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1. INTRODUCTION
Process scheduling is an old problem, but there is no single
scheduler that is perfect for all applications. Indeed, in the
last few years, the emergence of new applications, such as
multimedia and real-time applications, and new execution
environments, such as embedded systems, has given rise to
a host of new scheduling algorithms [2, 3, 5, 7, 14, 18, 19,
21, 22, 23, 24, 25]. Nevertheless, because these algorithms
are typically highly specialized, few have been included in
commercial operating systems (OSes).

Ideally, when the scheduling behavior required by an ap-
plication is not available, the application programmer can
implement a new scheduler in the target OS. Nevertheless,
scheduler programming at the kernel level is a difficult task.
First, there is no standard interface for implementing sched-
ulers. Thus, the programmer must identify the parts of the
kernel that should be modified and the code that should be
written in each case. Because scheduling is affected by all
kernel services, this analysis requires a global understanding
of the kernel behavior. The analysis is further complicated
by the pseudo-parallelism present in the kernel due to in-
terrupts. Second, few debugging tools are available at the
kernel level. Indeed, any errors in kernel code are likely to
crash the machine, making bugs difficult to track down. To-
gether these issues imply that the kind of expertise required
to successfully integrate a new scheduler into an existing OS
is outside the scope of application programmers.

Bossa.Bossa is a framework to allow application program-
mers to implement kernel schedulers easily and safely. This
framework defines a scheduling interface that is instanti-
ated in a standard OS by an OS expert. Schedulers are
written using a domain-specific language (DSL) that pro-
vides high-level scheduling-specific abstractions to simplify
the programming of scheduling policies. To enable compile-
time verification that a scheduler interacts correctly with the
target kernel, the OS expert configures the DSL compiler
with a model of the kernel’s scheduling behavior, including
information about process state transitions and interrupts.
Schedulers can either be compiled with the kernel or dy-
namically loaded into a scheduling hierarchy. Because Bossa
extends a standard OS, applications can continue to use a
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standard execution environment (drivers, libraries, etc.).
We have implemented Bossa in the Linux 2.4.18 and Linux

2.4.24 kernels. Bossa has been used to implement a variety
of scheduling policies, including policies directed towards
multimedia applications such as progress-based scheduling
[22], policies directed towards real-time systems such as rate
monotonic and earliest-deadline first (EDF) [4], and general-
purpose policies such as the policy of Linux. Most policies
amount to under 200 lines of Bossa code and were imple-
mented in a few hours beyond the time required to under-
stand the scheduling algorithm. Some of these policies were
implemented by students with no previous kernel program-
ming experience. Overall, we have found that the use of
Bossa allows the scheduler programmer to focus on the fea-
tures of the policy to be implemented rather than on the
details of integrating a new scheduler into an existing OS.

In the rest of this paper, we describe some features of the
Bossa framework. Section 2 introduces the Bossa DSL. Sec-
tion 3 describes an aspect-oriented approach to integrating
Bossa into an OS such as Linux. Section 4 evaluates the
performance of our approach and illustrates some applica-
tions. Section 5 concludes and describes future work. Bossa
has been presented in detail elsewhere [1, 10, 11, 15, 16].
This paper thus provides a brief overview of some of the
highlights of the Bossa framework.

2. THE BOSSA DSL
The goal of the Bossa DSL is to express scheduling policies
in a clear, concise and verifiable way. A Bossa scheduling
policy includes a set of declarations and a set of handlers
for kernel scheduling events. We introduce the language
using excerpts of an implementation of an EDF scheduling
policy [13], shown in Figure 1, which illustrates most of the
language features. The complete implementation is 162 lines
of Bossa code. The complete policy and a grammar of the
Bossa DSL are available at the Bossa web site.1

Declarations.The declarations of a scheduling policy de-
fine the process attributes, the scheduling states, and the
ordering of processes.

The process declaration lists the policy-specific attributes
associated with each process. Those of the EDF policy are
the period and the Worst-Case Execution Time (WCET)
supplied by the process, the process’s current deadline, and
a timer that is used to maintain the period.

The states declaration lists the set of process states that

1http://www.emn.fr/x-info/bossa



scheduler EDF = {
process = {

time period;
time wcet;
time current_deadline;
timer period_timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
READY yield : process;
BLOCKED blocked : queue;
BLOCKED computation_ended : queue;
TERMINATED terminated;

}
ordering_criteria = { lowest current_deadline }

handler (event e) {
On unblock.preemptive {

if (e.target in blocked) {
if (!empty(running) && e.target > running) {

running => ready;
}
e.target => ready;

}
}
On bossa.schedule {

if (empty(ready)) { yield => ready; }
select() => running;
if (!empty(yield)) { yield => ready; }

}
...

