
Automatic Generation of Network Protocol
Gateways

Yérom-David Bromberg1, Laurent Réveillère1, Julia L. Lawall2, and
Gilles Muller3

1 University of Bordeaux, France
2 University of Copenhagen, Denmark

3 Ecole des Mines de Nantes / INRIA-Regal, France

Abstract. The emergence of networked devices in the home has made
it possible to develop applications that control a variety of household
functions. However, current devices communicate via a multitude of
incompatible protocols, and thus gateways are needed to translate between
them. Gateway construction, however, requires an intimate knowledge
of the relevant protocols and a substantial understanding of low-level
network programming, which can be a challenge for many application
programmers.
This paper presents a generative approach to gateway construction, z2z,
based on a domain-specific language for describing protocol behaviors,
message structures, and the gateway logic. Z2z includes a compiler that
checks essential correctness properties and produces efficient code. We
have used z2z to develop a number of gateways, including SIP to RTSP,
SLP to UPnP, and SMTP to SMTP via HTTP, involving a range of
issues common to protocols used in the home. Our evaluation of these
gateways shows that z2z enables communication between incompatible
devices without increasing the overall resource usage or response time.

1 Introduction

The “home of tomorrow” is almost here, with a plethora of networked devices
embedded in appliances, such as telephones, televisions, thermostats, and lamps,
making it possible to develop applications that control many basic household
functions. Unfortunately, however, the different functionalities of these various
appliances, as well as market factors, mean that the code embedded in these de-
vices communicates via a multitude of incompatible protocols: SIP for telephones,
RTSP for televisions, X2D for thermostats, and X10 for lamps. This range of
protocols drastically limits interoperability, and thus the practical benefit of
home automation.

To provide interoperability, one solution would be to modify the code, to take
new protocols into account. However, the code in devices is often proprietary,
preventing any modification of the processing of protocol messages. Even if the
source code is available, it may not be possible to install a new implementation
into the device. Therefore, gateways have been used to translate between the
various kinds of protocols that are used in existing appliances.

Developing a gateway, however, is challenging, requiring not only knowledge of
the protocols involved, but also a substantial understanding of low-level network
programming. Furthermore, there can be significant mismatches between the
expressiveness of various protocols: some are binary while others are text-based,
some send messages in unicast while other use multicast, some are synchronous
while others are asynchronous, and a single request in one protocol may cor-
respond to a series of requests and responses in another. Mixing this complex
translation logic, which may for example involve hand coding of callback functions
or continuations in the case of asynchronous responses, with equally complex net-
working code makes implementing a gateway by hand laborious and error prone.
Enterprise Service Buses [1] have been proposed to reduce this burden by making
it possible to translate messages to and from a single fixed intermediary protocol.
Nevertheless, the translation logic must still be implemented by hand. Because
each pair of protocols may exhibit widely differing properties, the gateway code
is often not easily reusable.

This paper We propose a generative language-based approach, z2z, to simplify
gateway construction. Z2z is supported by a runtime system that hides low-
level details from the gateway programmer, and a compiler that checks essential
correctness properties and produces efficient code. Our contributions are:

– We propose a new approach to gateway development. Our approach relies on
the use of a domain-specific language (DSL) for describing protocol behaviors,
message structures, and the gateway logic.

– The DSL relies on advanced compilation strategies to hide complex issues
from the gateway developer such as asynchronous message responses and
the management of dynamically-allocated memory, while remaining in a
low-overhead C-based framework.

– We have implemented a compiler that checks essential correctness properties
and automatically produces an efficient implementation of a gateway.

– We have implemented a runtime system that addresses a range of proto-
col requirements, such as unicast vs. multicast transmission, association of
responses to previous requests, and management of sessions.

– We show the applicability of z2z by using it to automatically generate a
number of gateways: between SIP and RTSP, between SLP and UPnP, and
between SMTP and SMTP via HTTP. On a 200 MHz ARM9 processor, the
generated gateways have a runtime memory footprint of less than 260KB, and
with essentially no runtime overhead as compared to native service access.

The rest of this paper is organized as follows. Section 2 presents the range
of issues that arise in implementing a gateway, as illustrated by a variety of
case studies. Section 3 describes the z2z gateway architecture and introduces a
DSL for describing protocol behaviors, message structures, and the gateway logic.
Section 4 describes the compiler and runtime system that support this language.
Section 5 demonstrates the efficiency and scalability of z2z gateways. Section 6
discusses related work. Finally, Section 7 concludes and presents future work.

RTSP
Agent

Gateway

DESCRIBE

Unicast async
Response

SIP
Agent

Unicast INVITE

SETUP

PLAY

RTSP

SIP RTSP

RTSP

Unicast sync.

Video Stream

Fig. 1. SIP to RTSP gateway

2 Issues in Developing Gateways

A gateway must take into account the different degrees of expressiveness of the
source and target protocols and the range of communication methods that they
use. These issues are challenging to take into account individually, requiring
substantial expertise in network programming, and the need to address both of
them at once makes gateway development especially difficult. We illustrate these
points using examples that involve a wide range of protocols.

Mismatched protocol expressiveness. The types of messages provided by a protocol
are determined by the kinds of exchanges that are relevant to the targeted
application domain. Thus, different protocols may provide message types that
express information at different granularities. To account for such mismatches, a
gateway must potentially translate a single request from the source device into
multiple requests for the target device, or save information in a response from
the target device for use in constructing multiple responses for the source device.

The SIP/RTSP gateway shown in Fig. 1 illustrates the case where the requests
accepted by the target device are finer grained than the requests generated by the
source device. This gateway has been used in the SIP-based building-automation
test infrastructure at the University of Bordeaux. It allows a SIP based telephony
client to be used to receive images from an Axis IP-camera.4 This camera is a
closed system that accepts only RTSP for negotiating the parameters of the video
session. Once the communication is established, the gateway is no longer involved,
and the video is streamed directly from the camera to the SIP client using RTP [2].
Because SIP and RTSP were introduced for different application domains, there
are significant differences in the means they provide for establishing a connection.
Thus, as shown in Fig. 1, for a single SIP INVITE message, the gateway must
extract and rearrange the information available into multiple RTSP messages.

