
Towards Bridging the Gap Between Programming
Languages and Partial Evaluation

Anne-Françoise Le Meur
INRIA/LaBRI

ENSEIRB, 1 avenue du
docteur Albert Schweitzer

33402 Talence Cedex, France

lemeur@labri.fr

Julia L. Lawall
Dept. of Computer Science
University of Copenhagen,

Universitetsparken 1
DK-2100 Copenhagen,

Denmark

julia@diku.dk

Charles Consel
INRIA/LaBRI

ENSEIRB, 1 avenue du
docteur Albert Schweitzer

33402 Talence Cedex, France

consel@labri.fr

ABSTRACT
Partial evaluation is a program-transformation technique
that automatically specializes a program with respect to
user-supplied invariants. Despite successful applications in
areas such as graphics, operating systems, and software en-
gineering, partial evaluators have yet to achieve widespread
use. One reason is the difficulty of adequately describing
specialization opportunities. Indeed, under-specialization or
over-specialization often occurs, without any direct feedback
to the user as to the source of the problem.

We have developed a high-level, module-based language al-
lowing the programmer to guide the choice of both the code
to specialize and the invariants to exploit during the special-
ization process. To ease the use of partial evaluation, the
syntax of this language is similar to the declaration syntax of
the target language of the partial evaluator. To provide feed-
back to the programmer, declarations are checked through-
out the analyses performed by partial evaluation. The lan-
guage has been successfully used by a signal-processing ex-
pert in the design of a specializable Forward Error Correc-
tion component.

1. INTRODUCTION
After having been intensively studied for the past twenty
years, partial evaluation has now reached a mature state.
Major advances have been made in understanding partial
evaluation, both theoretically and practically. Many varia-
tions have been explored with respect to language paradigms
and features. There are now partial evaluators for widely
used languages such as C [1, 8] and Java [26].

Partial evaluation is essentially an aggressive form of con-
stant propagation that specializes a program with respect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PEPM ’02, Jan. 14-15, 2002 Portland, OR, USA
© 2002 ACM ISBN 1-58113-455-X/02/01...$5.00

to programmer-supplied invariants. A partial evaluator sim-
plifies static computations, which depend only on informa-
tion that can be inferred from the invariants and the pro-
gram structure, and reconstructs the remaining dynamic
computations to form the specialized program. Numerous
strategies [5, 9, 12, 15] have been developed for the spe-
cialization process, leading to a wide variety of effects that
can be achieved by partial evaluation; many of these tech-
niques have been implemented in practical partial evalua-
tors. These tools have been applied to a wide range of real-
istic applications in domains such as operating systems [17,
23], scientific computing [4, 18], graphics [2, 16] and software
engineering [21, 28].

Despite these advances, partial evaluation still cannot be
considered completely successful, because existing tools have
been almost uniquely used by designers of partial evaluators.
There are three major reasons for this situation.

Inappropriate Program Structuring. A major stum-
bling block in the application of partial evaluation to com-
plex programs has been the problem of detecting program
patterns that offer specialization opportunities. Decompos-
ing an implementation as collection of units that each imple-
ments a single functionality simplifies reasoning about the
program structure, and can thus highlight such program pat-
terns. Nevertheless, even when a program is cleanly struc-
tured according to the needs of the implementation, this
decomposition may be too coarse-grained to be the basis
of an adequate specialization strategy, either because spe-
cialization should be applied to code spread across multiple
units, or because some code in these units does not present
significant specialization opportunities.

Complex Configuration of Partial Evaluators. In
practical applications, advanced partial-evaluation features
do not always justify their costs. Thus, it is desirable to
allow the programmer to control how such features are used
in the partial evaluation process. Furthermore, when par-
tial evaluation is applied to only a fragment of a program,
correct specialization requires that the programmer describe
the interaction between the selected program fragment and
the rest of the program. Providing this kind of configura-
tion information can be complex and error-prone, and de-

tailed knowledge of the internals of the partial evaluator
may be needed to understand the effect of particular decla-
rations. When such declarations are provided in an unstruc-
tured way, the expertise incorporated in a successful use of
specialization is not easily transferable.

Coarse-Grained Specialization Declarations. Suc-
cessful specialization typically requires that the programmer
have an intuitive understanding of how known information
should propagate through the program. Nevertheless, par-
tial evaluators typically do not provide adequate abstrac-
tions to describe specialization intentions. Indeed, to spe-
cialize a program, the programmer generally only provides
information about the entry-point arguments and global vari-
ables. Partial evaluators give little high-level feedback as to
the degree of specialization that can be achieved. This prob-
lem is compounded by the approximations that must neces-
sarily be performed by any program analysis and transfor-
mation tool.

These shortcomings reflect a gap between the language used
to write a program and the information needed to success-
fully exploit specialization opportunities. Currently, there
exists insufficient support to help a programmer specify what
specializations should be performed in a complex program.

