based on the onion routing protocol [16]. Simulations,
as well as complementary performance evaluations involving
100 clients on a cluster of real machines, show that the live
streaming system configuration chosen by RACOON allows
correct nodes to visualize a stream of good quality in the
presence of selfish nodes. Also, this configuration allows to
meet a set of performance requirements set by the designer,
like limiting the bandwidth overhead to a fixed threshold.

In summary, our work makes the following contributions:

e RACOON proposes an automatic method to generate self-
ish deviations from any communication protocol specified
using the framework;

e RACOON is able to perform simulations involving game
theory to reason on the dynamics of selfish behaviours;

e RACOON proposes an automatic and reasonably fast
configuration method for an accountability and reputation
mechanism in a P2P system. Such configuration takes less
than 20 minutes to meet the selfish-resilient and perfor-
mance objectives set by a designer on a P2P system;

e RACOON simulations are accurate compared to the
performance of the corresponding real system, with a
maximum difference confined to less than 1%.

The rest of the paper is organized as follows. Section II
presents background on accountability mechanisms and their
configuration. Section III presents an overview of RACOON,
followed by a detailed description of its two essential com-
ponents: the design part (Section IV), and the game-based

simulation part (Section V). Section VI presents a performance
evaluation of RACOON. Finally, Section VII presents related
work, and the paper concludes in Section VIII.

II. BACKGROUND

Recent successful solutions for enforcing accountability in
distributed systems (e.g., [13], [17], [18], [19]) rely on secure
logging and monitoring mechanisms. We focus on FullRe-
view [13], which enables accountability in the presence of
selfish nodes. FullReview applies to a set of nodes N executing
a set of protocols P, defined as deterministic state machines.
As part of P, each node 7 interacts with a set of nodes referred
to as ¢’s partners. When deploying FullReview [13], each node
¢ maintains a secure log that is tamper-evident and append-
only, in which ¢ records all its interactions with its partners.
Further, each node i is assigned a set of monitor nodes that
periodically verify whether ¢ sticks to the specification of P. If
any deviation is detected, ¢’s monitors inflict a punishment on
i, which could vary from the eviction of i to the reduction of
its reputation value, if the system is coupled with a reputation
management system.

While enforcing accountability can constitute an effective
incentive for selfish nodes to behave cooperatively, configuring
the accountability mechanisms in order to discourage selfish
behaviours, without excessively degrading performance, is a
challenging task. Among the parameters to set are:

o The number of monitors associated to each node. More
monitors implies more computation and communication
overhead;

o The audit period: the period between two log audits
initiated by a node’s monitors;

o The probability of audit: the probability that a monitor
audits its monitored nodes at the end of each audit period;

e The reward/punishment function: the way in which
nodes are rewarded (resp. punished) in the case of a
successful (resp. unsuccessful) audit.

The last parameter is crucial as setting weak punishments
may increase the number of selfish deviations while setting
strong punishments may lead to the wrongful eviction of a
correct node if the network is not reliable (e.g., in a mobile
environment), or if the node gets suddenly disconnected (e.g.,
characterized by churn in P2P systems).

To illustrate some of the crucial design decisions that
the system designer might deal with when setting up these
parameters, we performed an experiment, involving a gossip-
based live streaming protocol monitored by FullReview. In this
protocol, a source node disseminates a set of video chunks
to a subset of nodes over an unreliable network. Periodically
each node sends the video chunks it received to a set of
randomly chosen partners, and asks them for any video chunks
it is missing. In our experiment, we assume that the system
designer aims at designing a selfish-resilient live streaming
protocol in which: (1) correct nodes do not experience more
than 3% jitter despite the presence of up to 50% selfish nodes;
(2) correct nodes are not wrongfully expelled from the system
even if the network suffers from up to 5% of message loss and

=k % Wrongful Evictions
—A— % Deviations

Acceptable % Deviations
Acceptable % Wrongful Evictions

0,5 1 1,5 2 2,5 3
Severity of Punishment

Fig. 1: Impact of the punishment values.

(3) the average bandwidth consumption per node including
both the video stream (which already consumes 600Kbps)
and the accountability mechanisms does not exceed 1Mbps.
To reach this objective, we start with the FullReview default
configuration (i.e., the audit period being 10 seconds, and the
probability of audit being 1) and vary the degree of punishment
inflicted on nodes by the accountability mechanisms.

Fig. 1 shows the percentage of correct nodes wrongly
evicted by FullReview and the percentage of selfish deviations
observed in the system for various values. In our experiment,
less than 10% selfish deviations for the selfish nodes translates
into an experienced jitter lower than 3%. The results show
a clear increase in the percentage of correct nodes wrongly
evicted from the system. Nevertheless, the punishment values
1 and 1.5 satisfy the first two requirements set by the designer.
We thus go further and measure the communication overhead
incurred in the system for 1.5, which has the lowest % of
deviations, while varying the FullReview audit period, as
this parameter highly impacts the communication overhead.
The results, depicted in Fig. 2, show that, on the one hand,
increasing the audit period decreases the overhead, because
logs are requested and audits are made less often by monitors;
on the other hand, the longer the audit period, the slower
deviations are deterred, thereby increasing the percentage of
selfish deviations. However, none of the tested values achieves
a bandwidth consumption that meets the third requirement set
by the designer. The designer has thus to continue the manual
calibration process by testing other pairs of parameter values
and running further experiments.

From this experiment, it is clear that manually calibrating
accountability mechanisms in order to reach both selfish-
resilience and performance objectives is a challenging task.
We show in the following sections how RACOON helps the
system designer automatically reach these objectives.