The SMTP/HTTP and HTTP/STMP gateways shown in Fig. 2 illustrate
the case where information must be saved from a target response for use in
constructing multiple responses for the source device. These gateways are used in
a tunneling application that enables SMTP messages to be exchanged between
4 Axis: http://www.axis.com/products/

SMTP
Service

Unicast async

SMTP
Client

Unicast sync.

Gateway Gateway

SMTP over TCP HTTP over UDP SMTP over TCP

POST

POST

POST

HELO

MAIL FROM

QUIT QUIT

MAIL FROM

HELO

...... ...

Unicast sync.

Fig. 2. HTTP tunneling gateways

two end-points over HTTP, as is useful when the port used by SMTP is closed
somewhere between the source and the destination. The first gateway encapsulates
an SMTP request into an HTTP message and sends it asynchronously using
UDP to the second gateway, which extracts relevant information to generate the
corresponding SMTP request. The response is sent back similarly.

Because all SMTP messages have to flow within the same TCP stream, the
HTTP/SMTP gateway needs to know which TCP connection to use when an
HTTP request is received. To address this issue, the gateway generates a unique
identifier when opening the TCP connection with the destination SMTP server
and includes this identifier within the HTTP response. The first gateway then
includes this identifier in all subsequent HTTP requests, enabling the second
gateway to retrieve the connection to use. To implement this, the first gateway
needs to manage a state within a session to store the identifier returned in the
first response in order to be able to find it for the subsequent requests.

Heterogeneous communication methods. Protocols differ significantly in how they
interact with the network. Requests may be multicast or unicast, responses may
be synchronous or asynchronous, and network communication may be managed
using a range of transport protocols, most commonly TCP or UDP.

The gateway between SLP and UPnP shown in Fig. 3 involves a variety
of these communication methods. Such a gateway may be used in a service
discovery environment that provides mechanisms for dynamically discovering
available services in a network. For example, a washing machine may search for
a loudspeaker service and use it to play a sound once the washing is complete. In
this scenario, the washing machine includes a SLP (Service Location Protocol)
user agent and the speaker uses a UPnP (Universal Plug and Play) service agent
to advertise its location and audio characteristics. UPnP is a wrapper for SSDP [3]
and HTTP [4], which are used at different stages of the service discovery process.

From a multicast SLP SrvRQST service discovery request, the SLP/UPnP
gateway extracts appropriate information, such as the service type, and sends a
multicast SSDP SEARCH request. If a service is found, the UPnP service agent
asynchronously returns a unicast SSDP response containing the URL of the
service description to the gateway. Then, the gateway extracts the URL and
sends a unicast HTTP GET request to it to retrieve the service description as
an XML document. Finally, the gateway extracts information from the XML

UPnP
ServiceGateway

Multicast
Search

XML Document

Unicast
GET URL

Unicast sync.

Multicast
SrvRQST

Unicast async.
SrvRPLY

SLP
Client

Unicast async.
 Response URL

SLP

SSDP

HTTP

Fig. 3. SLP to UPnP gateway

document and creates an SLP SrvRPLY response, which it returns to the SLP
client. This gateway must manage both multicast and unicast requests, and
synchronous and asynchronous responses. Mixing the translation logic with these
underlying protocol details complicates the development of the gateway code.

3 Specifying a Gateway Using Z2z

As illustrated in Section 2, a gateway receives a single request from the source
device, translates it into one or a series of requests for one or more target devices,
and then returns a response to the source device. It may additionally need to save
some state when the source protocol has a notion of session that is different from
that used by the target protocol, or when the interaction with the target device(s)
produces some information that is needed by subsequent source requests.

Our case studies show that there are two main challenges to developing
such a gateway: (1) manipulating messages and maintaining session state, to
deal with the problem of mismatched protocol expressiveness, and (2) managing
the interaction with the network, to deal with the problem of heterogeneous
communication methods. In z2z, these are addressed through the combination
of a DSL that allows the gateway developer to describe the translation between
two or more protocols in a high-level way, and a runtime system that provides
network interaction and data management facilities specific to the domain of
gateway development. We describe the DSL in this section, and present the
architecture of the runtime system in the next section.

3.1 Overview of the z2z language

To create a gateway, the developer must provide three kinds of information: 1)
how each protocol interacts with the network, 2) how messages are structured,
and 3) the translation logic. To allow each kind of information to be expressed in
a simple way, z2z provides a specific kind of module for each of them: protocol
specification (PS) modules for defining the characteristics of protocols, message
specification (MS) modules for describing the structure of protocol messages,
and a message translation (MT) module for defining how to translate messages

PS PSMT

MS

SIP MESSAGE RTSP MESSAGE

SOURCE PROTOCOL TARGET PROTOCOL

SIP

SDP MEDIA

RTSP

SIP

SDP

MS

MS

MS

SDP MEDIA

RTSP

SDP

MS

MS

SIP RTSP

Fig. 4. The structure of a z2z gateway specification (arrows represent dependencies)

between protocols. These modules are implemented using the z2z DSL, which
hides the complexities of network programming and allows specifying the relevant
operations in a clear and easily verifiable way.

As illustrated in Section 2, a gateway may involve any number of protocols.
Thus, a gateway specification may contain multiple protocol specification modules
and message specification modules, according to the number of protocols and
message types involved. A gateway specification always contains a single message
translation module. Fig. 4 shows the architecture of the SIP/RTSP gateway in
terms of its use of these modules. We now present these modules in more detail,
using this gateway as an example.

3.2 Protocol specification module

The protocol specification module defines the properties of a protocol that a
gateway should use when sending or receiving requests or responses. As illustrated
in Fig. 5 for the SIP protocol, this module declares the following information.