Our Approach
To bridge the gap between programming languages and par-
tial evaluation, we introduce a language that allows the
programmer to declare specialization scenarios for a given
program. A specialization scenario specifies what to special-
ize: which functions and data structures within the code are
of interest for specialization, and what is their appropriate
specialization context. Our approach complements existing
partial evaluation techniques by providing the following:

A Language for Declaring Specialization Scenarios.
We define a module-based language that allows the program-
mer to declare what code fragments and data structures
should be processed by the specializer. The organization
of this information into specialization modules localizes spe-
cialization information related to a particular functionality,
and facilitates the understanding and reuse of specialization
scenarios.

Automatic Partial Evaluator Configuration. Our
language is independent of the configuration language of the
targeted partial evaluator, and indeed borrows heavily from
the standard C declaration syntax. Specialization modules
can be translated automatically into the configuration dec-
larations accepted by existing partial evaluators, modulo the
features provided by the target partial evaluator.

Checking of Fine-grained Specialization Declarations.
A specialization scenario declares the binding-time proper-
ties of each function, data structure and global variable.
These declarations can be checked during the preliminary
analyses performed by the partial evaluator. Such check-
ing ensures that information derived from the programmer-
supplied invariants is propagated according to the program-
mer’s expectations, as defined by the declarations, thus im-
proving the predictability of partial evaluation.

Contributions
We present a declaration language aimed at bridging the gap
between the C programming language and existing partial
evaluators. Our contributions can be summarized as follows.

• We make partial evaluation accessible to non-experts
by providing a high-level language that is close to the
C programming language and abstracts complex par-
tial evaluation concepts into easy-to-use and intuitive
declarations.

• The use of this language makes partial evaluation more
predictable because it allows the programmer to spec-
ify how binding-time properties should be maintained
throughout the program.

• We have developed a compiler for our language that
automatically generates configuration declarations for
the partial evaluator Tempo. Tempo has been devel-
oped by the Compose group [8] and successfully ap-
plied to applications in various domains [17, 21, 22,
23].

• As a proof of concept, we have implemented in Tempo
our strategy to check the coherence between the pro-
grammer’s declarations and the transformations per-
formed during specialization.

We are currently using our approach in the context of a
larger project in the Compose group to develop special-
izable system components together with operating-system
programmers. Such programmers are typically unfamiliar
with partial evaluation, but are very knowledgeable and de-
manding regarding code optimization. We have already de-
veloped, with the help of non-experts in partial evaluation,
generic components that enable the rapid generation of ef-
ficient Forward Error Correction encoders through special-
ization [19]. We have found that the use of specialization
scenarios makes partial evaluation more accessible and ef-
fective, makes the expertise needed to specialize an applica-
tion explicit and re-usable, and promotes the development
of generic code without sacrificing performance.

The rest of this paper is organized as follows. First, we de-
fine the declaration language in Section 2. Then, Section 3
describes the compilation of the specialization declarations.
Section 4 first describes our strategy to ensure that the de-
sired degree of specialization is achieved and then presents
the specialization process and its correctness. Related work
is discussed in Section 5. Finally, Section 6 concludes and
suggests future work.

2. DECLARATION LANGUAGE
Applying specialization to an already-developed program is
a difficult task. The programmer has to study the code to
identify code fragments that contain interesting specializa-
tion opportunities, and then to describe the interaction be-
tween these code fragments and the rest of the program. A
promising alternative is to take specializability into account
during program development. At this stage genericness can
be encoded using strategies that are known to specialize
well, and the program can be structured such that there is

a clean separation between the code to be specialized and
the rest of the program. So that this design effort can use-
fully guide specialization, we propose a language that allows
the programmer to clearly describe the scenarios in which
specialization is beneficial.

2.1 Design Decisions
At minimum, description of a specialization scenario must
declare the program point at which specialization should be-
gin and the variables with respect to which the code should
be specialized. Nevertheless, experience has shown that this
amount of information is not sufficient to ensure that an au-
tomatic partial evaluator can carry out the programmer’s in-
tentions. Declaring the binding-time properties of every pro-
gram construct, however, is excessively burdensome for the
programmer and can over-constrain the specialization pro-
cess. Instead, we propose that the programmer declare the
binding-time properties of global variables, data-structure
components, and function parameters. The binding times
of these constructs are then fixed according to these decla-
rations at each reference point throughout the program, but
the binding times of local variables, for which the program-
mer does not provide any declarations, can vary according to
the strategy taken by the partial evaluator. This approach
allows checking of the programmer’s intentions pervasively
throughout the program, but allows the specialization pro-
cess to benefit from particular features of the partial evalu-
ator intraprocedurally.

To reduce the overhead in learning how to apply specializa-
tion, the means of specifying a specialization scenario should
borrow as much as possible from the syntax of the target
language. Our specification language is targeted towards C
programs, and thus the declarations of specialization prop-
erties amount to annotated C declarations. To facilitate
understanding of a specialization process, related scenarios
are grouped into modules. Multiple modules can be declared
for a single code fragment, corresponding to multiple visions
of its specializability. Alternatively, multiple scenarios can
be declared for a given C construct in a single module.

