
Semantic Patches for Documenting and Automating
Collateral Evolutions in Linux Device Drivers

Yoann Padioleau,1 Reńe Rydhof Hansen,2 Julia L. Lawall,2 Gilles Muller1

1OBASCO Group, Ecole des Mines de Nantes-INRIA, LINA 44307 Nantes cedex 3, France
2DIKU, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen Ø, Denmark

{Yoann.Padioleau,Gilles.Muller}@emn.fr, {rrhansen,julia}@diku.dk

Categories and Subject DescriptorsD.4.7 [Operating Systems]:
Organization and Design; D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement

General Terms Measurement

Keywords software evolution, domain-specific languages

1. Introduction
Developing and maintaining drivers is known to be one of the
major challenges in creating a general-purpose, practically-useful
operating system [1, 3]. In the case of Linux, device drivers make
up, by far, the largest part of the kernel source code, and many more
drivers are available outside the standard kernel source tree. New
drivers are needed all the time, to give access to the latest devices.
To ease driver development, Linux provides a set of driver support
libraries, each devoted to a particular bus or device type. These
libraries encapsulate much of the complexity of interacting with
the device and the Linux kernel, and impose a uniform structure on
device-specific code within a given bus or device type.

While the reliance of driver code on driver support libraries sim-
plifies the initial development process, it can introduce long-term
maintenance problems when an evolution in the library affects its
interface. In this case,collateral evolutionsare needed in all de-
pendent device-specific code to adapt it to the new interface [19].
Simple examples of collateral evolutions include extending argu-
ment lists when a library function gets a new parameter or adjusting
the context of calls to a library function when this function returns a
new type of value; more complex examples involve changes that are
scattered throughout a file, and where the actual code transforma-
tion is highly dependent on the specific context in which it occurs.
The sheer number of device drivers and the greatly varying exper-
tise of device driver developers and maintainers (especially in the
case of driver code maintained outside the kernel source tree) has
made collateral evolutions of device-specific code difficult, time-
consuming, and error-prone in practice.

In order to address these problems we are developing a compre-
hensive language-based infrastructure,Coccinelle, with the goal of
automating the kinds of collateral evolutions that occur in device
driver code as well as providing precise, formal documentation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

The features of Coccinelle are guided by the actual needs of col-
lateral evolutions that we have found to be commonly required in
Linux device driver code [19]. In this paper, we describe the initial
development of Coccinelle. The main contributions are:

• The design of SmPL,1 a language for specifying collateral evo-
lutions relevant to device drivers; a SmPL specification serves
both as detailed documentation of the collateral evolution and a
concrete description of the needed code transformations.

• The design of a transformation engine for applying SmPL spec-
ifications to device driver code.

• A preliminary analysis of the effectiveness of the proposed
language and transformation engine, based on an early stage
prototype implementation.

The rest of this paper is organized as follows. In Section 2, we
briefly summarize our previous work on understanding the scope
and extent of collateral evolutions in driver code. In Section 3, we
present SmPL, and in Section 4, we describe the transformation
engine. Section 5 then presents some preliminary benchmarks,
Section 6 presents related work and Section 7 concludes.

2. The Collateral Evolution Problem
In previous work, we have quantified various aspects of the need
for collateral evolutions in Linux device drivers, using ad hoc data
mining tools that we have developed [19]. These results show
that driver support libraries and dependent device-specific files
are numerous and the relationships between them are complex. In
the Linux 2.6.13 source tree, we have identified over 150 driver
support libraries and almost 2000 device-specific files. A device-
specific file can use up to 59 different library functions from up to 7
different libraries. Rather than becoming more stable over time, this
code base is evolving increasingly rapidly [11]. We have found that
the number of evolutions in interface elements is steadily rising,
as we have detected 300 probable evolutions in all of Linux 2.2
and over 1200 in Linux 2.6 up to Linux 2.6.13. Some of these
evolutions trigger collateral evolutions in up to almost 400 files,
at over 1000 code sites. Between Linux 2.6.9 and Linux 2.6.10,
over 10000 lines of device-specific code were found to be affected
by collateral evolutions.