Attributes. Protocols vary in their interaction with the network, in terms of the
transport protocol used, whether requests are sent by unicast or by multicast, and
whether responses are received synchronously or asynchronously. The attributes
block of the protocol specification module indicates which combination is desired.
Based on this information, the runtime system provides appropriate services.
For example, SIP relies on UDP (transport attribute, line 2), sends requests
in unicast (mode attribute, line 2), and receives responses asynchronously. If the
transmission mode is asynchronous, the protocol specification must also include
a flow block (line 9) describing how to match requests to responses.

Request. The entry point of a gateway is the reception of a request. On receiving
a request, the gateway dispatches it to the appropriate handler in the message
translation module. The request block (lines 3-6) of the protocol specification
module declares how to map messages to handlers. For each kind of request
that should be handled by the gateway, the request block indicates the name
of the handler (invite, bye, and ack, for SIP), whether the request should be

1 protocol sip {
2 attributes { transport = udp/5060; mode = async/unicast; }
3 request req {
4 response invite when req.method == "INVITE";
5 response bye when req.method == "BYE";
6 void ack when req.method == "ACK"; }
7 sending request req { . . . }
8 sending response resp (request req) { resp.cseq = req.cseq; resp.callid = req.callid; . . . }
9 flow = { callid, cseq }

10 session flow = { callid } }

Fig. 5. The PS module for the SIP protocol

acknowledged by a response (response if a response is allowed and void if no
response is needed), and a predicate, typically defined in terms of the fields of
the request, indicating whether a request should be sent to the given handler.

Sending. A protocol typically defines certain basic information that all messages
must contain. Rather than requiring the developer to specify this information in
each handler, this information is specified in a sending block for each of requests
and responses. The sending block for requests is parameterized by only the
request, while the sending block for responses is parameterized by both the
corresponding request and the response, allowing elements of the response to be
initialized according to information stored in the request. For example, the SIP
sending block for responses copies the cseq and callid fields from the request
to the response (line 8). The protocol specification module may declare local
variables in which to accumulate information over the treatment of all messages.

Flow and session flow. When a target protocol sends responses asynchronously,
an incoming response must be associated with a previous request, to restart the
associated handler. The flow block (line 9), specifies the message elements that
determine this association. In SIP, a request and its matching response have the
same sequence number (cseq) and call id (callid). A session flow block (line
10) similarly specifies how to recognize messages associated with a session.

The information in the protocol specification module impacts operations
that are typically scattered throughout the gateway. In providing the protocol
specification module as a language abstraction, we have identified the elements
of the protocol definition that are relevant to gateway construction and collected
them into one easily understandable unit. Furthermore, creating a protocol
specification module is lightweight, involving primarily selecting properties rather
than implementing their support, making it easy to incorporate many different
kinds of protocols into a single gateway, as illustrated by the SLP/UPnP gateway
described in Section 2.

3.3 Message specification module

A network message is organized as a sequence of text lines, or of bits, for a binary
protocol, containing both fixed elements and elements specific to a given message.

A gateway must extract relevant elements from the received request and use them
to create one or more requests according to the target protocol(s). Similarly, it
must extract relevant elements from the received responses and ultimately create
a response according to the source protocol. Extracting values from a message
represented as a sequence of text or binary characters is unwieldy, and creating
messages is even more complex, because the element values may become available
at different times, making it difficult to predict the message size and layout.

In z2z, the message specification module contains a description of the messages
that can be received and created by a gateway. Based on this description, the z2z
compiler generates code for accessing message elements and inserting message
elements into a created message. There is one message specification module per
protocol relevant to the gateway, including both the source and target protocols,
as represented by the protocol specification modules, and one per any higher
level message type that can be embedded in the requests and responses. For
example, the SIP/RTSP camera gateway uses not only SIP and RTSP message
specification modules but also message specification modules for SDP Media and
SDP, which are not associated with protocol specification modules.

A message specification module provides a message view describing the relevant
elements of incoming messages and templates for creating new messages. The set
of elements is typically specific to the purpose of the gateway, not generic to the
protocol, and thus the message specification module is separate from the protocol
specification module. We illustrate the declarations of the message view and the
templates in the SIP message specification module used in our camera gateway.

Message view A message view describes the information derived from received
messages that is useful to the gateway. It thus represents the interface between
the gateway and the message parser. Z2z does not itself provide facilities for
creating message parsers, but instead makes it possible to plug in one of the
many existing network message parsers5 or to construct one by hand or using a
parser generator targeting network protocols, such as Zebu [5].

Because SIP is the source protocol of the camera gateway, its message view
describes the information contained in a SIP request. An excerpt of the declaration
of this view is shown in Fig. 6a. It consists of a sequence of field declarations,
analogous to the declaration of a C-language structure. A field declaration
indicates whether the field is mandatory or optional, whether it is public or
private, its type, and its name. A field is mandatory if the protocol RFC specifies
that it is always present, and optional otherwise. A field is public if it can be
read by the gateway logic, and private if it can only be read by the protocol
specification. The type of a field is either integer, fragment, or a list of one of
these types. A field of type fragment is represented as a string, but the gateway
logic can cause it to be parsed as a message of another protocol, such as SDP or
SDP Media, in our example.

5 oSIP: http://www.gnu.org/software/osip
Sofia-SIP: http://opensource.nokia.com/projects/sofia-sip/
Livemedia: http://www.livemediacast.net/about/library.cfm

1 read {
2 mandatory private int cseq;
3 mandatory private fragment callid;
4 mandatory private fragment via;
5 mandatory private fragment to;
6 mandatory private fragment from;
7 mandatory private fragment method;
8
9 optional private fragment to tag;

10 optional private int cseqsss;
11
12 mandatory public fragment uri, body;
13 mandatory public fragment from host;
14 }

a) View of SIP requests

1 response template Invite ok {
2 magic = "foo";
3 newline = "\r\n";
4 private fragment from, to, callid, via, contact;
5 private int cseq, content length;
6 public fragment body, to tag;
7 −−foo
8 SIP/2.0 200 OK
9 Via: <%via%>

10 [. . .]
11 Content−Length: <%content length%>
12
13 <%body%>
14 −−foo }

b) Template for an INVITE method success response

Fig. 6. SIP message specification for the camera gateway

Templates Z2z maintains messages to be created as a pair of a template view
and a template. The template language is adapted from that of Repleo [6]. A
message is created in the message translation module by making a new copy of
the template view, and initializing its fields, in any order. At a send or return
operation in the message translation module, the template representing the
message is flushed, filling its holes with the corresponding values from the view.