2.2 Example
The function dot shown below, implements the multiplica-
tion of two integer vectors. It first checks that the vectors
have the same size, aborting using the function error if they
do not, and then computes the dot product.

struct vec {int* data; int length;};
int dot(struct vec* u, struct vec* v) {

int i = 0;
int sum = 0;
if (u->length != v->length) error();
while(i < u->length) {

sum += u->data[i] * v->data[i];
i++;}

return sum;
}

The function dot is an example of a function that presents
several specialization opportunities. If the size of both vec-
tors is static, the size test can be reduced and the while loop
can be unrolled. If the data of one of the vectors is static,

Module vector {
...
Defines {
From dotproduct.c {
VecDS::struct vec (1)

{D(int*) data; S(int) length;};
VecSS::struct vec (2)

{S(int*) data; S(int) length;};
Btdot1::intern dot (3)

(VecDS(struct vec) S(*) u,
VecDS(struct vec) S(*) v)

needs{Bterr;}; (4)
Bterr::extern error(); (5)
Btdot2::intern dot (6)

(VecSS(struct vec) S(*) u,
VecDS(struct vec) S(*) v)

needs{Bterr;};
...}...}
Exports {VecDS; VecSS; Btdot1; Btdot2; ...} (7)

}

Figure 1: Specialization module vector

then this data can be inlined into the code. The special-
ization module vector, shown in Figure 1, describes these
specialization opportunities. The opportunities associated
with each program construct are as follows:

Data structure vec: The scenarios VecDS (line 1) and
VecSS (line 2) describe binding-time properties of the struc-
ture vec that can allow useful specialization. In both scenar-
ios, the variable length, representing the size of the vector,
is declared to have the type S(int), indicating that the size
should be static, and thus enabling array-bounds checks to
be eliminated by specialization. In VecDS, the variable data,
representing the data of the vector, is declared to have the
type D(int *), indicating that the data should be dynamic.
In VecSS, the data is required to be static, which allows this
data to be inlined.

Function dot: The scenarios Btdot1 and Btdot2 specify
several scenarios for the dot function. The scenario Btdot1

(line 3) says that dot can be specialized when the point-
ers u and v are both static and when the vectors to which
they refer satisfy the scenario VecDS. The scenario Btdot1

must also describe the specialization behavior of other func-
tions referenced by dot, here only error. The declaration
needs{Bterr;} (line 4) indicates that the scenario Bterr

(line 5) should be used whenever error is invoked. This sce-
nario indicates that error should be considered as extern,
meaning that it is of no interest for specialization. The spe-
cialization module also defines the scenario Btdot2 (line 6),
which specifies that the function can be specialized if the
size of both vectors is static, and the data of the vector ref-
erenced by u is static as well. A third scenario could be
defined for the case where the data of the vector referenced
by v is static.

Once all scenarios have been defined, we make them acces-
sible to other specialization modules by adding the scenario
names to the section Exports (line 7). The scenario Bterr

is not exported, as the function error is for local use only.

module ::= Module module id
{ (imports)? defines exports }

imports ::= Imports

{ (From file { (scen id;)+ })∗ }
defines ::= Defines

{ (From file { (definition;)+ })∗ }
definition ::= global def | struct def | proc def
global def ::= scen id::bt info var id
struct def ::= scen id::struct struct id

{ (bt info field id;)+ }

proc def ::= scen id::def mode proc id((params)?)

(needs list)?

params ::= (bt info p id,)∗ bt info p id
| (bt info,)∗ bt info

def mode ::= extern | intern
needs list ::= needs { (scen id;)+ }

bt info ::= base bt (base type)
| pointer | array | struct

base bt ::= S | D
pointer ::= bt info base bt(*)
array ::= bt info base bt([])
struct ::= scen id(struct struct id)
base type ::= int | long | char | ...
exports ::= Exports { (scen id;)+ }

Figure 2: Syntax of the specification language

This simple example shows how, using our high level lan-
guage, the programmer can describe multiple scenarios in
which code fragments specialize well.

2.3 Specification Language
The syntax of the language of specialization declarations is
defined in Figure 2. A specialization module is introduced
by the keyword Module and consists of the name of the mod-
ule, followed by three sections: imports (which is optional),
defines and exports.

Imports The imports section, introduced by the keyword
Imports, allows the current module to refer to specializa-
tion scenarios defined in other modules. Scenarios can be
imported from multiple modules, each specified by the dec-
laration

From file {(scen id;)+}

where file refers to a file containing the definition of another
module. Within each such declaration, multiple scenarios
can be imported.

Defines The defines section, introduced by the keyword
Defines, lists a collection of specialization scenario defini-
tions. Each scenario is associated to a C construct defined
in the source file specified by the declaration From file. Sce-
narios can be declared for the following kinds of program
constructs:

Global variables The declaration

scen id::bt info var id

creates a specialization scenario scen id , that asso-
ciates the specialization information bt info with the
global variable var id . Specialization information is
described by decorating the type of the variable with
either simple binding times (S or D) or, in the case
of a structure type, with the name of a specialization
scenario. These declarations must be well-formed: a
dynamic pointer cannot be declared to point to a static
value.