We have also manually studied 90 of the evolutions identified
during our data mining analysis. This study included examination
of collateral evolutions in over 1600 device-specific files. The col-
lateral evolutions range from simply changing the name of a func-
tion to complex transformations that involve sophisticated analysis
of the usage context of each interface element, in order to construct

1 SmPL is the acronym for “Semantic Patch Language” and is pronounced
“sample” in Danish, and “simple” in French.

1 static int usb_storage_proc_info (
2 char *buffer, char **start, off_t offset,
3 int length, int hostno, int inout)
4 {
5 struct us_data *us;
6 struct ScsiHost *hostptr;
7
8 hostptr = scsihosthn get(hostno);
9 if (!hostptr){ return -ESRCH;}
10
11 us = (struct us_data*)hostptr->hostdata[0];
12 if (!us) {
13 scsi hostput(hostptr);
14 return -ESRCH;
15 }
16
17 SPRINTF(" Vendor: %s\n", us->vendor);
18 scsi hostput(hostptr);
19 return length;
20 }

(a) Simplified Linux 2.5.70 code

1 static int usb_storage_proc_info (struct ScsiHost *hostptr,
2 char *buffer, char **start, off_t offset,
3 int length, int hostno, int inout)
4 {
5 struct us_data *us;
6
7
8
9
10
11 us = (struct us_data*)hostptr->hostdata[0];
12 if (!us) {
13
14 return -ESRCH;
15 }
16
17 SPRINTF(" Vendor: %s\n", us->vendor);
18
19 return length;
20 }

(b) Transformed code

Figure 1. An example of collateral evolution, based on code indrivers/usb/storage/scsiglue.c

new arguments, update error handling code, etc. These collateral
evolutions appear mostly to be done manually with a text editor,
possibly with the help of tools such asgrep. Comments in log files
and mailing lists suggest that they are done by programmers with
a wide range of expertise, from core Linux library maintainers, to
motivated users, to developers who create and maintain drivers out-
side the Linux source tree. We furthermore found a number of er-
rors that were introduced into device specific code during collateral
evolutions. Many of these errors persisted for 6 months to a year,
and some are still not corrected.

The results of our study clearly call for some kind of automated
support for collateral evolutions. One form of automatic code up-
dating is already widely used in the Linux community: the patch
[16]. Patch code describes a specific change in a specific version
of a single file. To create a patch, a developer must modify each
file by hand, and then apply thediff tool to create a record of the
difference between the old and new versions. The developer then
distributes the patch to users, who apply it using thepatch tool to
replicate the changes in their copies of the old files. Although au-
tomatic at the user level, this approach does not solve the collateral
evolution problem. It still requires time-consuming and error-prone
manual modifications initially, and then produces an artifact that is
only applicable to the files that are known to the library developer;
no indication is provided how to map the collateral evolutions to
drivers that are overlooked or are outside the kernel source tree. To
address these issues, an approach is needed that describes collateral
evolutions generically, so that they can be applied automatically,
both to files inside the kernel source tree and out.

Our approach To be able to describe collateral evolutions gener-
ically, while remaining harmonious with the development model
of Linux kernel code, we extend the patch notation to incorporate
aspects of the semantics of C code, and not just its syntax. Ac-
cordingly, we refer to our specifications assemantic patches. Us-
ing semantic patches, we refine the patch model described above,
such that the library developer only manually applies the collateral
evolution to a few driver files, to get a feel for the changes that
are required, and then writes a semantic patch that can be applied
to the remaining files and distributed to other driver maintainers.
While our goal is that semantic patches should apply independent
of coding style, it is not possible in practice to anticipate all possible
variations. Thus, the tool should not only apply semantic patches,
but also be able to assist the developer or driver maintainer when
an exact match of the rule against the source code is not possible.