III. RACOON OVERVIEW

To help a system designer build a selfish-resilient P2P
system, we propose the design and simulation framework
RACOON. As depicted in Fig. 3, RACOON is composed of
two main parts: the design part and the game-based simulation
part. We give an overview of these parts here, and then provide
more detail in Sections IV and V, respectively.

The input of the design part is a system specification
provided by the system designer. This specification, referred to

—k— 9% Bandwidth Overhead
50 —A— % Deviations

40
Acceptable % Bandwidth Overhead

30

20

Acceptable % Deviations

5 10 15 20 25 30
Audit Period

Fig. 2: Impact of the audit period.

as P in Fig. 3, contains a set of deterministic state machines,
describing communication protocols composing the P2P sys-
tem under consideration as well as a set of performance and
selfish-resilience objectives. Then, RACOON integrates into
the provided specification accountability and reputation mech-
anisms configured with a default configuration (Step (1) in the
figure). These mechanisms are used to detect selfish deviations
and to reward/punish nodes in case of positive/negative audits,
respectively. RACOON then automatically extends the state
machines with new transitions that represent selfish deviations,
according to a selfishness model provided by RACOON (Step
(2) in the figure). Finally, RACOON transforms the extended
state machines into games (Step (3) in the figure).

The games produced by the first part of RACOON, are used
as an input of the second part, i.e., the game-based simulator.
The objective of this part is to produce a configuration file
for both the accountability and reputation mechanisms that
satisfies the performance and selfishness-resilience objectives
set by the designer. This is done using game-theory driven
simulations that are automatically carried out by RACOON.
Specifically, each time an action of a selfish node needs to be
simulated (Step (5) of the figure), RACOON refers to the game
analysis (Step (4) in the figure) to identify the best strategy to
adopt from the point of view of the selfish node (i.e., whether
the latter should stick to a given protocol step or deviate from
it). Once RACOON has found a set of configuration values for
both the accountability and reputation mechanisms that meet
the objectives set by the designer, the latter can proceed with
the implementation of his system. This is done by invoking
API calls to the accountability mechanisms employed and
configuring them as prescribed by RACOON.

IV. RACOON DESIGN PART

In this section, we present the design part of RACOON.
We first present the specification model, then the process by
which RACOON generates selfish deviations, and finally the
transformation of the specification model into a set of games.

A. RACOON Specification Model

RACOON includes a specification model to assist the system
designer in correctly describing all the information required by
the framework. This model allows describing the functional
specification of the P2P system, the list of objectives that
the system must fulfill, and the initial configuration of the

DESIGN GAME-BASED SIMULATION
CP O @ (©) “) ®)
Q | Cooperation _ | Selfish Deviation _ | Game _ | Game Discrete-Event > Config
Q ‘ "| Enforcement g Generation " | Mapping J ‘ " Analysis |e Simulator File
P

Fig. 3: RACOON Overview.

cooperation enforcement mechanisms. To illustrate our model
and in the rest of this paper, we use the communication
protocol R&R (Request & Response) shown in Fig. 4. In this
protocol, a node ry sends a request message gp to a group
of nodes collectively named R; (the capital letter denotes a
set of unique nodes), and upon receiving go, each node in R;
replies with a response message ¢ .

Iy —» 1-1 message
request(g,) 1

R response(g,) — n message

1

Fig. 4: The R&R protocol between nodes ry and Rj.

1) Functional Specification: The functional specification P
of a P2P system is provided by means of communication
protocols: a set of rules of interaction that define what actions
(i.e., methods) each node can take at each step. RACOON
describes each communication protocol in P as a deterministic
finite state machine, called a Protocol Automaton. A Protocol
Automaton is a tuple (R, S, so, F, T, Meth,G,C, V), where:

e R # (), is the set of Roles that a node may undertake in
the protocol. A role can represent either a node or a group
of unique nodes. For example, in the protocol R&R, there
are two roles: ro and R;, where R; corresponds to the
set of recipients of the message go. The cardinality of a
role denotes the number of nodes that it represents. More
formally, a role r € R is a tuple (id, cardinality);

o S # (), is the set of States that the system goes through
when implementing the protocol. Some special states are:
the start state sg, and the non-empty set of final states
F C S, in which the protocol terminates.

o T #(, is the set of state Transitions. A transition t € T'
is a tuple (id, statel, state2, method), where statel
and state2 € S are the source and target states, and
method € Meth is the method that triggers ¢;

o Meth # (), is the set of Methods. There are two types of
methods: a communication method represents the deliv-
ery of a message from one role to another; a computation
method refers to local computations. For instance, in
Fig. 4, request is a communication method that sends
a message go to R;. Formally, a method m € Meth is
a tuple (id, invoker Role, message), where message is
defined only for communication methods;

e GG is the finite set of Messages conveyed by com-
munication methods. A message ¢ € G is a tuple
(id, recipient Role, content), where content is the con-
tent carried by the message;

o C'is the set of Contents delivered by the messages. A con-
tent ¢ € C is either a single data-unit (e.g., a binary file),
or a collection (e.g., a list of integers). The specification
model defines ¢ as the tuple (id, ctype, size, collection),
where ctype is the data type,’ size is the memory size
of a single data-unit in ¢ (given in bytes), and collection
is a boolean value (i.e., true if ¢ is a set of data-units);

e V is the set of content Constraints. A constraint pre-
scribes a relationship that has to be fulfilled by two
contents. A constraint v € V' is a tuple (id, c1, ¢2, vtype),
where the two contents ¢l and ¢2 € C are subject to
the relationship defined in vtype. Specifically, vtype can
identify either an ordering relation (e.g., =,<,>) or a
set operation (e.g., subset, equal).