}
}

Figure 1: EDF scheduler

are distinguished by the policy. Each state is associated
with a state class (RUNNING, READY, BLOCKED, or TERMINA-

TED) describing the schedulability of processes in the state
and an implementation as either a process variable (pro-
cess) or a queue (queue). The names of the states of the
EDF policy are mostly intuitive. For example, the ready

state is in the READY state class, meaning that it contains
processes that are able to run. This state is also desig-
nated as select, meaning that processes are elected from
this state. The computation ended state stores processes
that have completed their computation within the current
period.

The ordering criteria allows the comparison of two pro-
cesses according to a sequence of criteria based on the values
of their attributes. The EDF policy favors the process with
the lowest current deadline. The annotation select in the
declaration of the ready state indicates that the associated
queue is sorted according to this criterion.

Event handlers.Event handlers describe how a policy re-
acts to scheduling-related events that occur in the kernel.
Examples of such events include process blocking and un-
blocking and the need to elect a new process. We show
only the definitions of the handlers unblock.preemptive

and bossa.schedule, which include most of the scheduling-
specific language constructs.

Event handlers are parameterized by an event structure,
e, that includes the target process, e.target, affected by the
event. The event-handler syntax is based on that of a subset

of C, to make the language easy to learn, and provides spe-
cific constructs and primitives for manipulating processes
and their attributes. These include constructs for testing
the state of a process (exp in state), testing whether there
is any process in a given state (empty(state)), testing the rel-
ative priority of two processes (exp1 > exp2), and changing
the state of a process (exp => state). The latter operation is
the only means of affecting the state of a process, and both
removes the process from its current state and adds it to the
new one, thus ensuring by construction that every process
is always in exactly one state.

An unblock.preemptive event occurs when a process un-
blocks. The EDF handler checks whether the process is
actually blocked (e.target in blocked), and if so sets the
state of the target process to ready making it eligible for
election. The handler also checks whether there is a run-
ning process (!empty(running)) and if so whether the tar-
get process has a higher priority than this running process
(e.target > running). If both tests are satisfied, the state
of the running process is set to ready, thus causing the pro-
cess to be preempted.

Process election is performed by the bossa.schedule event
handler. The kernel invokes this handler only when a new
process must be elected and there are some eligible pro-
cesses. The handler must change the state of some READY

process to a state in the RUNNING state class and is the only
handler that is allowed to do so. In the EDF bossa.sche-

dule handler the main effect is to elect a process from the
state designated as select (ready, in the case of the EDF
policy) using the select() primitive, which is defined in
terms of the ordering criteria. Nevertheless, because the
EDF policy has two READY states, ready and yield, it may
occur that the only READY process is actually in the yield

state. In this case, the handler first changes the state of
the yield process to ready. The policy furthermore im-
plements the strategy that a yielding process only defers to
other eligible processes until the next context switch. Thus,
the handler terminates by changing the state of any process
remaining in the yield state to ready.

The structure of the EDF event handlers is quite simple,
and is typical of that of most of the handlers found in Bossa
policies. This simplicity, combined with the domain-specific
operators and the characterization of process states by state
classes, makes it easy for a programmer to understand the
algorithm implemented by a Bossa scheduling policy and
enables the Bossa DSL compiler to automatically verify that
an event handler satisfies OS-specific requirements [10].

Bossa supports both the construction of a single process
scheduler, as described above, and the construction of a hi-
erarchy of schedulers. The use of a hierarchy allows multi-
ple process schedulers, each satisfying particular scheduling
needs, to coexist in a running OS. In a Bossa hierarchy,
the root and interior nodes are virtual schedulers, which
only manage other schedulers, and the leaf nodes are process
schedulers, which only manage processes [11].

3. PREPARING LINUX FOR BOSSA
Figure 2 illustrates the architecture of the Bossa framework.
A Bossa scheduling policy is compiled by the Bossa DSL
compiler into a component that is implemented as a ker-
nel module. This component exports an interface request-
ing event notifications from the OS kernel whenever process
state changes occur. The component then uses the informa-
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tion received via these event notifications to make scheduling
decisions, including the election of a new process.

Preparing an OS kernel for use with Bossa thus requires
inserting event notifications throughout the kernel, wherever
process state changes occur, in accordance with the Bossa
interface. A standard solution to extending an OS, such as
Linux, with a new feature is to perform the integration by
hand and to distribute the result as a patch file. Manual
integration is, however, tedious and error-prone, and the
result is limited to a single version of the OS. To obtain a
solution that is both more manageable and more flexible, we
have turned for inspiration to aspect-oriented programming
(AOP) [8].