Because SIP is the source protocol of our camera gateway, its templates
describe the information needed to create SIP responses. Typically, there are
multiple response templates for each method, with one template for each relevant
success and failure condition. Fig. 6b shows the template for a response indicating
the success of an INVITE request.

A template declaration has three parts: the structural declarations (lines
2-3), the template view (lines 4-6), and the template text (lines 7-14). The
structural declarations indicate a string, magic, marking the start and end of the
template text, and the line separator, newline, specified by the protocol RFC.
The template view is analogous to the message view, except that the keywords
mandatory and optional are omitted, as all fields are mandatory to create a
message. The private fields are filled in by the sending block of the protocol
specification. The public fields are filled in by the message translation module.
Finally, the template text has the form of a message as specified by the protocol
RFC, with holes delimited by <% and %>. These holes refer to the fields of the
template view, and are instantiated with the values of these fields when the
template is flushed. Binary templates, as needed for SLP messages in our service
discovery gateway (Section 2), can be defined, using the keyword binary.

3.4 Message translation module

The message translation module expresses the message translation logic, which is
the heart of the gateway. This module consists of a set of handlers, one for each
kind of relevant incoming request, as indicated by the protocol specification mod-
ule. Handlers are written using a C-like notation augmented with domain-specific

1 fragment session id = "";
2
3 sip response invite (sip request s) {
4 rtsp response rr;
5 sip response sr, failed;
6 sdp media message rtsp m, sip m, media resp;
7 sdp message sdp rtsp, sdp sip, sdp resp;
8 fragment list inv medias, rtsp medias;
9

10 // Create error response
11 failed=Invite failure(code=400,to tag=random());
12
13 sdp rtsp = (sdp message)(s.body);
14 inv medias = (fragment list)(sdp rtsp.medias);
15
16 // Notify that something is happening
17 preturn Invite provisional(body = "",
18 to tag = random());
19
20 // Retrieve the description of a media object
21 rr = send(Describe(resource = s.uri uname));
22 if (empty(rr.body)) return failed;
23 sdp sip = (sdp message)(rr.body);
24 rtsp medias = (fragment list)(sdp sip.medias);
25
26 // See whether a compatible video format exists
27 foreach (fragment rtsp m = rtsp medias) {
28 rtsp m = (sdp media message)rtsp m ;
29 if (rtsp m.type == "video") {
30 foreach (fragment sip m = inv medias) {
31 sip m = (sdp media message)sip m ;

32 if ((rtsp m.type == sip m.type) &&
33 (rtsp m.profile == sip m.profile)) {
34 // Found something compatible
35 if (empty(rtsp m.control))
36 return failed;
37 // Specify the transport mechanism
38 rr = send(Setup(uri=rtsp m.control,
39 destination=s.from host,
40 port1=sip m.port,
41 port2=sip m.port+1));
42 if (empty(rr.sessionId) | |
43 empty(rr.code) | | rr.code > 299)
44 return failed;
45 session start();
46 session id = rr.sessionId;
47 // Tell the server to start sending data
48 rr = send(Play(resource = s.uri uname,
49 sessionId = session id));
50 if (empty(rr.code) | | rr.code > 299) {
51 session end(); return failed; }
52 media resp = Media(type = sip m.type,
53 profile = sip m.profile);
54 if (empty(rr.server port))
55 media resp.port = 0;
56 else media resp.port = rr.server port;
57 sdp resp = Sdp media(header=
58 sdp rtsp.header,media=media resp);
59 return Invite ok(body = sdp resp,
60 to tag = random());
61 }}}}
62 return failed; }

Fig. 7. The INVITE handler of the message translation module for the camera gateway

operators for manipulating and constructing messages, for sending requests and
returning responses, and for session management. Fig. 7 shows the invite handler
for the camera gateway.

Manipulating message data A handler is parameterized by a view of the cor-
responding request. The information in the view can be extracted using the
standard structure field access notation (line 13). If a view element is designated
as being optional in the message specification module, it must be tested using
empty to determine whether its value is available before it is used (line 22). A
view element of type fragment can be cast to a message type, using the usual
type cast notation. In line 23, for example, the body of the request is cast to an
SDP message, which is then manipulated according to its view (line 24).

A handler creates a message by invoking the name of the corresponding
template (line 17). Keyword arguments can be used to initialize the various fields
(lines 17-18) or the fields can be filled in incrementally (lines 54-56). A created
message is maintained as a view during the execution of the handler and flushed
to a network message at the point of a send or return operation.

Sending requests and returning responses A request is sent using the operator
send, as illustrated in line 38. If the protocol specification module for the corre-
sponding target protocol indicates that a response is expected, then execution

pauses until a response is received, and the response is the result of the send
operation. If the protocol specification indicates that no response is expected,
send returns immediately. There is no need for the developer to break the handler
up into a collection of callback functions to receive asynchronous responses, as is
required in most other languages used for gateway programming. Instead, the
difference between synchronous and asynchronous responses is handled by the
z2z compiler, as described in Section 4. This strategy makes it easy to handle the
case where the gateway must translate a single request from the source device
into multiple requests for the target device, requiring multiple send operations.

If the protocol specification module indicates a return type for a handler,
then the handler may return a response. This is done using return (line 59),
which takes as argument a message and terminates execution of the handler.
A provisional response, as is needed in SIP to notify the source device that a
message is being treated, can be returned using preturn (line 17). This operator
asynchronously returns the specified message, and handler execution continues.