A Protocol Automaton can be represented by means of a
state diagram. Fig. 5 shows the state diagram of the R&R
protocol. The label on a transition provides information about
the method that triggers the transition, and about the message
that might be sent. For example, the label between states s;
and so, indicates that role R; invokes the communication
method response, which conveys the message g; to role rg.

2) System Objectives: The specification model includes the
list of selfish-resilience and performance objectives that the
target system must satisfy. Each objective defines a thresh-
old value for a system metric that can be measured in the
RACOON simulator (e.g., number of messages sent/received,
number of audits performed). RACOON natively supports the
definition of three kinds of objectives:

o Deviation rate: the frequency of the deviations per-
formed by selfish nodes;

« Bandwidth overhead: the bandwidth consumed by the
cooperative enforcement mechanisms M

« Wrongful eviction rate: the percentage of correct nodes
wrongly evicted, due to false-positive accusations.

3) Cooperation Enforcement Mechanisms: RACOON au-
tomatically integrates a set of accountability and reputation
mechanisms into the system specification. Specifically, in ad-
dition to the P protocols described by the designer, RACOON
applies to each node the FullReview accountability protocols,
and the reputation system used by RACOON. We refer to
the accountability and reputation protocols as the M protocol.
FullReview contains a set of verification protocols including
an audit protocol and an evidence-transfer protocol. These
protocols are periodically executed by nodes to monitor their
partners and exchange information about their partners’ status.

3Defined by the XML Schema type system.

6 r.request(g,, R,) QRl.response(gl. r) O
) e ~(=)

Fig. 5: The Protocol Automaton of the R&R protocol.

The reputation system, on the other hand, only contains com-
putational methods that are triggered by monitors to update the
reputation value of a node after an audit. The state machines
corresponding to both kinds of protocols are described in detail
in the companion technical report [23].

As introduced in Section II, FullReview and the reputation
system have to be configured with respect to the audit period,
the probability of audit, the number of monitors, and the
reward/punishment function, respectively. At this stage of the
process, these parameters are given their default value.

B. Generating Selfish Deviations

The utility that a node obtains from participating in a P2P
system is given by: (1) the benefits, i.e., the positive value
obtained by consuming resources; and (2) the costs, i.e., the
negative value obtained due to the cost of sharing resources.
The utility function is a mathematical model that evaluates the
choices facing a node in terms of these quantities.

A selfish node decides whether to stick to the protocol
specification or to deviate from it, depending on which option
maximizes the utility function. In the context of cooperation,
a selfish node can increase its utility by reducing the cost of
sharing resources. In this paper, we consider only deviations
that aim at saving bandwidth consumption, leaving the inves-
tigation of other types of selfishness (e.g., computational or
information-related) for future work.

In a communication protocol, the bandwidth consumption

depends on the number and size of the messages that are
exchanged between nodes. RACOON automatically generates
three types of communication-related deviations: (1) timeout
deviation: the node does not perform the prescribed method
within the time limit; (2) subset deviation: the node sends
a subset of the correct message content; and (3) multicast
deviation: the node sends a message to a subset of the legiti-
mate recipients. Alg. 1 shows the pseudo-code for generating
the deviations listed above. The algorithm, called CDG, takes
a PA as input, and extends it with new elements (states,
transitions, roles, etc.) representing deviations. Hereafter, we
describe the pseudo-code in more detail.
Timeout Deviations. For each non-final state s € S, the algo-
rithm generates a timeout deviation by calling the procedure
GenTimeoutDev (line 3 in Alg. 1). This method creates a new
final state s’ and a new empty transition connecting s with s.
Subset Deviations. For each outgoing transition t € OT of
every non-final state, such that ¢ is triggered by a communica-
tion method, the algorithm checks whether the content c is a
collection of data-units (line 7). If so, line 8 calls the procedure
GenSubsetDev, which creates new elements to represent the
deviation. In particular, the procedure creates the new content
¢ (line 19), which has the same data type and size as c, but
has a single data-unit.

Alg. 1: Pseudo-code for the CDG algorithm, which gen-
erates communication-related deviations.

Data: A Protocol Automaton PA.

Algorithm CDG (PA)
foreach non-final state s do
r := s.activeRole
CreateTimeoutDev(s)
OT := outgoing transitions of s
foreach transition t € OT s.t. t.method.message # null do
¢ := t.method.message.content
if c.collection then
| CreateSubsetDev(t, c)
if t.state2.activeRole.cardinality > 1 then
10 | CreateMulticastDev(t)

[N . S I S

-~

rocedure GenTimeoutDev (s)

1 s’ := (new_sld, s.activeRole, s.audit)
12 m’ := (“timeout”, s.activeRole, 0)
13 t' := (new_tld, s, s’, m’)

14 add s’, m’, and t' to PA

Procedure GenSubsetDev (f,¢)

15 s’ := (new_sld, t.state2.activeRole, t.state2.audit)
16 ¢’ := (new_cld, c.ctype, c.size, false)

17 updateConstraints(c’)

18 m := t.method; g := m.message

19 g’ := (new_gld, g.recipientRole, ¢’)’

20 m' := (new_mld, m.invokerRole, g’)

21 t' := (new_tld, t.statel, s’, m’)

2 add ', ¢/, ¢/, m', and t' to PA
23 copyOutgoingTransitions(s’,t.state1)