3. SmPL in a Nutshell
In this section, we present the SmPL language for developing
semantic patches through an example from our previous study [19].

The example The functionsscsi host hn get and scsi -
host put of the SCSI interface access and release, respectively,
a structure of typeScsi Host, and additionally manage a refer-
ence count. In Linux 2.5.71, it was decided that driver code could
not be trusted to use these functions correctly, which could result
in corruption of the reference count, and thus these functions were
removed from the SCSI interface [15]. This evolution had collat-
eral effects on the “procinfo” callback functions defined by SCSI
drivers, which make accessible at the user level various information
about the device. To compensate for the removal ofscsi host -
hn get and scsi host put, the SCSI library began in Linux
2.5.71 to pass to these callback functions aScsi Host-typed struc-
ture as an argument. Collateral evolutions were then needed in the
proc info functions to remove the calls toscsi host hn get and
scsi host put, and to add the new argument.

Figure 1 shows a simplified version of the procinfo function of
drivers/usb/storage/scsiglue.c based on that of the version
just prior to the evolution, Linux 2.5.70, and the result of perform-
ing the above collateral evolutions in this function. Similar collat-
eral evolutions were performed in Linux 2.5.71 in 19 SCSI driver
files inside the kernel source tree. The affected code, shown in ital-
ics, is as follows:

• The declaration of the variablehostptr: This declaration is
moved from the function body (line 6) to the parameter list (line
1), to receive the newScsi Host-typed argument.

• The call toscsi host hn get: This call is removed (line 8),
entailing the removal of the assignment of its return value to
hostptr. The subsequent null test onhostptr is dropped, as
the SCSI library is assumed to call the procinfo function with
a non-null value.

• The calls toscsi host put: These calls are removed as well.
Because the procinfo function should callscsi host put
wheneverscsi host hn get has been called successfully
(i.e., returns a non-null value), there may be many such calls,
one per possible control-flow path through the rest of the func-
tion. In this example, there are two: one on line 13 just before
an error return and one on line 18 in the normal exit path.

1 @@
2 local function proc_info_func;
3 identifier buffer, start, offset, length, inout, hostno;
4 identifier hostptr;
5 @@
6 proc_info_func (
7 + struct Scsi_Host *hostptr,
8 char *buffer, char **start, off_t offset,
9 int length, int hostno, int inout) {
10 ...
11 - struct Scsi_Host *hostptr;
12 ...
13 - hostptr = scsi_host_hn_get(hostno);
14 ...
15 - if (!hostptr) { ... return ...; }
16 ...
17 - scsi_host_put(hostptr);
18 ...
19 }

Figure 2. A semantic patch for updating SCSI procinfo functions

SmPL Figure 2 shows the SmPL semantic patch describing these
collateral evolutions. Overall, the semantic patch has the form of
a traditional patch [16], consisting of a sequence of rules each of
which begins with some context information delimited by a pair of
@@s and then specifies a transformation to be applied in this context.
In the case of a semantic patch, the context information declares
not line numbers but a set ofmetavariables. A metavariable can
match any term of the kind specified in its declaration (identifier,
expression, etc.), such that all references to a given metavariable
match the same term. The transformation rule is specified as in a
traditional patch file, as a term having the form of the code to be
transformed. This term is annotated with themodifiers- and+ to
indicate code that is to be removed and added, respectively.

Lines 1-5 of the semantic patch of Figure 2 declare a collec-
tion of metavariables. Most of these metavariables are used in the
function header in lines 6-9 to specify the name of the function
to transform and the names of its parameters. Specifying the func-
tion header in terms of metavariables effectively identifies the func-
tion to transform in terms of its prototype, which is defined by the
SCSI library and thus is common to all procinfo functions.Note
that when a function definition is transformed, the corresponding
prototype is also transformed automatically in the same way (if
necessary); it is therefore not necessary to explicitly specify the
transformation of a prototype in the semantic patch.