Session management A session is a state that is maintained over a series of
messages. If the protocol specification module for the source protocol declares
how messages should be mapped to sessions (session flow), then the message
translation module may declare variables associated with a session outside of
any handler. The camera gateway, for example, declares the session variable
session id in line 1. The message translation module initiates a session using
session start() (line 45). Once the session has started any modification made
to these variables persists across requests within the session, until the session
is ended using session end(). At this point, all session memory is freed. The
SMTP/HTTP/SMTP gateways described in Section 2 similarly use sessions to
maintain the TCP connection identifier across multiple requests.

4 Implementation

Our implementation of the z2z gateway generator comprises a compiler for the
z2z language and a runtime system. From the z2z specification of a gateway, the
z2z compiler generates C code that can then be compiled using a standard C
compiler and linked with the runtime system. The generated code is portable
enough to run on devices ranging from desktop computers to constrained devices
such as PDAs or home appliances. The runtime system defines various utility
functions and amounts to about 7500 lines of C code. The z2z compiler is around
10500 of OCaml code. Note that the compiler can be used offline to produce the
gateway code and therefore is not required to be present on the gateway device.
We first describe the verifications performed by the compiler, then present the
main challenges in code generation, and finally present the runtime system.

4.1 Verifications

The z2z compiler performs consistency checks and dataflow analyses to detect
erroneous specifications and to ensure the generation of safe gateway code.

Consistency checks. As was shown in Fig. 4, there are various dependencies
between the modules making up a z2z gateway. The z2z compiler performs a
number of consistency checks to ensure that the information declared in one
module is used elsewhere according to its declaration. The main inter-module
dependencies are derived from the request and sending blocks of the protocol
specification and the types and visibilities of the elements of the message views.
The request block associated with the source protocol declares how to dispatch
incoming requests to the appropriate handlers and whether a response is expected
from these handlers. The z2z compiler checks that the message translation module
defines a handler for each kind of message that should be handled by the gateway
and that each handler has an appropriate return type. The sending block of a
protocol specification module initializes some fields for all requests or responses
sent using that protocol. The compiler checks that every template view defined
in the corresponding message specification module includes all of these fields.
Finally, the message specification module indicates for each field of a view the
type of value that the field can contain and whether the field can be accessed by
the message translation module (public) or only by the protocol specification
module (private). The z2z compiler checks that the fields are only used in the
allowed module and that every access or update has the declared type.

Dataflow analyses. The z2z compiler performs a dataflow analysis within the
message translation module to ensure that values are well-defined when they
are used. The principal issues are in the use of optional message fields, session
variables, and created messages. A message specification module may declare
some message fields as optional, indicating that they may be uninitialized.
The z2z compiler enforces that any reference to such a field is preceded by an
empty check. Session variables cannot be used before a session start operation
or after a session end operation. The z2z compiler checks that references to
these variables do not occur outside these boundaries. Finally, the z2z compiler
checks that all public fields of a template are initialized before the template is
passed to send and that all execution paths through the sending block of the
corresponding protocol specification module initialize all private fields.

4.2 Code generation

The main challenges in generating code from a z2z specification are the imple-
mentation of the send operation, the implementation of the variables used by the
message translation module, and the implementation of memory management.

The send operation. The handlers of a z2z message translation module are
specified as sequential functions, with send having the syntax of a function call
that may return a value. If the target protocol returns responses synchronously,
the z2z compiler does indeed implement send as an ordinary function call. If the
target protocol returns responses asynchronously, however, this treatment is not
sufficient. In this case, the implementation of send does not return a value, but
must instead receive as an argument information about the rest of the handler

so that the handler can be restarted when a response becomes available. The
standard solution is to decompose the code into a collection of callback functions,
which are tedious, error-prone, and unintuitive to write by hand. Fortunately, it
has been observed that such callback functions amount to continuations, which
can be created systematically [7]. The z2z compiler thus splits each handler at the
point of each send to create a collection of functions, of which the first represents
the entry point of the handler and the rest represent some continuation.

…

resp1 = send(req1);

…

if (expr) {

…

resp2 = send(req2);

…

} else {

…

resp3 = send(req3);

…

}

…

…

s1

…

…

…

s2

…

…

…

s3

…

…

…

Fig. 8. Code slicing for continu-
ations

Fig. 8 illustrates the splitting of a han-
dler performed by the z2z compiler when the
target protocol of a send returns responses
asynchronously. This code contains three send
operations, one on line s1 and the others in
each of the if branches (lines s2 and s3). The
continuation function for the send on line s1
contains the code in the region labeled (2).
The continuation function for the send on line
s2 contains the code in region (3) and the one
for the send on line s3 contains the code in
region (4). As shown, the latter two continua-
tion functions explicitly contain only the code
within the corresponding if branch. The exe-
cution of the handler must, however, continue
to the code following the if statement, which
is in the continuation of both send operations.
To reduce the code size, the z2z compiler fac-
torizes the code after the if statement into a
separate continuation function, labeled (5), which is invoked by both (3) and (4)
after executing the if branch code [8].

Variables. Splitting a handler into a set of disjoint continuation functions in the
asynchronous case complicates the implementation of the handler’s local variables
when these variables are used across sends and thus by multiple continuations.
The z2z compiler identifies handler variables whose values must be maintained
across asynchronous sends, and implements them as elements of an environment
structure that such a send passes to the runtime system. The runtime system
stores this environment, and passes it back to the stored continuation function
when the corresponding response is received.

Session variables are similarly always implemented in an environment struc-
ture, as by design they must be maintained across multiple invocations of the
message translation module. Between handler invocations, the runtime system
stores this environment with the other information about the session.

Dynamic memory management. Template constructors dynamically allocate
memory, analogous to Java’s new operation. This memory may be referenced
from arbitrary local and session variables of the message translation module,
and must be freed when no longer useful. Had we translated z2z into a garbage

collected language such as Java, then we could rely on the garbage collector to
free this memory. We have, however, used C, to avoid the overhead of including
a fully-featured runtime system such as the JVM. To avoid the risk of dangling
pointers, the z2z compiler generates code to manage reference counts [9]. An
alternative, for future work, is to use a garbage collector for C code [10].