Procedure GenMulticastDev (1)

24 7‘ := (new_rld, 1)

25 s’ := (new_sld, u’, t.state2.audit)

26 m := t.method; g := m.message

27 g = (new_gld u’, g.content)’

28 m’ := (new_mld, mmvokerRole)
29 t' := (new_tld, t.statel, s’, m’)

30 add 7/, s’, g/, m’, and t' to PA

31 copyOutgoingTransitions(s’,t.state1)

Multicast Deviations. For each outgoing transition ¢t € OT of
every non-final state, such that ¢ is triggered by a communica-
tion method, the algorithm checks whether the recipient of the
message sent during ¢ has a cardinality larger than 1 (line 12
in Alg. 1). If so, line 10 calls the procedure GenMulticastDev
to create the role r’ (line 27) with a smaller cardinality than
the correct one (i.e., cardinality 1).

Fig. 6 shows the result of executing the CDG algorithm
on the Protocol Automaton PA of Fig. 5. In the correct
execution of PA, in the initial state sg, the role ry sends a
message (go) to R;. However, if r(is played by a selfish
node, he may also (from top to bottom in Fig. 6): timeout
the protocol, send a message with a smaller payload (g), or
send go to a subset of recipients (RY).

C. Game Mapping

The Protocol Automaton extended in the previous step de-
scribes possible behaviours of selfish nodes, but gives no indi-
cation of the likelihood of any particular behaviour. RACOON
uses Game Theory [27] to address this issue. Specifically, the
framework provides an automatic tool to translate the P A into
a game, referred to as the Protocol Game PG. This game
provides the necessary structure to support the next step of

r,.request(g,, R,) R,.response(g,, r,)
s)

20

r,timeout()

r.request(g, R)) R,.response(g,, r,)

Fig. 6: The Protocol Automaton with selfish deviations.

RACOON, i.e., the game-based simulations. The process by
which this game is generated is described below.

Game type and Players. The Protocol Automaton PA is
modelled as a non-cooperative sequential game among self-
interested players [27]. Each player is assigned to exactly one
role r € R. The game is non-cooperative because each player
competes against the others for maximizing his own utility. At
the same time, the game is sequential because players have a
specific order of actions to follow, as specified by PA.

A sequential game is usually represented as a tree, also
called extensive form representation [27]. A node in PG is
derived from a state in PA, and is labelled with the player
who has to move. Each leaf in PG translates to a final state
in PA, while each edge in PG corresponds to a transition in
PA. Edges in PG are labelled with actions, which correspond
to methods m defined in PA. The sequence of actions that
a player p; might choose in a play constitutes his strategy.
A strategy profile is a vector specifying a strategy for every
player. Fig. 7 shows the extensive form representation of the
game derived from the R&R protocol.

response

response response

10,5 -1000,3 -1000,5 -1000,0

Fig. 7: The Protocol Game derived from the R&R protocol.

Utility function and payoffs. The utility function of a player
assigns a payoff to every possible game outcome (i.e., the
result obtained in correspondence to a strategy profile). The
utility function implemented by RACOON has two terms: the
cost k of sharing resources, and the incentives provided by
the cooperation enforcement mechanisms.* Because in this
paper we only consider communication-related selfishness, & is
calculated as the bandwidth necessary to implement a certain
player’s strategy. Furthermore, we calculate incentives as a
function p of the reputation variation AR determined by an
audit. Note that AR also depends on the current reputation of
the node, for the definition of the reputation update function.

4We assume that all players obtain the same benefit from playing the game.

Formally, we write the utility u; for player p; when imple-
menting his strategy o; as follows:

ui(0i) = —k(0i) + p(AR)

The definition of p(AR) takes into account the following
considerations. The selfish nature of players encourages them
to deviate from the protocol as much as possible (to save
resources), as long as this can be accomplished without
causing their eviction from the system. Therefore, if a player’s
reputation increases at a point in time (AR > 0), then he
is more likely to deviate in the future, as he will be further
from the eviction threshold than before. In this case, the
function p assumes a positive value, which corresponds to
a payoff increment. Likewise, on the contrary, p assumes a
negative value if a player’s reputation decreases (AR < 0).
A particular case is if the reputation value goes below the
eviction threshold, in which case the player is evicted from
the system. This negative event by itself corresponds to a cost,
conventionally set at a very high nominal value.

In Fig. 7, the pairs of numbers (one for each player) below
each leaf are the payoffs, which express the utility of playing
the strategy that terminates in that leaf. In the following, we
briefly discuss how some of the payoff values in Fig. 7 are
obtained. Let us consider the following setting of the R&R
protocol. The role ry has to send a request message go to
role Ry, with R; having cardinality 5. The request message
conveys a content cgo: a list of n = 10 boolean values, each
of size 1 byte. Thus, for instance, the communication cost k
for player po when playing the strategy o; (i.e., sending the
correct request message) is:

k(o1) = Ry.cardinality x (cp.size x n) = 50

Let us assume that the execution of M returns: AR = 1
when pg chooses the correct strategy o1, and AR = —1
otherwise (i.e., selfish deviations). Fig. 7 illustrates a possible
payoff structure that can be obtained from the above setting,
in which p(1) determines a payoff increment of 60, and
p(—1) determines a payoff decrement of —1000.

V. RACOON GAME-BASED SIMULATION

We now describe how RACOON computes a configuration
for the accountability and reputation mechanisms that ensures
the enforcement of the system objectives set by the system de-
signer. This is realized in two interleaving phases: simulation
and game analysis.