AOP is a programming technique that is targeted towards
providing a modular implementation of functionalities that
crosscut an application. The implementation of such a func-
tionality is isolated in an aspect, which contains a collec-
tion of code fragments, known as advice, and a formal de-
scription, known as a pointcut, of the positions at which
these fragments should be inserted into the target applica-
tion. To see how AOP can be used for Bossa, we consider
the integration of the unblock.preemptive event notifica-
tion into Linux 2.4. In this case, the Bossa functionality
completely subsumes the primitive Linux process wakeup
function try to wake up. Thus, the Bossa aspect contains a
pointcut specifying that any call to try to wake up should
be replaced and an advice specifying that the replacement
should call the Bossa unblock event notification function
rts unblock with the same set of arguments.

Existing approaches to AOP typically provide pointcut
languages that can modify function calls and some kinds
of variable references. Because the need for a scheduling
interface was not anticipated by the Linux developers, how-
ever, the needs of the Bossa interface do not always match
up with the structure of the Linux kernel. As an exam-
ple, we consider the bossa.schedule event. The semantics
of this event requires that the policy elect a new process
and thus coincides roughly with the behavior of the Linux
schedule function. The Linux schedule function, however,
does more than elect a new process; it also initiates the con-
text switch and performs some other bookkeeping actions.
Thus, we cannot simply replace a call to schedule with the
bossa.schedule event notification; we must instead spec-
ify the fragment of the schedule definition that the event
notification should replace.

To precisely specify the fragments of Linux code that

should be replaced by an event notification, we add features
based on temporal logic to the pointcut language. Tempo-
ral logic is commonly used to express properties of event
sequences, particularly in the context of model checking [6].
Properties include whether an event may eventually occur,
or whether it is guaranteed to eventually occur. In the con-
text of specifying properties of programs, we use temporal
logic to describe the operations that occur on various paths
through a control-flow graph. This use of temporal logic
was pioneered by Lacey et al., who use this logic to define
rewrite rules that describe common compiler optimizations
[9].

In the case of the bossa.schedule event notification, we
observe that in the Linux schedule function, the fragment
of code that deals with process election appears after the
taking of the runqueue lock and before the releasing of this
lock. The Bossa aspect thus specifies that a bossa.schedule

event notification should replace the maximal code fragment
in the schedule function in which every instruction satisfies
the following property:

AF∆(spin lock irq(&runqueue lock)) ∧
AF(spin unlock irq(&runqueue lock))

The operator AF∆φ matches any code point from which all
paths (indicated by A) in a backward direction (indicated by
∆) eventually (indicated by F) reach a point where φ is true.
In the formula above, φ is specified as the code fragment
that should be matched. The operator AFφ is similar, but
considers control-flow in a forward direction. In the formula
above, the conjunction of these two operations captures code
fragments that are between the taking and releasing of the
runqueue lock. These fragments are then as a whole replaced
by the bossa.schedule event notification. Error checking
rules can also be provided in a similar style to check for
cases where only some of the control-flow paths satisfy the
required property. Using such rules, the Bossa aspect can
be applied to multiple versions of the Linux kernel, with the
assurance that unexpected code patterns will be detected.

We have implemented an aspect system that provides the
above features using the CIL program analysis and transfor-
mation framework [17]. Most of the Bossa interface is im-
plemented by an aspect consisting of 23 pairs of pointcuts
and corresponding advice. In a few cases, hand modifica-
tions are needed e.g. in assembly language code and macro
definitions, due to limitations of CIL. The aspect code is
integrated with the Bossa interface, which thus both de-
scribes the interaction between the OS kernel and the Bossa
policy, and specifies the means of updating the OS kernel to
perform its part of this interaction [15]. We have used the
aspect with the standard versions of Linux 2.4.18 and Linux
2.4.24, and with a version of Linux 2.4.24 to which a patch
providing high resolution timers had been applied.