The remainder of Figure 2 specifies the removal of the various
code fragments outlined above from the function body. As the code
to remove is not necessarily contiguous, these fragments are sepa-
rated by the SmPL operator “...”, which matches anysequenceof
instructions. The semantic patch also specifies that a line should be
added: the declaration specified in line 11 to be removed from the
function body is specified to be added to the parameter list in line
7 by a repeated reference to thehostptr metavariable.

Overall, the rule applies independent of spacing, line breaks,
and comments. Moreover, the transformation engine is parameter-
ized by a collection ofisomorphismsspecifying sets of equiva-
lences that are taken into account when applying the transformation
rule. The default set of isomorphisms, for example, indicates that
for anyx that has a pointer type,!x, x == NULL, andNULL == x
are equivalent, and thus the pattern on line 15 of Figure 2 matches
a conditional that tests the value ofhostptr using any of these
variants. A variant of the SmPL syntax is used to specify such iso-
morphisms. The above isomorphism is specified as follows.

@@ expression *X; @@
X == NULL <=> !X <=> NULL == X

int usb storage proc info(...)

²²²²
{

²²²²
struct us data *us;

²²²²
struct ScsiHost *hostptr;

²²²²
hostptr = scsihosthn get(hostno);

²²²²
if (!hostptr)

sshhhhhhhhhhh
++VVVVVVVV

++
{

²²
us = hostptr→...;

²²²²
return -ESRCH;

²²
if(!us)

ss ²²
}

88

{

²²
SPRINTF(...);

²²
scsihostput(hostptr);

²²
scsihostput(hostptr);

²²
return -ESRCH;

²²
return length;

dd

}

²²
}

Figure 3. Control-flow graph for Figure 1 (a)

Our set of standard isomorphisms currently consists of 10 such
equivalences, amounting to around 60 lines of code.

The semantics of sequencesA sequence in a semantic patch
represents not syntactically contiguous code, but a path in the
driver’s execution,i.e., in its control-flow graph. For example, in
the control-flow graph of Figure 3 corresponding to the program
of Figure 1a, there are two paths in the right half of the graph that
remain within the function after the test ofhostptr, one repre-
sented by a solid line and one represented by a dotted line. Each
path contains the function header, the declaration ofhostptr, the
call toscsi host hn get, the null test, and its own call toscsi -
host put and close brace, as specified by the semantic patch. The
strategy of matching within each control-flow path thus allows a se-
mantic patch that specifies only onescsi host put to match the
code of Figure 1a, which contains two, each in a separate control-
flow path.

Other features SmPL contains a number of other features for
matching other kinds of code patterns. These include the ability to
match and transform a term wherever and however often it occurs,
the ability to describe a disjunction of possible patterns, the ability
to specify code that should be absent, and the ability to declare
some parts of a pattern to be optional, to account for code that
should be transformed if present but that may be absent either
due to variations in the protocol for using the interface or due to
programmer sloppiness.

4. The Coccinelle Transformation Engine
The main decision that we have taken in the design of the Coc-
cinelle transformation engine is to base the engine on model check-
ing technology. To this end, the C source code is translated into
a control-flow graph, which is used as the model, the SmPL se-
mantic patch is translated into a formula of temporal logic (CTL
[4], with some additional features), and the matching of the for-
mula against the model is implemented using a variant of a standard
model checking algorithm [13]. This approach, which was inspired

parse C file

²²

parse a SmPL rule

²²
expand isomorphisms

²²
translate to CFG

''OOOO translate to CTL

wwnnnn
match the CTL against the CFG

using a model-checking algorithm

²²
modify matched code

²²
unparse

@A
more rules

GF
//

BC
more rules

ED
oo

done²²

Figure 4. The Coccinelle engine

by the work of Lacey and de Moor [14] on a related but simpler
transformation problem, has been crucial in rapidly developing a
prototype implementation. The use of an expressive temporal logic
as an intermediate language has made it possible to incrementally
work out the semantics of SmPL, without affecting the underly-
ing pattern-matching engine. Furthermore, because CTL is easy to
implement, we have been able to extend the logic with two fea-
tures that we have found essential to express the SmPL semantics:
constructive negation [2] and existentially quantified propositional
variables.