The simulation phase explores the space of the parameters
presented in Section II, searching for a setting that reaches
the objectives defined by the system designer. The automatic
approach adopted by RACOON is to simulate the target system
in different regions of the parameter space, using game-
theoretic analysis to drive the behaviour of selfish nodes. The
exploration ends when a configuration satisfying the system
designer’s objectives is found.

The RACOON framework includes a discrete-event simula-
tor for P2P overlay networks, which uses as input the specifi-

cation P of the system (extended with selfish deviations), and
the objective requirements to achieve. This simulator supports
a cycle-based simulation model. Specifically, at each cycle,
every node executes P in turn. Correct nodes will never deviate
from the correct implementation of P, while the behaviour of
selfish nodes can change from one cycle to another according
to the action that maximizes their utility.

To simulate the behaviour of selfish nodes, the RACOON
simulator (R-sim) interacts with the game-theoretic tool (GT-
tool) included in the framework. At each simulation cycle, and
for each Protocol Automaton PA € P, R-sim and GT-tool
interact as follows: (1) GT-tool translates P A into a Protocol
Game PG, and configures it with the current reputation of the
interacting nodes (provided by R-sim); (2) GT-tool conducts a
game analysis to identify the best strategy of each node; (3)
GT-tool returns the obtained strategies to R-sim, so that they
can be executed in the simulation.

The game-theoretic analysis performed at step (2) de-
termines the possible steady states of PG, which are the
equilibrium points. RACOON uses the Sequential Equilibrium
(SE) solution [27], a refinement of the Nash Equilibrium for
sequential game with imperfect information. To find the SE of
PG, GT-tool uses Gambit,® an open-source library of tools for
solving non-cooperative games. Specifically, Gambit imple-
ments the algorithm by Koller, Megiddo and von Stengel [22],
using linear programming. In the Protocol Game of Fig. 7, the
SE found by Gambit is the strategy profile (request, response),
which indicates that the expected behaviour of players py and
p1 1s to execute the methods named request and response,
respectively. The RACOON simulator uses this information
to simulate simulates the players’ behaviour accordingly. For
example, if at a given turn the equilibrium strategy of a selfish
node is to perform a timeout deviation, then the simulator will
skip any execution of the communication protocol of that node
in that turn.

A single simulation allows verifying the selfish-resilience
and performance guarantees offered by a given configuration
of the accountability and reputation mechanisms. To find a
configuration that meets all the objectives set by the designer,
RACOON explores the space of configuration parameters using
a greedy algorithm optimized with a set of heuristics. For
instance, if when simulating a given configuration the overhead
is already above the threshold fixed by the designer, RACOON
will not increase the number of monitors, the probability
of audit or the audit period in the next configuration to be
explored as this would further increase the overhead. We show
in the following section that thanks to our heuristics, RACOON
manages to converge in a reasonable time (18 minutes on
average). We plan to investigate more optimized exploration
algorithms (e.g., simulated annealing) in future work.

The outcome of the simulator is a configuration of the coop-
eration enforcement mechanisms that reaches all the objectives
of the system designer. If no configuration is found (which
may happen if the specified objectives are contradictory), the

SGambit: http://sourceforge.net/projects/gambit/

—» 1-1 message
m—- | -1 MESSAgE

S
propose(g,) serve(g,)
request(g,)
C

Fig. 8: The sequence diagram of the 3P gossip protocol.

simulator asks the designer to relax some of his objectives.
Once a configuration is found, the system designer proceeds
with the implementation of the P2P system, in which he
integrates the FullReview API calls configured using the
configuration file provided by RACOON. In our future work,
we further aim at automatizing the implementation step, by
extending RACOON with a new module for the generation
of executable code. There already exists good solutions for
generating code (e.g., MACE [21]), which we plan to integrate
in the future version of our framework.

VI. EVALUATION

In this section, we demonstrate the benefits of using the
RACOON framework to design selfish-resilient P2P systems.
First, we assess the design effort required by the system de-
signer to specify the P2P live streaming protocol of Section II,
along with a set of objectives he wants to achieve. Second, we
assess the effectiveness of RACOON by comparing the quality
of a configuration it finds with a set of FullReview config-
urations. Third, we assess the accuracy of the simulations
performed by RACOON compared to a real implementation
of the accountable live streaming system. Further, we evaluate
the performance of RACOON by measuring the average time
necessary to find satisfactory configurations in 30 different
use cases. Finally, we show the degree of re-usability of the
RACOON specification and simulation code by evaluating the
effort required by the system designer to specify and simulate
an anonymous communication protocol starting from the live
streaming protocol.

A. RACOON Design Effort

We show in this section, the effort necessary for the system
designer to describe a live streaming system using RACOON.
The functional specification of this system, briefly introduced
in Section II, defines the three-phase (3P) gossip-based pro-
tocol studied in [17] and depicted in Fig. 8. This protocol
involves two roles: the supplier S proposes the set of chunks
it has received to a set of consumers C, which in turn request
any chunks they need. The protocol ends when S sends to C'
the requested chunks. This protocol is executed periodically by
the set of nodes participating in a live streaming session. Each
chunk is associated with an expiration time (i.e., the play-out
delay). A node can only playback the chunks that have not
yet expired. Fig. 9 illustrates the Protocol Automaton of the
3P gossip protocol. The full RACOON specification of this
protocol is found in the companion technical report [23].