4. PERFORMANCE
The use of Bossa moves scheduling operations from the ker-
nel into a separate module, and thus can have an impact on
the context switch time. We use the context switch bench-
mark lat ctx to measure the impact, and find that it is
negligible for real-sized applications. We then consider how
Bossa can be used to improve the performance of a video
player. All measures were taken using the version of Bossa
based on Linux 2.4.18.
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Impact on the context-switch overhead.Performing a
context switch involves electing a new process, saving the
register state of the current process, and installing the regis-
ter state of the elected process. The context-switch overhead
also includes the cost of reloading cache and TLB entries
as needed during the subsequent execution of the elected
process. We measure the cost of these operations using the
lat ctx benchmark of the LMBench 2.0.4 benchmark suite.2

This benchmark passes a token around a ring of processes,
triggering a context switch at each step. Each process sums
the elements in a local array of a given size to emulate a
working set. Varying the size of the array affects the cache
and TLB behavior. Figure 3 compares the performance of
lat ctx when using the Bossa implementation of the Linux
policy to the performance of lat ctx when using the stan-
dard Linux scheduler. Measures are grouped first by the
array size (0-64KB) and then by the number of processes
(2-96). Tests were performed in single-user mode.

When the overall memory usage (product of the number
of processes and the memory usage per process) of lat ctx

is below 64KB, the cost of the scheduling policy plays a
significant role in the context-switch overhead. Indeed, the
use of Bossa increases the overhead by up to 39%, with the
worst case being that of 2 processes that manipulate a 64KB
array (Figure 3b). When the overall memory usage is above
64-128KB, however, the context-switch overhead increases
significantly for both Linux and Bossa. In these cases, the
use of Bossa increases the context-switch overhead by only
2-5% as compared to Linux (Figure 3b). While these exper-
iments show some overhead for Bossa, lat ctx represents
a worst case, because its computation time is dominated
by scheduling and because the memory sizes used are much
smaller than those used by real applications running on a
general-pupose system.

2http://www.bitmover.com/lmbench/
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Min Max
Linux: Player only 0.005 0.048
EDF: Player only 0.019 0.024
Linux: Player, kernel compilation 0.009 22.683
EDF: Player, kernel compilation 0.017 0.018

Table 1: Distance between Video and Audio

MPEG video display.On a lightly loaded system, a video
player can achieve the frame rate required by the video by
sleeping for an appropriate time after processing each frame.
On a heavily loaded system, the player needs to reserve a
portion of CPU time within a fixed interval, to ensure both
that it receives adequate access to the CPU and that it re-
ceives this access at the appropriate rate.

We consider the use of the video player mplayer with a
scheduling hierarchy containing a Fixed-priority scheduler at
the root, and the Linux 2.4 scheduler and the EDF sched-
uler of Section 2 at the leaves, as shown in Figure 4. The
Linux 2.4 scheduler has lower priority than the EDF sched-
uler. All processes run on the Linux 2.4 scheduler, except
the video player, which runs on the EDF scheduler. We
slightly modified mplayer to dynamically construct the hi-
erarchy, attach itself to the EDF scheduler, and yield at
the end of the processing of each frame. Table 1 shows the
behavior of the player using Bossa on the Matrix Reloaded
trailer with and without reservations when competing with
Linux kernel compilation. The behavior is represented as
the difference in the percentage of the complete audio and
video that has been treated so far. In both cases, we have
given the X process a Linux real-time priority, so that when
the player blocks to allow the video display, the X process
runs immediately, thus reducing its impact as a performance
bottleneck. Under the Linux 2.4 scheduling policy, the video
falls far behind the audio in the presence of kernel compila-
tion (third row of Table 1). With EDF, the player maintains
correct synchronization.

5. CONCLUSION
In this paper, we have given an overview of the Bossa frame-
work to facilitate the development of kernel schedulers. Our
approach is based on a the use of a DSL that simplifies
programming and allows critical properties to be verified at
compile time.

We have demonstrated the expressiveness of our approach
by implementing several well-known scheduling policies in
Bossa. Our initial experience with the Bossa compiler has
shown that it is useful in catching both common inatten-
tion errors and errors related to incorrect understanding of
the target OS. Since integration of a policy into the kernel is
handled by the compiler and the framework, it is easy to test
new policy variants. Thus, scheduler programming is made
accessible to non-kernel experts. Indeed, we have developed
lab materials for teaching basic scheduling principles to un-



dergraduates using Bossa and have used these materials in
graduate and undergraduate courses over the past few years.
In our experience, the ease of use and robustness of the DSL
has allowed students to freely experiment with scheduling at
the OS kernel level without crashing the machine.

We are currently porting Bossa to the real-time OS Jaluna
and are considering how to extend Bossa to multiproces-
sors. Finally, based on our success in using AOP to integrate
the Bossa framework into an existing OS, we are currently
studying how to use similar techniques to implement other
kinds of OS evolutions [12].

Availability. Bossa and all material described in this paper
are available at the Bossa web site:
http://www.emn.fr/x-info/bossa/.
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