Figure 4 shows the main steps performed by the Coccinelle
transformation engine, including the use of model checking. In the
rest of this section, we highlight some of these steps.

Parsing the C source file A collateral evolution is just one step
in the ongoing maintenance of a Linux device driver. Thus, the
code generated by Coccinelle must remain readable and in the
style of the original source code, to allow further maintenance and
evolution. An important part of the style of the source code, which
is not taken into account by most other C-code processing tools,
is the whitespace, comments, and preprocessing directives. The
Coccinelle C-code parser collects information about the comments
and spacing adjacent to each token. When a token in the input file
is part of the generated code, the associated comments and spacing
are generated with it.

As has been found by others [10], parsing C code while main-
taining preprocessing directives such as#if and #define and
macro uses poses a significant challenge. The Coccinelle C-code
parser treats all preprocessing directives as comments. Because the
use of unexpanded macros may then result in code that does not fol-
low the C grammar, we have extended the grammar accepted by the
parser to address some cases that commonly occur in driver code.
For example, the parser recognizeslist for each as the start of
a loop. While not perfect, we expect these heuristics to cover the
majority of driver code. We furthermore plan to extend the tool to
take into account both the unexpanded and expanded macro code,
to detect collateral evolution sites in both.

Parsing the semantic patch The main issue in parsing a semantic
patch is to parse the transformation rule. This consists of C-like
code that is either annotated with- if it is to be removed,+ if it is to
be added, or not annotated if it is context code that is to be preserved
by the transformation. Parsing the semantic patch as a single unit
would be complex, because of the arbitrary intermingling of code
annotated with- and +. Nevertheless, the code to be matched,
represented by the- and context code, and the code to be produced,
represented by the+ and context code, should each have the form
of valid C-code, modulo SmPL specific constructs, such as “...”.
We thus parse each separately using a C parser extended with

∃hostno, hostptr .
(∃proc info func, buffer, start, offset, length, inout, v .

proc info func(char *buffer, char **start, off_t offset, int length, int hostno, int inout)v)
∧
AX(∃p .

({ ∧ Paren(p) ∧
AX A[¬(struct Scsi_Host *hostptr; ∨ ({ ∧ Paren(p))) U

(∃v . struct Scsi_Host *hostptr;v ∧
AX A[¬(hostptr = scsi_host_hn_get(hostno); ∨ struct Scsi_Host *hostptr;) U

(∃v . hostptr = scsi_host_hn_get(hostno);v ∧
AX A[¬(scsi_host_put(hostptr); ∨ hostptr = scsi_host_hn_get(hostno);) U

(∃v . scsi_host_put(hostptr);v ∧
AX A[¬((} ∧ Paren(p)) ∨ scsi_host_put(hostptr);) U (} ∧ Paren(p))

Figure 5. CTL counterpart of the semantic patch of Figure 2

the SmPL-specific constructs, and then merge the resulting ASTs
so that+ code is attached to adjacent- and context code. The
isomorphisms are then applied to this merged AST, such that a
pattern that matches any one of the set of terms designated as
isomorphic is replaced by a disjunction of patterns matching the
possible variants. Any+ code associated with the subterms of such
a term is propagated into all of the patterns, so that the generated
code retains the coding style of the source program.

The final step is to translate the merged AST into our variant of
CTL. Figure 5 shows a slightly simplified CTL representation of
our example (the null test on line 13 of Figure 2 and some other
details are omitted for conciseness). The semantic patch consists of
a sequence of fragments of the formf ... g. Such a fragment is
essentially translated into:

f ∧ AXA[¬(f ∨ g)U g]

meaning that firstf is found in the CFG, then from all subsequent
nodes in the CFG,g is eventually found, and on each path fromf
to g there is no occurrence of eitherf or g. A special existentially
quantified variablev marks terms for which we want to record
the matching nodes in the CFG, for subsequent transformation.
The predicateParenensures that the matched braces are matching
braces in the source program. For this semantic patch, the CTL
translation only uses the operators conjunction, negation,AX, and
AU. The translation of other SmPL operators also uses disjunction
andEX. We anticipate that existential quantification over paths of
arbitrary length,i.e. the operatorEU, will be useful to express some
of the collateral evolutions we have identified.