In our experiment, we assume that the system designer
wants to set the objectives introduced in Section II:

Obj.1 A deviation rate lower than 10%;

ro0® o eq“es\k" o el

Fig. 9: The roag<r)r§:eotl3 Automaton é)lmtu gu?(’){f 20ss griengltlct)col.
Network size (nodes) 1000 100
Broadcast bandwidth (Kbps) 600 600
Partner set size (nodes) 7 7
Play-out delay (rounds) 6 6
Bandwidth capacity (Kbps) 1000 1000

TABLE I: Simulation and Real Deployment Parameters.

Obj.2 A bandwidth overhead lower than 40%;
Obj.3 A wrongful eviction rate lower than 10%.

Overall, the XML specification of this protocol contains
48 lines. In addition to writing this specification, the system
designer has to develop a new module for the RACOON
simulator, which implements the P2P live streaming system
model. The implementation classes of this module contain
500 lines of code (LOC). This includes the implementation
of the 3P gossip protocol and custom monitors to measure
live-streaming metrics (e.g., the number of chunks transmit-
ted/received). The overall simulation code of this application
further uses 3200 LOC provided by RACOON libraries (e.g.,
the simulation engine, the exploration algorithm, FullReview,
and the reputation system).

B. Meeting System Objectives Using RACOON Simulations

Given the above specification and the corresponding simula-
tion code, RACOON explores the space of possible configura-
tions by running a set of simulations to find a configuration that
satisfies the objectives set by the designer. To carry out these
simulations, we configured the live streaming system using the
parameters depicted in the second column of Table L.

The configuration proposed by RACOON is depicted in
the last column of Table II. We compare the performance
of this configuration with the five FullReview configurations
depicted in the same table. We selected these configurations
by varying two parameters: the audit period and the severity
of the punishment. The first four configurations correspond to
four combinations of low and high values of these parameters
(referred to as L and H, respectively in the configuration
names). These values are the lowest and highest values tested
in the experiments of Section II, respectively. Besides these
combinations, we selected the best configuration found in
Section II (labelled M-M in Table II) as it already satisfies
the first two requirements set by the designer.

Fig. 10 shows the simulation results of the six configura-
tions. The RACOON configuration is the only one that fulfills

L-L | L-H | H.L | H-H | M-M | RACOON
Audit Period 5 5 30 30 15 5
Punishment 0.5 3.0 0.5 3.0 1.5 1.0
Prob. of Audit | 1.0 1.0 1.0 1.0 1.0 0.5

TABLE II: FullReview Configurations

500 OL-L mL-H #@H-L
40 H-H OM-M ERACOON

/

1

% Wrongful Evictions

Fig. 10: RACOON vs FullReview Configurations.

\\\\\\\\\\\\\\\\

..
%
.
%

7_

% Deviations % Bandwidth Overhead

all the design objectives, which are depicted as horizontal
dotted lines in the figure. Furthermore, this configuration
provides up to 33% fewer deviations, 42% fewer wrongful
evictions and 17% lower overhead than the others.

C. Simulation Compared to Real System Deployment

To demonstrate the accuracy of RACOON simulations, we
implemented a prototype of the live streaming protocol de-
scribed above. We configured the accountability and reputation
mechanisms using the parameters depicted in the last column
of Table II. Then, we deployed the prototype on a cluster of
real machines.® Specifically, we run 100 clients on 10 eight-
core physical machines. Each machine is clocked at 2.5GHz
with 32GB of RAM, and is interconnected with the others
via a Gigabit switch. We performed our experiment in this
environment in order to measure the impact of selfish nodes on
the observed jitter without the risk of fluctuating networking
conditions. Otherwise, it would be difficult to assess whether a
deteriorated stream quality comes from selfish nodes or from
the transient network.

The third column of Table I describes our experimental
settings. Note that the only difference with the simulation
settings is the number of nodes in the network. In this
experiment, we measure the jitter experienced by correct nodes
as a function of the fraction of selfish nodes in the system.

Fig. 11 presents the results of our evaluation. This figure
contains a curve showing the impact of selfish nodes on
traditional Gossip (i.e., without any accountability mecha-
nisms) as well as the two curves for the system designed
using RACOON. The "SIM - RACOON” curve is obtained
using RACOON simulations, whereas the "G5K - RACOON”
curve is obtained using the real deployment. From this figure,
we observe that without accountability mechanisms, correct
nodes experience 10% jitter with only 10% of nodes behaving
selfishly, which prevents them from watching the video stream.
Further this figure shows that the simulated curve and the real
one, overlap up to the inclusion of 50% of selfish nodes in the
system. Above this value the curves still exhibit a comparable
shape. Finally, this figure shows that despite 90% of nodes
becoming selfish, the configuration found by RACOON allows

6Grid’5000: http://www.grid5000.fr

correct nodes to watch the video stream with a jitter lower than
3%, which reflects the effectiveness of RACOON.

100 N
/‘/‘/*/‘—T/rw;i:nal Gossip
10

% Jitter

Acceptable Jitter Rate G5K - RACOON
| ;?Ax;—k—x—x—éiﬁl”ﬁ
SIM - RACOON
0,1
10 20 30 40 50 60 70 80 90

% of selfish nodes

Fig. 11: Simulation vs real deployment (logarithmic scale).

D. RACOON Execution Time

To evaluate the time necessary for RACOON to find a
satisfactory configuration, we performed the following ex-
periment. First, we defined a set of 30 different scenarios
in the live streaming application. Each scenario is a unique
combination of the following elements: system objectives,
simulation settings (e.g., number of nodes, bandwidth capacity,
play-out delay), percentage of selfish nodes in the system, and
message loss rate. Second, we measured the number of con-
figurations that RACOON explores in each case before finding
a satisfactory solution. Finally, we average these numbers
over the total number of scenarios that have been considered.
The results show that, for each scenario, an average of 26
configurations are explored by RACOON before finding a sat-
isfactory one. Considering that each configuration corresponds
to one executed simulation, and that each simulation lasts
approximately 42 seconds,’ the exploration algorithm takes on
average about 18 minutes to complete. This duration appears
to be reasonable as all the activities performed by RACOON
are done offline at design time.