Data structures The declaration

scen id::struct struct id {(bt info field id;)+}

creates a specialization scenario scen id that describes
the specialization information associated with each field
of the structure struct id .

Functions The declaration

scen id::def mode proc id ((params)?)(needs list)?

creates a specialization scenario scen id that describes
the specialization information of the parameters of the
function proc id . The definition mode def mode of
this function scenario is intern if the function should
be specialized, and extern otherwise. If the function
proc id calls other functions or declares local variables
of structure type, the specialization scenarios that ap-
ply to these objects must be declared as well, using the
needs list .

Exports The exports section, introduced by the keyword
Exports, lists the scenarios defined by the current module
that are exported for use in other modules.

Specialization modules can be easily constructed by copying
and annotating declarations already present in the C source
file. Nevertheless, one could imagine an interactive tool that
allows the user to decorate the source program with binding
times, and that then automatically generates a specializa-
tion module expressed using the above syntax. We leave this
development to future work.

3. SPECIALIZATION MODULE COMPILA-
TION

Specialization modules can be compiled into the declarations
processed by a particular partial evaluator. The inputs to
such a compiler are the name of a scenario and the name of
the module that exports this scenario. Based on this infor-
mation, the compiler collects a graph of dependent scenarios,
in which it records for each scenario the name of the corre-
sponding C construct, the source file defining the construct,
the binding time constraints associated with the construct,
and the referenced scenarios. For each specialization mod-
ule associated with a scenario in this graph, the compiler
checks coherence within the module (e.g., only scenarios de-
fined in the current module can be exported) and between
the module and the source program (e.g., the signature of a
construct declared in a module must match the signature of
the corresponding construct in the source program indicated
by the From keyword). The information stored in the graph
of dependent scenarios is then used both to configure the

targeted partial evaluator and to provide the binding-time
constraints to check during the analyses.

We have implemented a compiler that processes a specializa-
tion module and a source program to produce the configu-
ration information required by the partial evaluator Tempo.
Because Tempo expects the source program to be presented
as a single source file, the compiler extracts the fragments
of code to be specialized from the source program and re-
assembles them to form a single C source file. Tempo con-
figuration directives are also automatically generated. For
example, a description of the binding time of each entry-
point argument is constructed in the format expected by
Tempo. When some arguments have complex types, writing
such a description by hand can be tedious and error-prone.

4. VERIFICATION AND SPECIALIZATION
A specialization module declares the context to which a code
fragment should be specialized, and how specialized func-
tions referred to within the code fragment should interact.
To ensure that this degree of specialization is achieved, we
augment the standard partial evaluation process to check
that these declarations are respected. The key issue is to
ensure that information declared to be static is propagated
pervasively through the program.

Offline partial evaluation is divided into an analysis phase
that determines what can be simplified based on the known
information, followed by a specialization phase that simpli-
fies the selected computations and reconstructs the remain-
ing computations to form the specialized program. Decla-
rations are checked during the analysis phase. We begin
by describing the strategies used for these checks. We then
show that specialization, which is defined independently of
the binding-time declarations, both respects the semantics
of the source program (the standard correctness criterion for
a partial evaluator) and respects the declarations, thus en-
suring that the desired degree of specialization is achieved.

4.1 Verification Strategy
The degree of specialization is determined by the binding
times of location references, because these are the points
through which static values are propagated within the pro-
gram. Thus, the analysis of each variable reference and
dereference expression checks that the binding time matches
the declarations on the possible referenced locations. In
other cases, we follow a more lazy verification strategy, al-
lowing the inferred binding time for a location to conflict
with the specified binding time, at points where the value
of the location is not actually used.

Several aspects of our verification strategy are illustrated
by the following artificial example, where all irrelevant com-
putations have been removed. For conciseness, we indicate
binding-time constraints by direct annotation of the types in
the source program, rather than in a separate specialization
module. Possible annotations are S (static), D (dynamic),
and U (unspecified). The aliases of a dereference expres-
sion are indicated by a superscripted set.1 Static terms are

1Some form of alias analysis within the partial evaluator
is essential for correct treatment of a language including
pointers, such as C. Alias information is not derived from

underlined.

intD d;

void main() {
intU a = 3;
f (&a, &a); (1)

}

int f(intD *S x, intS *S y) {
intU *U *U z = &y;

y = &d; (2)

*x{a} = d; (3)
if (d) x = NULL; (4)
x = y; (5)

return *(*z{y}){d}; (6)
}

Binding times of locations are modified or referenced in the
analysis of function calls, assignments, conditionals, vari-
ables references, and dereference expressions. The treatment
of these constructs interacts with the verification process as
follows:

Function calls: The specialization scenario for a function
specifies binding times for the parameters at each pos-
sible level of indirection. All of these binding times
are checked at the call site. In the example above, the
scenario for f specifies that both arguments should be
static pointers, and that a dereference of x should be
dynamic while a dereference of y should be static. At
the call site, in line 1, both arguments are &a, which is a
static pointer to a static value.2 Because a static value
can be coerced to be dynamic, a completely static
integer-pointer binding time of &a is compatible with
the declaration of x as intD *S and the declaration of
y as intS *S.