4.3 Runtime system

The z2z runtime system implements a network server capable of simultaneously
handling many messages, that may rely on various protocols. The server is
parameterized by the information specific to each protocol, as provided in the
corresponding protocol specification module (Section 3.2). When a message is
received, the runtime system invokes the corresponding parser to construct a
message view as defined in the message specification module. The runtime system
then executes the code generated from the message translation module for the
handler corresponding to the incoming request. The runtime system also provides
various utility functions that are used by the code generated by the z2z compiler to
send requests synchronously or asynchronously, to save and restore environments,
to manage sessions, and to perform various other operations.

Receiving network messages The z2z runtime system is designed to efficiently
juggle many incoming requests simultaneously. It is multithreaded, based on the
use of a single main thread and a pool of worker threads. The main thread detects
an incoming connection, and then assigns the processing of this connection to an
available worker thread. The pool of worker threads avoids the high overhead
that would be entailed by spawning a new thread per connection, and thus
contributes to the overall efficiency of the approach. It furthermore avoids the
mutex contention that would be incurred by the use of global shared variables.
The z2z developer does not need to be aware of these details.

TCP poses further challenges. In this case, a stream of messages arrives within
a single connection. Depending on the protocol, substantial computation may be
required to isolate the individual messages within a stream. To avoid dropping
messages, the main thread assigns two worker threads to a TCP connection. One,
the producer, receives data from the incoming TCP stream and separates it into
messages, while the other, the consumer, applies the gateway logic. These threads
communicate via shared memory. When the producer has extracted a message
from the incoming stream, it sends a signal to the consumer, which then reads
the message in the shared memory and processes it. On completion, it sends a
signal to the producer. This approach allows the main thread to multiplex I/O
on a set of server sockets to provide gateway service to multiple devices.

Network protocol gateways furthermore must manage multiple concurrent
connections between many devices. This adds significantly to the complexity of
the gateway implementation. For example, to communicate with a device that
uses SMTP, multiple requests must be sent inside the same TCP connection, while
for a RTSP device each request requires the creation of a new TCP connection.
The z2z runtime system hides these details from the gateway developer. As

illustrated by the HTTP/SMTP example, the runtime system must keep open
the TCP connection used to send SMTP requests even if incoming requests are
responded to asynchronously. However, in this case, subsequent incoming requests
are not related to each other and the runtime system needs to know which TCP
connection to use. To address this issue, the runtime system maintains a table of
current active TCP connections and provides references to them, so that they
can be retrieved later. The runtime system can also seamlessly switch from IPv4
to IPv6, send messages in unicast or multicast, and use UDP or one or many
TCP connections, as specified by attributes in the protocol specification module,
without requiring any additional programming from the gateway developer.

Processing a message When a thread is assigned the processing of a message, it
executes the message parser of the corresponding protocol to construct a message
view, as described in Section 3.3. Then, it calls the dispatch function, generated
by the z2z compiler from the PS module, to select the handler to execute. If a
handler sends requests asynchronously, the runtime system explicitly suspends
the control flow and saves the current continuation, handler state, and session
state in a global shared memory. The local memory allocated for the current
thread is freed and the thread returns to the main pool. When a response is
received by the main thread, the runtime system assigns its processing to an
available worker thread, restores the corresponding states and continuation, and
execution of the handler continues.

5 Evaluation

To assess our approach, we have implemented the SIP/RTSP, SLP/UPnP,
SMTP/HTTP and HTTP/SMTP gateways described in the case studies of
Section 2. In the latter case, although our experiments use HTTP over UDP
or TCP for the encapsulation, it is possible to use other protocols such as SIP
over UDP. We have implemented our gateways on a Single Board Computer
(SBC) to represent the kind of limited but inexpensive or energy-efficient devices
that are found in PDAs, mobile devices and home appliances. We use a Eukréa
CPUAT91 card,6 based on a 200 MHz ARM9 processor. The SBC has 32MB of
SDRAM, 8MB of flash memory, an Ethernet controller, and runs a minimal Linux
2.6.20 kernel. For the SIP/RTSP experiment, we use the open-source Linphone
video-phone client7 and an Axis RTSP camera. For the SLP/UPnP experiment,
we use a handcrafted SLP client based on the INDISS framework [11] and a UPnP
service provided by CyberLink.8 For the SMTP/HTTP/SMTP experiment, we
use the multi-threaded SMTP test client and server distributed with Postfix [12]
to stress the generated gateways.

Fig. 9 shows the size of the various specifications that must be provided to
generate each gateway. A protocol specification module is independent of the
6 Eukréa. http://www.eukrea.com/
7 Linphone: http://www.linphone.org/
8 CyberLink: http://www.cybergarage.org/net/upnp/java/

Input specification Parser wrapper Z2z gateway (size in KB)
(lines of z2z code) (lines of C code) Generated Runtime

Total
PS MS MT Parser or wrapper modules system

SIP/RTSP

SIP 24 118

102

168

72 80 152
RTSP 20 104 210
SDP - 12 52
SDP media - 15 83

SLP/UPnP
SLP 12 21

5
166

44 80 124SSDP 6 31 223
HTTP 9 43 178

SMTP/HTTP

UDP
SMTP 10 23

83
96

40

80

120
HTTP 9 92 103

TCP SMTP 10 23
71

96
36

116
alive HTTP 9 64 105
TCP SMTP 10 23

83
96

36
non-alive HTTP 9 92 114

HTTP/SMTP

UDP
HTTP 9 43

69
160

32

80

112
SMTP 10 23 44

TCP HTTP 9 43
63

488
36 116

alive SMTP 10 23 34
TCP HTTP 9 43

75
190

32 112
non-alive SMTP 10 23 44

Fig. 9. The size of the input specifications and the generated gateway

Native service access
SIP↔SIP RTSP↔RTSP

Time 351 701

SLP↔SLP UPnP↔UPnP
Time 2 58

Z2z
SIP/RTSP SLP/UPnP

Time 986 78

(a)