E. RACOON Expressiveness

We conclude this section by illustrating the generality of our
framework. To this end, we use RACOON to design an anony-
mous communication protocol based on the Onion Routing
protocol [16]. In Onion Routing, when a source node wants to
send a message to a destination node, it builds a circuit of relay
nodes. The source node changes the circuit periodically, and
relays can support many circuits simultaneously. To achieve
anonymity, the source uses the public key of each relay
along the circuit to successively encrypt the message, which
constitutes an onion. Fig.12a illustrates the protocol enabling
the forwarding of onions. In this protocol, each relay R: (i)
receives onion messages from their predecessor in the circuit
(PR); (ii) decrypts the external layer of each onion; (iii)
forwards the resulting onions to their respective successor N R.

To design a selfish-resilient onion forwarding protocol using
RACOON, the system designer follows the same steps we have

7Average value over 1000 simulations, run on a 2.8 GHz machine with 8
GB of RAM.

NR

PR.relay(msg,,R)
unwrap(msg,)

R.unwrap(msg,)

relay(msg,)

@@*@*

——» Local computation Rrelay(msg NR)

v N-1 Message = 1-n message

(a) Forwarding protocol (b) Protocol automaton

Fig. 12: Onion Forwarding Protocol.

seen to design the live streaming system. First, he provides
the RACOON specification of the system. Due to space lim-
itations, we provide the full specification in the companion
technical report [23]. This specification describes three roles,
which are the relay R, and its previous (PR) and next (N R)
hops. Note that PR and N R have cardinality n > 1, because
they represent a set of relay nodes. The Protocol Automaton
of the forwarding protocol can be modelled as in Fig. 12b.
The protocol has a communication method and a computation
method. The communication method relay sends messages that
carry the single onion to forward. The second method, called
unwrap, is a decryption operation (i.e., local computation). A
selfish relay R that aims at saving bandwidth, strategically
drops onions that are not intended for it.

Designing this system using RACOON only required writing
44 lines of XML specification and 350 LOC for the imple-
mentation of the simulation module. Notice that the system
designer can reuse more than 42% of the implementation
code written for the P2P live streaming module, and only
requires to implement the methods of the Protocol Automaton
depicted in Fig. 12. The overall simulation code further uses
the same 3200 LOC used in the P2P live streaming protocol
and provided by RACOON libraries. Simulations of this use
case realized using RACOON can be found in [23].

VII. RELATED WORK

Game Theoretic approaches: Much work on the potential
of Game Theory as tool for system designers has been carried
out in the context of content-disseminating applications [12],
[24], [25], wireless networking [10], [28], exchange protocols
[5], and anonymity and privacy mechanisms [2], [15]. The
objective of these approaches is to make cooperation the
best choice for all nodes, i.e. a Nash Equilibrium. Although
promising results have been achieved, most of the reported
solutions are tailored to a specific system or are too difficult
to adapt to a changing environment. A notable example is the
BAR Model of Aiyer et al. [1], which is a general architecture
for building cooperative distributed systems that are robust to
selfish and Byzantine nodes. However, the design of a BAR-
tolerant protocol is a complex task that has to be performed
manually [1], [3], [25]. Moreover, this approach suffers from
poor maintainability and reusability: every change in the
system parameters requires a full revision of the solution.

Non-Game theoretic approaches: Incentive-based mecha-
nisms discourage selfish behaviors by making cooperation
more attractive for selfish nodes. For example, in credit-based
systems [6], [30], cooperating nodes gain credits, which are
the virtual currency to spend for using the system. These ap-
proaches require a trusted central authority, which may not be
consistent with the system under design (e.g., in ad hoc mobile
networks). On the contrary, the RACOON framework adopts a
generic distributed solution, i.e., the cooperation enforcement
mechanisms are deployed on each node. Another popular form
of incentive mechanism is reputation [26], which is, in the con-
text of our work, a measure of a node’s cooperation. However,
a selfish node can cheat the system by misreporting reputation
information. In the reputation system included in RACOON
such cheating become detectable and punishable, because the
reputation value depends on the (provable) auditing results of
an accountability mechanism.

Accountability approaches such as [13], [17], [18], [19]
provide another strategy for dealing with selfish nodes. An
accountability system discourages deviations by exposing a
misbehaving node to the risk of punishment. Despite the high
generality and the proven effectiveness of these approaches,
their application incurs a non-negligible cost to the system
(e.g., message overhead, intensive use of cryptography). More-
over, they often rely on strong assumptions (e.g., the presence
of a quorum of correct nodes, no message loss [13], [19]).
RACOON proposes a semi-automatic approach to configure
an accountability mechanism (i.e., FullReview [13]) in such a
way as to achieve good performance and selfish-resilience.

Finally, several frameworks [29] and Domain-Specific Lan-
guages [4], [21] have been proposed to ease the task of design-
ing and maintaining secure distributed system. Although these
solutions yield good results in terms of system performance
and designer effort, none of them address the specific threat
of selfish deviations in cooperative distributed systems.