Assignments: For an assignment, we adopt a more lazy
strategy. We check that the binding time of the as-
signed value is compatible with the constraints on the
possible affected locations, to verify that information
is flowing through the program according to the pro-
grammer’s intentions, but do not check the compati-
bility of constraints and binding times for aliases im-
plicitly affected by the assignment.

Verification of the assignment y = &d (line 2) illus-
trates this laziness. The static binding time of &d sat-
isfies the declaration of y as intS *S, despite the fact
that d is declared to be dynamic. The correspondence
between the binding time of d and the specification
on the result of dereferencing y is not checked at this
point, because the binding time of *y has no impact
on specialization of the assignment statement.

Another example of the lazy treatment of assignments
is provided by the assignment *x = d (line 3). The as-
signment itself satisfies the declaration for the affected
locations *x and a, but does not satisfy the declara-
tion for *y, which also has a as an alias. Again, this
mismatch is not detected until there is a reference to
*y.

the declarations in the specialization module.
2The address of a variable is always considered static.

Dynamic conditionals: A standard technique for treat-
ing a static assignment in a dynamic conditional or
loop is to consider the possibly affected locations to
be dynamic following the conditional or loop construct.
We do not check this inferred binding time until such
a location is actually referenced.

In line 4, x is assigned to NULL within a dynamic con-
ditional statement. NULL is static, in correspondence
to the constraint on x, but following the conditional
statement, x is considered dynamic. This adjustment
of the binding time is not checked. The explicit assign-
ment of x to y in line 5 restores the correct binding time
of x.

Variable reference or dereference expression: In the
case of a variable reference or a dereference expression,
we check that the constraint on the location is compat-
ible with its inferred binding time, but do not check
such compatibility for all possible dereferences of the
location. This laziness is illustrated by the reference
to y in line 5. Although the previous assignment to y,
y = &d, causes the binding time of *y to conflict with
the declaration on y, this declaration is not checked in
line 5, which only references the value of y itself.

A dereference that involves an alias created by function-
parameter bindings must respect both the declaration
for the referenced location and the declarations for the
parameters. The dereference **z in line 6 respects the
constraints on z and the referenced location d, both of
which allow the value to be dynamic, but because the
relationship between z and d is derived from the pa-
rameter y, which requires that the dereferenced value
should be static, an error is signaled.

We show the feasibility of this approach by defining an of-
fline partial evaluator for a simple imperative language in
Appendix A. This partial evaluator is flow sensitive and al-
lows for a precise treatment of pointers via an alias analysis.
Loops and recursion are not treated, but can be added using
standard techniques [3], as done in our implementation.

4.2 Specialization
The specialization phase simplifies the static constructs and
reconstructs the dynamic constructs to form the specialized
program. Because programmer declarations are completely
encoded into the results of the analyses, they are not directly
referenced during the specialization phase. A standard spe-
cializer can thus be used.

Soundness with Respect to the Semantics: The stan-
dard criterion for soundness of a partial evaluator is that, if
specialization with respect to some static inputs succeeds,
execution of the specialized program with respect to some
dynamic inputs should produce the same result as execution
of the original program with respect to both the static and
the dynamic inputs. We can show that this property holds,
independently of the constraints, whenever at each point
in the analysis process the binding-time analysis annotates
each location reference with a binding time that is greater
than or equal to the current inferred binding time for the
location, as recorded in the current binding-time environ-
ment. Because the use of constraints in each case produces

a binding time with this property, soundness of the partial
evaluator is not affected by the verification of constraints
during the binding-time analysis.

Soundness with Respect to the Programmer’s Dec-
larations: Intuitively, specialization that respects the pro-
grammer’s declarations should produce a specialized pro-
gram in which all variables declared to be static have been
removed. Unfortunately, as outlined in Appendix A, the
existence of non-liftable values (static values, such as ad-
dresses, that have no meaningful representation in the spe-
cialized program) implies that this goal is not achievable
without undesirably restricting the set of programs that is
accepted for specialization. We thus allow variables that are
declared to be static but have a non-liftable value to occur
in certain contexts in the specialized program.

We distinguish between two kinds of contexts in which an
expression can occur: static contexts and dynamic contexts.
A static context is one where simplification can necessarily
occur if the context is filled with a static expression. For
example, a context whose hole is the test expression of a
conditional statement is static. Conversely, a dynamic con-
text is one where no simplification can necessarily occur even
if the context is filled with a static expression. For example,
a context whose hole is one argument of a binary operator
is dynamic.