Updating the C source file The matching of the CTL formula
against the control-flow graph identifies the nodes at which a trans-
formation is required, the semantic patch code matching these
nodes, and the corresponding metavariable bindings. The engine
then propagates the- and+ modifiers in the semantic patch code
to the corresponding tokens in the matched nodes of the control-
flow graph. Based on the annotated control-flow graph, the engine
then generates the transformed C code. In this process, a token an-
notated with- is dropped, an unannotated token is generated as is,
and a token annotated with+ is preceded or followed as appropri-
ate by the corresponding+ code from the semantic patch, updated
according to the metavariable environment.

In describing the parsing of the C code, we noted the need to
maintain comments and spacing. The treatment of comments is
especially subtle, because comments are often not contiguous to
the relevant code. This makes it difficulte.g., to know when all of
the relevant code has been deleted, and thus the comment should be
deleted as well. Currently, we keep all comments, but plan to add
some heuristics to detect when comments should be removed.

5. Experiments
In this section, we describe the application of the procinfo seman-
tic patch to Linux driver files. The transformation engine was run
on a 3.2GHz Pentium 4 with 512Mb of RAM.

file proc info note seconds
lines fn. lines

block/ccissscsi.c 1451 39 0.9
ieee1394/sbpc2.c 2985 66 3.3
scsi/53c700.c 2028 34 6.2
scsi/arm/acornscsi.c 3126 113 iso(+4) 2.8
scsi/arm/arxescsi.c 408 29 1.0
scsi/arm/cumana2.c 574 32 0.5
scsi/arm/eesox.c 684 31 0.5
scsi/arm/powertec.c 486 32 0.8
scsi/cpqfcTSinit.c 2071 113 2.3
scsi/eatapio.c 985 62 1.6
scsi/fcal.c 323 70 1.5
scsi/gNCR5380.c 936 111 3.4
scsi/in2000.c 2332 153 cpp -
scsi/ncr53c8xx.c 9481 37 iso(+6) 3.1
scsi/nsp32.c 3524 63 2.2
scsi/pcmcia/nspcs.c 1958 113 cpp -
scsi/sym53c8xx.c 14738 38 9.3
scsi/sym53c8xx2/sym glue.c 2990 37 1.7
usb/storage/scsiglue.c 916 70 0.6

Figure 6. Experiments with the procinfo semantic patch

Some extensions were required to the semantic patch of Figure
2 to accommodate variations in driver code. We have extended the
semantic patch to allow the test of the result ofscsi host hn get
and the call toscsi host put to be optional. In the former case,
this accounts for the fact that error checking is not uniformly done
in the Linux kernel. In the latter case, this accounts for the fact that
the call toscsi host put is often omitted, which was indeed the
motivation for the evolution. The semantic patch is also extended
with some other transformations that were performed as part of the
same set of collateral evolutions. The resulting semantic patch is 44
lines of code. Three of the ten standard isomorphisms apply to this
semantic patch.

Figure 6 lists the files affected by the procinfo collateral evolu-
tions, the number of lines of code in the complete file, the number
of lines of code in the procinfo function, and the time required to
transform the file. Application of the semantic patch is fully au-
tomated for 15 out of the 19 relevant driver files. For two of the
remaining files, noted “iso”, some minor additions to the seman-
tic patch were required to simulate isomorphisms that have not yet
been implemented in the general case; the number of lines manu-
ally added is shown in parenthesis. Finally, the two remaining files,
noted “cpp”, depend on the C preprocessor in ways that our proto-
type does not yet handle. We are working on these issues.