VIII. CONCLUSION

In this paper we presented RACOON, a novel framework
for designing and configuring cooperative P2P systems that are
resilient to selfish nodes. RACOON relies on accountability
and reputation mechanisms to enforce cooperation among
selfish nodes. Using a combination of simulation and Game
Theory, RACOON automatically configures these mechanisms
in a way that meets a set of selfish-resilience and performance
objectives specified by the system designer. We illustrated
the benefits of using RACOON by designing a P2P live
streaming system and an anonymous communication system.
The evaluation of the P2P live streaming system performed
using both simulations and a real deployment shows that this
system achieves selfish-resilience and high performance.

Our future work include the integration of a domain specific
language (e.g., MACE [21]) into RACOON to automatically
generate executable code. This could be done by defin-
ing transformation rules between the RACOON specification
model and the MACE language.

REFERENCES

[11 A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J-P. Martin, and C. Porth.
“BAR fault tolerance for cooperative services.” In SOSP, 2005.

[2] S. Ben Mokhtar et al.. “RAC: a freerider-resilient, scalable, anonymous
communication protocol.” In ICDCS, 2013.

[3] S. Ben Mokhtar et al. “FireSpam: Spam resilient gossiping in the BAR
model.” In Proc. of SRDS. IEEE Computer Society, 2010.

[4] M. Biely et al.. “Distal: A framework for implementing fault-tolerant
distributed algorithms.” In DSN, 2013.

[5]1 L. Buttyan and J-P. Hubaux. “Rational exchange-a formal model based
on game theory.” In Electronic Commerce. Springer, 2001.

[6] L. Buttyan and J-P. Hubaux. “Stimulating cooperation in self-organizing
mobile ad hoc networks.” Mobile Networks and Applications, 8(5), 2003.

[71 Z. Shen et al. “Peer-to-peer media streaming: Insights and new
developments.” Proc. of the IEEE, 99(12), 2011.

[8] T. Ban, S. Guo, Z. Zhang, R. Ando, and Y. Kadobayashi. “Practical
network traffic analysis in P2P environment.” In IWCMC, 2011.

[9] Cisco Systems. “Cisco Visual Networking Index: Forecast and Method-

ology.” A Cisco White Paper, 2015.

M. Cagalj, S. Ganeriwal, I. Aad, and J-P. Hubaux. “On selfish behavior

in CSMA/CA networks.” In INFOCOM, 2005.

I. Cunha et al. “Can peer-to-peer live streaming systems coexist with

free riders?” In P2P, 2013.

J. Decouchant, S. Ben Mokhtar, and V. Quéma.

Freerider Tracking in Gossip.” In SRDS, 2014.

A. Diarra, S. Ben Mokhtar, P-L.. Aublin, and V. Quéma. “FullReview:

Practical accountability in presence of selfish nodes.” In Proc. of SRDS,

2014.

M. Feldman et al. “Free-riding and whitewashing in peer-to-peer

systems.” IEEE J. Sel. Areas Commun., 24(5), 2006.

J. Freudiger et al. “On non-cooperative location privacy: a game-

theoretic analysis.” In CCS, 2009.

D. Goldschlag, M. Reed, and P. Syverson. “Onion routing.” Commun.

of the ACM, 42(2):39-41, 1999.

R. Guerraoui et al. “LiFTinG: Lightweight freerider-tracking in gossip.”

In Middleware, 2010.

A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. “Accountable

virtual machines.” In OSDI, 2010.

A. Haeberlen, P. Kouznetsov, and P. Druschel. “PeerReview: Practical

accountability for distributed systems.” SOSP, 2007.

D. Hughes, G. Coulson, and J. Walkerdine. “Free riding on Gnutella

revisited: the bell tolls?” Distributed Systems Online, IEEE, 6(6), 2005.

C-E. Killian, J-W. Anderson, R. Braud, R. Jhala, and A. Vahdat. “Mace:

Language support for building distributed systems.” In PLDI, 2007.

D. Koller, N. Megiddo, and B. von Stengel. “Fast algorithms for finding

randomized strategies in game trees.” In STOC, 1994.

G. Lena Cota et al “Racoon: Technical report.”

https://sites.google.com/site/soniabm/.

H.C. Li et al. “FlightPath: Obedience vs. choice in cooperative services.”

In OSDI, 2008.

H.C. Li, A. Clement, E-L. Wong, J. Napper, I. Roy, L. Alvisi, and

M. Dahlin. “BAR gossip.” In OSDI, 2006.

S. Marti and H. Garcia-Molina. “Taxonomy of trust: Categorizing p2p

reputation systems.” Computer Networks, 50(4), 2006.

M.J. Osborne et al. “A course in game theory.” MIT press, 1994.

V. Srivastava et al. “Using game theory to analyze wireless ad hoc

networks.” IEEE Commun. Surveys and Tutorials, 7(1-4), 2005.

P. Urbdn, X. Défago, and A. Schiper. “Neko: A single environment to

simulate and prototype distributed algorithms.” In ICOIN, 2001.

S. Zhong et al. “Sprite: A simple, cheat-proof, credit-based system for

mobile ad-hoc networks.” In INFOCOM, 2003.

[10]
[11]
[12] “AcTinG: Accurate

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23] Available:
[24]
[25]
[26]

[27]
(28]

[29]

[30]

ACKNOWLEDGMENT

The presented work was developed within the EEXCESS project
funded by the EU FP7 (Grant n. 600601). This work was also
partly supported by the program CMIRA2014 Coopera (Grant
n. 14.007051) of the Region Rhone-Alpes, France, and by the project
Vinci of the Univ. Franco-Italienne (Grant n. C4-9).