We annotate the semantics of the source language such that
each step in the treatment of an expression is annotated with
the context in which the expression occurs. For example, the
annotated semantics of a variable reference and a dereference
expression are as follows, where b is either S or D according
to whether the context of the current expression E is static
or dynamic respectively, ρ is a store mapping locations to
values, and x` is the location associated with the variable x

(this location is determined implicitly):

b, x` 7→ v ∈ ρ
b, ρ |=e x : v

D, ρ |=e E : l b, l 7→ v ∈ ρ
b, ρ |=e *E : v

The annotations have no effect on the values associated with
expressions or locations by the semantics. Thus, b, ρ |=e E :
v in the annotated semantics if and only if ρ |=e E : v in
the original semantics, and b, l 7→ v ∈ ρ in the annotated
semantics if and only if l 7→ v ∈ ρ in the original semantics.

Using this annotated semantics, we can then prove that exe-
cution of the specialized program according to the annotated
semantics never references a location associated with a vari-
able declared to be static in a static context, and never ref-
erences a location associated with a variable of liftable type
(non-pointer type, for C programs) declared to be static in
a dynamic context. The proof follows from the fact that the
evaluation-time analysis only reannotates a static expression
having a non-liftable value when this expression occurs in a
dynamic context.

5. RELATED WORK
The difficulty of obtaining a desired specialized program by
automatic techniques alone has led to a variety of approaches
that allow the programmer to control the specialization pro-
cess. Most of the previous proposals require annotations to
be placed in the source program, in some cases violating the

syntax of the original source language. Some strategies allow
only one possible annotation per function definition. Except
for specialization classes [29], none of the previous strategies
provide any structuring of the specialization declarations.

DyC The DyC run-time specialization system includes an-
notations that allow the programmer to control various as-
pects of the specialization process, including the propaga-
tion of specialized values [13]. Annotations are distributed
throughout the source code, implying that the source pro-
gram is no longer a standard C program.

Based on user annotations identifying static variables, DyC
automatically infers the region of code to be specialized.
Although the annotation language allows the programmer
to control many aspects of the strategy used in this infer-
ence, no feedback is given as to the region actually selected.
Besides the lack of precision inherent in any static analy-
sis engine, the inference of the specialized region in DyC
is further complicated by the integration of DyC with the
Multiflow compiler, which has been observed to obscure the
relationship between the programmer annotations and the
source code [13].

C-Mix The C-Mix partial evaluator for the C programming
language provides annotations that control the binding-times
of variables and external function calls [6]. Annotations can
be provided in the source file, in a script file, or on the
command line. Variables can be annotated as either static
or dynamic. If a dynamic binding time is inferred for a
variable declared to be static, an error occurs. If a static
binding time is inferred for a variable declared to be dy-
namic, the binding time is coerced to be dynamic. While
we use the same verification strategy, the flow-insensitivity
of C-Mix implies that some programs that are accepted be-
cause of the laziness of our verification strategy are rejected
by C-Mix. Overall, the annotations of C-Mix are directed
towards variables, whereas our annotations are more fine-
grained, applying to each kind object that can be referenced
via a variable, as indicated by the variable’s type. For exam-
ple, C-Mix annotations cannot declare the binding time of
a variable dereference to be different from the binding time
of the variable itself.

Schism The Schism partial evaluator for a pure subset of
the Scheme programming language provides the filter mech-
anism that allows the programmer to specify which static
arguments should be propagated into the body of a spe-
cialized function [7]. Because filters use the normal Scheme
syntax, they can be macro-expanded away to allow normal
execution of the source program. A filter can include com-
putation on the binding-times of the arguments, thus al-
lowing the programmer to declare multiple strategies for a
single function. Nevertheless, specialization information is
still distributed across the program source code.

Fabius The Fabius run-time code generation system for
the ML programming language requires the user to sepa-
rate the static and dynamic arguments of each function by
currying, such that the first argument contains the static
information and the second argument contains the dynamic
information [20]. This strategy typically requires modifica-
tion of the source program and can express only one special-

ization strategy per function, but because the binding-time
specification uses no special syntax, it allows the program
to be executed normally as well as being specialized.

Multi-level languages Multi-level languages, such as Meta-
ML [27] and ‘C [11], provide a high-level notation for de-
scribing the construction of code fragments. While such
languages allow the construction of specialized code satis-
fying precise programmer specifications, such complete an-
notation is more tedious than the annotation of function
parameters suggested by our approach. Furthermore, the
source program is not written using a standard language,
and can thus only be processed by the specific tool.

Specialization classes Specialization classes are a declar-
ative notation for specifying specialization opportunities in
Java programs [29]. Declarations focus on the interaction
between the original program and the specialized code. A
specialization class indicates the names of the methods at
which to begin specialization, identifies the static arguments,
and selects between compile-time and run-time specializa-
tion. This information is compiled into a description of the
specialization context of the entry point, and the original
definition of the entry point function is modified to choose
between the specialized and unspecialized versions. Never-
theless, there is no programmer control of how the special-
ization process is carried out.