Native service access - SMTP/SMTP
Nb client Mail size (KB) Nb Mail Time

1 1 1 10
1 10 1 10
1 10 10 15
10 10 10 15

Z2z - SMTP/HTTP/SMTP
Nb Mail size Nb Time increase

client (KB) Mail factor

UDP

1 1 1 50 5
1 10 1 65 6.5
1 10 10 645 43
10 10 10 146 9.7

TCP alive

1 1 1 48 4.8
1 10 1 50 5
1 10 10 410 27.3
10 10 10 98 6.5

TCP non-alive

1 1 1 53 5.3
1 10 1 53 5.3
1 10 10 400 26.6
10 10 10 111 7.4

(b)

Fig. 10. Native service access vs. z2z (ms)

targeted gateway and thus can be shared by all gateways relevant to the protocol.
The message translation module for the SLP/UPnP gateway is particularly
simple, being only 5 lines of code. Indeed, the complete z2z specification for
this gateway is less than 100 lines of code. As described in Section 3.3, the
message specification module must provide a parser for incoming messages. For
our experiments, we have implemented simple parsers for each message type,
amounting to at most 488 lines of C code. Each of the generated gateways does
not exceed, in the worst case, 150KB of compiled C code, including 80KB for
the runtime system.

Fig. 10 shows the response time for the SIP/RTSP, SLP/UPnP, and SMTP/-
HTTP/SMTP gateways, as well as the native protocol communication costs. In
each case, at the client side we measure the time from sending an initial request
to receiving a successful response. These experiments were performed using the
loopback interface to remove network latency. As illustrated in Fig. 10(a), the
z2z implementation of the SIP/RTSP gateway does not introduce any overhead

as compared to an ideal case of zero-cost message translation, since its response
time is less than the sum of the response times for SIP and RTSP separately.
The response time for the SLP/UPnP gateway is a little more than that of SLP
and UPnP separately. The cost of the z2z gateway is due in part to the polling
done by the main thread in the case of asynchronous responses, as described in
Section 4.3. This strategy introduces some time overhead, but reduces memory
requirements. The response time for UPnP, furthermore, depends heavily on the
stack that is used. If we use a Siemens stack9 rather than the CyberLink stack,
the native UPnP time rises to 593ms, substantially higher than the gateway cost.

Fig. 10(b) shows the performance of the gateways generated in order to tunnel
SMTP traffic into HTTP. We consider three types of tunnel according to the
nature of transport layer protocol being used to exchange either asynchronously
(i.e. UDP or TCPnon-alive) or synchronously (i.e. TCPalive) messages between the
two tunnel end-points. When sending one e-mail, with a size from 1KB up to 10
KB, passing through a HTTP tunnel roughly increases the native response time
by a factor of 5 whatever the tunnel considered. This overhead comes primarily
from the mailing process. According to the SMTP RFC5321, sending an e-mail
involves sending at least 5 SMTP commands and acknowledgements, of at most
512 bytes each, and splitting the mail content in order to send chunks of at most
998 bytes. Commands, acknowledgements, and data chunks are packets that need
to be encapsulated into the HTTP protocol and de-encapsulated on both sides of
the HTTP tunnel. Increasing the number of packets being encapsulated at tunnel
end-points inherently increases the response time. Our experimental results show
that sending a sequence of 10 emails increases the response times at most by 43
as compared to a native implementation in the worst case. However, when the
mail is sent in parallel (10 clients), response times only increase by a factor of at
most 10. The latter result highlights the efficiency of the parallelism provided by
our generated gateways. Furthermore, note that the SMTP test server simply
throws away without processing the messages received from network, whereas
the tunnel end-points must process them, therefore increasing the response time.
The native response time obtained with a real deployed SMTP server such as
Postfix [12] may be up to 18x slower than the SMTP test server, which is much
closer to the response times obtained via the generated gateways.

Finally, Fig. 11 shows the amount of dynamic memory used during the lifetime
of each of our generated gateways. The memory footprint is directly related to
the network input/output traffic. When idle, the memory consumption is low and
does not exceed 2KB for the considered gateways. At peak time, both the SIP/-
RTSP and SLP/UPnP gateways consume at most 14KB, as shown in Figs. 11(a)
and 11(b). Comparatively, the SMTP/HTTP/SMTP gateways based on TCP
use only at most 60KB to process 100 1KB mails sent by 10 simultaneous clients.
However, the memory consumption of the UDP-based gateway may reach up to
159KB-260KB as shown in Fig. 11(c). This overhead is inherent in the use of
UDP, as a dedicated 1500 byte buffer is allocated for each incoming UDP packet.
TCP, on the other hand, enables reading variable-size messages into a stream.

9 Siemens UPnP: http://www.plug-n-play-technologies.com/

Time

M
em

or
y

co
ns

um
pt

io
n

(K
B)

0

12
10
8
6
4

2

(a) SLP/UPnP gateway

Time

M
em

or
y

co
ns

um
pt

io
n

(K
B)

0

12
14

10
8
6
4
2

(b) SIP/RTSP gateway

0

50

100

150

200

250

300

M
em

o
ry

co

n
su

m
p

ti
o

n
 (

K
B

))

Time

10 clients; 1KB/mail; 100 mails

udp (smtp/http)

udp (http/smtp)

tcp alive

tcp non alive

(c) HTTP tunnelling

Fig. 11. Dynamic memory consumption (KB)

6 Related Work

Other approaches to interoperability. The middlewares ReMMoC [13], RUNES
[14], MUSDAC [15], and BASE [16] for use in networked devices allow the device
code to be developed independently of the underlying protocol. Plug-ins then
select the most appropriate communication protocol according to the context.
Many applications, however, have not been developed using such middleware
systems and cannot be modified because their source code is not available.