The transformation time is dominated by the time to parse the
file and the time to treat the procinfo functions, as other functions
are immediately rejected by the transformation rule. For smaller
files this completes in a few seconds, while the larger files that we
have successfully transformed require fewer than 10 seconds.

6. Related Work
Influences. The design of SmPL was influenced by a number of
sources. Foremost among these is our target domain, the world of
Linux device drivers. Linux programmers manipulate patches ex-
tensively, have designed various tools around them [17], and use its
syntax informally in e-mail to describe software evolutions. This
has encouraged us to consider the patch syntax as a valid alter-
native to classical rewriting systems. Other influences include the
Structured Search and Replace(SSR) facility of the IDEA devel-
opment environment from JetBrains [18], which allows specifying
patterns using metavariables and provides some isomorphisms, and
the work of De Volder on JQuery [6], which uses Prolog logic vari-
ables in a system for browsing source code. Finally, we were in-
spired to base the semantics of SmPL on control-flow graphs rather

than abstract syntax trees by the work of Lacey and de Moor on
formally specifying compiler optimizations [14].

Other work. Refactoring is a generic program transformation that
reorganizes the structure of a program without changing its seman-
tics [9]. Some of the collateral evolutions in Linux drivers can be
seen as refactorings. Refactorings, as originally designed, however,
apply to the whole program, requiring access to all usage sites of
affected definitions. In the case of Linux, however, the entire code
base is not available, as many drivers are developed outside the
Linux source tree. Henkel and Diwan have also observed that refac-
toring does not address the needs of evolution of libraries when the
client code is not available to the library maintainer [12]. Their tool,
CatchUp, can record some kinds of refactorings and replay them
on client files. Nevertheless, CatchUp is only implemented in the
Eclipse IDE and only handles a few of the refactorings provided by
Eclipse. We have furthermore found that many collateral evolutions
are specific to the OS API, and thus cannot be described as part of
a generic refactoring.

The JunGL scripting language allows programmers to imple-
ment new refactorings [22]. Although this language should be able
to express collateral evolutions, a JunGL transformation rule does
not follow the structure of the source terms, and thus does not make
visually apparent the relationship between the code fragments to be
transformed. We have found that this makes the provided examples
difficult to read. Furthermore, the language is in the spirit of ML,
which is not part of the standard toolbox of Linux developers.

Coady et al. have used Aspect-Oriented Programming (AOP) to
extend OS code with new features [5, 8]. Nevertheless, AOP is tar-
geted towards modularizing concerns rather than integrating them
into a monolithic source code. In the case of collateral evolutions,
our observations,e.g.of the limited use of wrapper functions, sug-
gest that Linux developers favor approaches that update the source
code, resulting in uniformity among driver implementations.

Analysis tools in Linux. The Linux community has recently be-
gun using various tools to better analyze C code. Sparse [20] is a
library that, like a compiler front end, provides convenient access to
the abstract syntax tree and typing information of a C program. This
library has been used to implement some static analyses targeting
bug detection, building on annotations added to variable declara-
tions, in the spirit of the familiarstatic andconst. Smatch [21]
is a similar project and enables a programmer to write Perl scripts
to analyze C code. Both projects were inspired by the work of En-
gler et al. [7] on automated bug finding in operating systems code.
These examples show that the Linux community is open to the use
of automated tools to improve code quality, particularly when these
tools build on the traditional areas of expertise of Linux developers.

7. Conclusion
In this paper, we have proposed a declarative language, SmPL, for
expressing semantic patches and presented the design of a transfor-
mation engine for applying these semantic patches to driver code.
SmPL is based on the patch syntax familiar to Linux developers,
but enables transformations to be expressed in a more general form.
The transformation engine is defined in terms of control flow rather
than syntactic structure and is configurable by a collection of iso-
morphisms, so that a single semantic patch can be applied to drivers
exhibiting a variety of coding styles.