Conceptually, our approach is complementary to the use
of specialization classes. A specialization module provides
user control over the specialization process itself. Like a
specialization class, a specialization module allows the pro-
grammer to describe the binding-time properties of the en-
try point. The declarations of the binding times of func-
tion parameters, global variables, and data structures allow
the programmer to further describe how the information de-
rived from the static entry-point arguments should propa-
gate through the program.

Annotations used in other kinds of automated tools
The importance of providing user information to direct and
make tractable automatic techniques has long been recog-
nized in the areas such as theorem proving [10], and is be-
ginning to be recognized in the area of program analysis as
well [14, 25].

6. CONCLUSION
We have presented a high-level language that enables the
programmer to declare what code fragments and data struc-
tures of a program should be specialized. Our language hides
complex partial evaluation concepts and allows non-experts
to intuitively declare specialization properties. These prop-
erties are checked during the specialization process. Special-
ization declarations are organized into specialization mod-
ules, allowing a structured and modular approach to special-
ization. This approach has been implemented in the partial
evaluator Tempo.

Our principal goal has been to enhance the usability of par-
tial evaluators. To this end, we have designed a declara-
tion language that is independent of particular features of
a specific partial evaluator. The verification of these decla-
rations during partial evaluation improves the predictabil-

ity of the specialization process. Finally, the separation of
the specialization declarations from the source program and
the organization of related specialization declarations into
specialization modules facilitates the reusability of acquired
specialization expertise.

Our language permits the programmer to describe how static
information should propagate through the program, but not
to describe what transformations should be performed based
on this information. For example, to limit code size, it can
be useful to avoid unrolling loops. We have already begun
to extend our declaration language to allow the programmer
to specify constraints on the values of function parameters
and global variables. This feature enables a better control of
constant propagation and thus provides a means to disable
loop unrolling.

7. ACKNOWLEDGMENTS
The first and third authors were partially supported by the
ITEA project ESAPS. The second author was partially sup-
ported by a grant from the Danish Natural Science Research
Council.

8. REFERENCES
[1] L. Andersen. Program Analysis and Specialization for

the C Programming Language. PhD thesis, Computer
Science Department, University of Copenhagen, May
1994. DIKU Technical Report 94/19.

[2] P. Andersen. Partial evaluation applied to ray tracing.
In W. Mackens and S. Rump, editors, Software
Engineering in Scientific Computing, pages 78–85.
Vieweg, 1996. DIKU Technical Report D-289.

[3] J. M. Ashley and C. Consel. Fixpoint computation for
polyvariant static analyses of higher-order applicative
programs. ACM Transactions on Programming
Languages and Systems, 16(5):1431–1448, 1994.

[4] A. Berlin and R. Surati. Partial evaluation for
scientific computing: The supercomputer toolkit
experience. In ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program
Manipulation, pages 133–141, Orlando, FL, USA,
June 1994. Technical Report 94/9, University of
Melbourne, Australia.

[5] A. Bondorf. Improving binding times without explicit
CPS-conversion. In ACM Conference on Lisp and
Functional Programming, pages 1–10, San Francisco,
CA, USA, June 1992. ACM Press.

[6] C-Mix/II user and reference manual.
http://www.diku.dk/
research-groups/topps/activities/cmix/download/,
2000.

[7] C. Consel. A tour of Schism: a partial evaluation
system for higher-order applicative languages. In
Partial Evaluation and Semantics-Based Program
Manipulation, pages 66–77, Copenhagen, Denmark,
June 1993. ACM Press.

[8] C. Consel, L. Hornof, F. Noël, J. Noyé, and
E. Volanschi. A uniform approach for compile-time

and run-time specialization. In O. Danvy, R. Glück,
and P. Thiemann, editors, Partial Evaluation,
International Seminar, Dagstuhl Castle, number 1110
in Lecture Notes in Computer Science, pages 54–72,
Feb. 1996.

[9] C. Consel and S. Khoo. Parameterized partial
evaluation. ACM Transactions on Programming
Languages and Systems, 15(3):463–493, 1993.

[10] R. Constable, S. Allen, H. Bromley, W. Cleaveland,
J. Cremer, R. Harper, D. Howe, T. Knoblock,
N. Mendler, P. Panangaden, J. Sasaki, and S. Smith.
Implementing Mathematics with the Nuprl
Development System. Prentice-Hall, 1986.

[11] D. Engler, W. Hsieh, and M. Kaashoek. ‘C: A
language for high-level, efficient, and
machine-independent dynamic code generation. In
Conference Record of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages, pages 131–144, St.
Petersburg Beach, FL, USA, Jan. 1996. ACM Press.

[12] B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. Eggers. The benefits and costs of DyC’s run-time
optimizations. ACM Transactions on Programming
Languages and Systems, 22(5):932–972, 2000.

[13] B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. Eggers. DyC: An expressive annotation-directed
dynamic compiler for C. Theoretical Computer
Science, 248(1–2):147–199, 2000.

[14] B. Grobauer. Cost recurrences for DML programs. In
ICFP 2001: International Conference on Functional
Programming, pages 253–264, Florence, Italy, Sept.
2001. ACM Press.