Bridges provide interoperability without code modification. Direct bridges,
such as RMI-IIOP10 and IIOP-.NET,11 provide interoperability between two
fixed protocols. A direct bridge must thus be developed separately for every pair
of protocols between which interaction is needed. The diversity of protocols that
are used in a networked home implies that this is a substantial development
task. Indirect bridges such as Enterprise Service Buses (ESBs) [1], translate
messages to and from a single fixed intermediary protocol. This approach reduces
the development effort, but may limit expressiveness, as some aspects of the
relevant protocols may not be compatible with the chosen intermediary protocol.
INDISS [11] and NEMESYS [17] also use a single intermediary protocol, but
one that is specific to the protocols between which interoperability is desired.
Still, none of these approaches addresses the problem of implementing the bridge,
which requires a thorough knowledge of the protocols involved and low-level

10 RMI-IIOP:http://java.sun.com/products/rmi-iiop/
11 IIOP-.NET: http://iiop-net.sourceforge.net/index.html

network programming. This makes it difficult to quickly integrate devices that
use an unsupported protocol into a home environment.

Z2z can be used in the context of either direct or indirect bridges. Our approach
targets the weak point of both: the difficulty of bridge development. We propose a
high-level interface definition language that abstracts away from network details,
makes relevant protocol properties explicit, provides static verification at the
specification level, and automatically generates low-level code.

Compilation. Z2z uses a number of advanced compilation techniques to be able
to provide a high-level notation while still generating safe and efficient code.
Krishnamurthi et al. [7] pioneered the use of continuations to overcome the
asynchrony common in web programming. Our implementation of continuations
in C code is based on that presented by Friedman et al. [18]. Our dataflow
analysis uses standard techniques [19], adapted to the operations of the z2z DSL.
Finally, reference counting has long been used to replace garbage collection [9].

7 Conclusion and Future Work

In this paper, we have presented a generative language-based approach, z2z
to simplify gateway construction, a problem that has not been considered by
previous frameworks for gateway development. Z2z is supported by a runtime
system that hides low-level networking intricacies and a compiler that checks
essential correctness properties and produces efficient code. We have used z2z
to automatically generate gateways between SIP and RTSP, between SLP and
UPnP, and between SMTP and SMTP via HTTP. The gateway specifications
are 100-400 lines of z2z code while the generated gateways are at most 150KB of
compiled C code and run with a runtime memory footprint of less than 260KB,
with essentially no runtime overhead.

We are currently extending the z2z approach to generate code that can be
deployed on existing middleware systems such as ReMMoC [13]. We are also
exploring the extension of z2z to enable dynamic adaptation of gateway code
according to context information. Following our approach, there are a number
of other application areas to explore in the future, including Web services and
network supervision. These new application areas should enable us to further refine
our language, compiler and runtime system, making z2z a practical approach for
gateway construction. Finally, we are considering how z2z can efficiently handle
failures within the participants of an interaction. To address this issue, we are
defining language extensions to specify failure recovery policies and runtime
primitives to support these new features.

Availability Source code: http://www.labri.fr/perso/reveille/projects/z2z/

References

1. Chappell, D.: Enterprise Service Bus. O’Reilly (2004)

2. Perkins, C.: RTP - Audio and Video for the Internet. Addison-Wesley (2003)
3. Goland, Y.Y., Cai, T., Leach, P., Gu, Y.: Simple service discovery protocol/1.0:

Operating without an arbiter. http://quimby.gnus.org/internet-drafts/draft-cai-
ssdp-v1-03.txt (October 1999)

4. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard) (June
1999) Updated by RFC 2817.

5. Burgy, L., Réveillère, L., Lawall, J.L., Muller, G.: A language-based approach for
improving the robustness of network application protocol implementations. In: 26th
IEEE International Symposium on Reliable Distributed Systems, Beijing (October
2007) 149–158

6. Arnoldus, J., Bijpost, J., van den Brand, M.: Repleo: a syntax-safe template engine.
In: GPCE ’07: Proceedings of the 6th international conference on Generative
programming and component engineering, NY, USA, ACM (2007) 25–32

7. Krishnamurthi, S., Hopkins, P.W., McCarthy, J., Graunke, P.T., Pettyjohn, G.,
Felleisen, M.: Implementation and use of the PLT Scheme web server. Higher-Order
and Symbolic Computation 20(4) (2007) 431–460

8. Steele Jr., G.L.: Lambda, the ultimate declarative. AI Memo 379, Artificial Intelli-
gence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
(November 1976)

9. Cohen, J.: Garbage collection of linked data structures. ACM Computing Surveys
13(3) (September 1981) 341–367

10. Boehm, H., Weiser, M.: Garbage collection in an uncooperative environment.
Software Practice & Experience 18(9) (September 1988) 807–820

11. Bromberg, Y.D., Issarny, V.: INDISS: Interoperable discovery system for networked
services. In: Proceedings of the 6th International Middleware Conference, Grenoble,
France (November 2005) 164–183

12. Hildebrandt, R., Koetter, P.: The book of Postfix: state-of-the-art message transport.
NO-STARCH (2005) http://www.postfix.org/.

13. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interac-
tion in heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun.
Rev. 9(1) (2005) 2–14

14. Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco, G.P., Zachariadis, S.:
Reconfigurable component-based middleware for networked embedded systems. In
International Journal of Wireless Information Networks 14(2) (June 2007) 149–162

15. Raverdy, P.G., Issarny, V., Chibout, R., de La Chapelle, A.: A multi-protocol
approach to service discovery and access in pervasive environments. In: The 3rd
Annual International Conference on Mobile and Ubiquitous Systems: Networks and
Services, San Jose, CA, USA (July 2006) 1–9

16. Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: Base: A micro-broker-based
middleware for pervasive computing. In: PERCOM ’03: Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications,
Washington, DC, USA, IEEE Computer Society (2003) 443

17. Bromberg, Y.D.: Solutions to middleware heterogeneity in open networked environ-
ment. Phd Thesis, INRIA/UVSQ (2006)

18. Friedman, D.P., Wand, M., Haynes, C.T.: Essentials of Programming Languages.
MIT Press (1992)

19. Appel, A.: Modern Compiler Implementation in ML. Cambridge University Press
(1998)