Preliminary experiments with our prototype implementation
have shown promising results. We have been able to implement
a concise semantic patch describing the collateral evolutions of
proc info functions, and to successfully apply this semantic patch
to most of the affected files. In many cases, the transformation is
performed in under 2 seconds. We are currently developing other

semantic patches, targeting collateral evolutions found in our previ-
ous study. Our initial results show that it is possible to write concise
semantic patches that express these transformations as well.

References
[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-

Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough
static analysis of device drivers. InThe first ACM SIGOPS EuroSys
conference (EuroSys 2006), pages 73–85, Leuven, Belgium, Apr.
2006.

[2] R. Bártak. Constructive Negation CLP(H). Technical Report 98/6,
Department of Theoretical Computer Science, Charles University,
Prague, Czech Republic, July 1998.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. InSymposium on Operating
Systems Principles (SOSP), pages 73–88, 2001.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[5] Y. Coady and G. Kiczales. Back to the future: a retroactive study of
aspect evolution in operating system code. InProceedings of the 2nd
International Conference on Aspect-Oriented Software Development,
AOSD 2003, pages 50–59, Boston, Massachusetts, Mar. 2003.

[6] K. De Volder. JQuery: A generic code browser with a declarative
configuration language. InPractical Aspects of Declarative
Languages, 8th International Symposium, PADL 2006, pages 88–
102, Charleston, SC, Jan. 2006.

[7] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler extensions.
In Proceedings of the Fourth USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 1–16, San Diego,
CA, Oct. 2000.

[8] M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. Patch (1)
considered harmful. In10th Workshop on Hot Topics in Operating
Systems (HotOS X), Santa Fe, NM, June 2005.

[9] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[10] A. Garrido. Program refactoring in the presence of preprocessor
directives. PhD thesis, University of Illinois at Urbana-Champaign,
2005.

[11] M. W. Godfrey and Q. Tu. Evolution in open source software: A case
study. InInternational Conference on Software Management (ICSM),
pages 131–142, 2000.

[12] J. Henkel and A. Diwan. CatchUp! capturing and replaying
refactorings to support API evolution. InProceedings of the 27th
international conference on Software engineering, pages 274–283,
St. Louis, MO, USA, May 2005.

[13] M. Huth and M. Ryan.Logic in Computer Science: Modelling and
reasoning about systems. Cambridge University Press, 2000.

[14] D. Lacey and O. de Moor. Imperative program transformation
by rewriting. In R. Wilhelm, editor,Compiler Construction, 10th
International Conference, CC 2001, number 2027 in Lecture Notes
in Computer Science, pages 52–68, Genova, Italy, Apr. 2001.

[15] LWN. ChangeLog for Linux 2.5.71, 2003. http://lwn.net/Articles/36311/.

[16] D. MacKenzie, P. Eggert, and R. Stallman.Comparing and Merging
Files With Gnu Diff and Patch. Network Theory Ltd, Jan. 2003. Uni-
fied Format section, http://www.gnu.org/software/diffutils/manual/htmlnode/Unified-
Format.html.

[17] A. Morton. Patch management scripts, Oct. 2002. Available at
http://www.zip.com.au/˜akpm/linux/patches/.

[18] M. Mossienko. Structural search and replace: What, why, and how-to.
OnBoard Magazine, 2004. http://www.onboard.jetbrains.com/is1/articles/04/10/ssr/.

[19] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding collateral

evolution in Linux device drivers. InThe first ACM SIGOPS EuroSys
conference (EuroSys 2006), pages 59–71, Leuven, Belgium, Apr.
2006.

[20] D. Searls. Sparse, Linus & the Lunatics, Nov. 2004. Available at
http://www.linuxjournal.com/article/7272.

[21] The Kernel Janitors. Smatch, the source matcher, June 2002.
Available at http://smatch.sourceforge.net.

[22] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: a scripting
language for refactoring. InInternational Conference on Software
Engineering (ICSE), Shanghai, China, May 2006.