[15] L. Hornof and J. Noyé. Accurate binding-time analysis
for imperative languages: Flow, context, and return
sensitivity. Theoretical Computer Science,
248(1–2):3–27, 2000.

[16] T. Knoblock and E. Ruf. Data specialization. In
PLDI’96 [24], pages 215–225. Also TR
MSR-TR-96-04, Microsoft Research, February 1996.

[17] J. Kono and T. Masuda. Efficient RMI: Dynamic
specialization of object serialization. In Proceedings of
the 20th International Conference on Distributed
Computing Systems, pages 308–315, Taipei, Taiwan,
Apr. 2000. IEEE Computer Society Press.

[18] J. Lawall. Faster Fourier transforms via automatic
program specialization. In J. Hatcliff, T. Mogensen,
and P. Thiemann, editors, Partial
Evaluation—Practice and Theory. Proceedings of the
1998 DIKU International Summerschool, volume 1706
of Lecture Notes in Computer Science, pages 338–355,
Copenhagen, Denmark, 1999. Springer-Verlag.

[19] A.-F. Le Meur, C. Consel, and B. Escrig. Guaranteed
configurability of components via specialization
modules. Research Report 1256-01, LaBRI, Bordeaux,
France, Mar. 2001.

[20] P. Lee and M. Leone. Optimizing ML with run-time
code generation. In PLDI’96 [24], pages 137–148.

[21] R. Marlet, S. Thibault, and C. Consel. Efficient
implementations of software architectures via partial
evaluation. Journal of Automated Software
Engineering, 6(4):411–440, Oct. 1999.

[22] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic,
C. Goel, C. Consel, G. Muller, and R. Marlet.
Specialization tools and techniques for systematic
optimization of system software. ACM Transactions
on Computer Systems, 19:217–251, May 2001.

[23] G. Muller, R. Marlet, E. Volanschi, C. Consel, C. Pu,
and A. Goel. Fast, optimized Sun RPC using
automatic program specialization. In Proceedings of
the 18th International Conference on Distributed
Computing Systems, Amsterdam, The Netherlands,
May 1998. IEEE Computer Society Press.

[24] Proceedings of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation,
Philadelphia, PA, USA, May 1996. ACM SIGPLAN
Notices, 31(5).

[25] B. Ryder. A position paper on compile-time program
analysis. ACM SIGPLAN Notices, 32(1):110–114, Jan.
1997.

[26] U. Schultz, J. Lawall, C. Consel, and G. Muller.
Towards automatic specialization of Java programs. In
Proceedings of the European Conference on
Object-oriented Programming (ECOOP’99), volume
1628 of Lecture Notes in Computer Science, pages
367–390, Lisbon, Portugal, June 1999.

[27] W. Taha and T. Sheard. Multi-stage programming
with explicit annotations. In ACM SIGPLAN
Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages
203–217, Amsterdam, The Netherlands, June 1997.
ACM Press.

[28] S. Thibault and C. Consel. A framework for
application generator design. In Proceedings of the
Symposium on Software Reusability, Boston, MA,
USA, May 1997.

[29] E. Volanschi, C. Consel, G. Muller, and C. Cowan.
Declarative specialization of object-oriented programs.
In OOPSLA’97 Conference Proceedings, pages
286–300, Atlanta, GA, USA, Oct. 1997. ACM Press.

APPENDIX
A. ANALYSES
We define a specializer that relies on three analyses: alias
analysis, binding-time analysis, and evaluation-time analy-
sis. Alias analysis associates each dereferenced expression
*E with the set of abstract locations (program variables
or dereferences of program variables) to which it can re-
fer. Any analysis algorithm can be used. No verification
is performed during alias analysis, but alias information is
crucial to be able to transmit binding-time and constraint
information across pointers. Binding-time analysis classifies

each expression as either static, indicating that its value de-
pends only on information known during partial evaluation,
or dynamic, indicating that its value depends on information
not available until execution time. This phase checks that
each location declared as static is inferred to be static, and
coerces each location declared as dynamic to be dynamic.
Evaluation-time analysis ensures the consistency of the spe-
cialized program. This phase guarantees that each variable
referenced in the specialized program is also initialized in
the specialized program, and addresses the problem of spe-
cializing a static expression for which the specialization-time
value is not meaningful at run time.

We now present the source language and the analyses that
affect the binding-time annotations, i.e., the binding-time
analysis and the evaluation-time analysis, in more detail.

Source Language

The source language is a simple, non-recursive, imperative
language including one-argument functions, assignment state-
ments, conditional statements, and dereference expressions.
A program consists of a collection of global variables and
functions, defined as follows:

G ∈ Global ::= T x

F ∈ Function ::= f(T x)S
T ∈ Type ::= int | T *

S ∈ Statement ::= L =E; | {T x;S} | {S1 S2}

| if (E) thenS1 elseS2 | f(E)
E ∈ Expression ::= x | &x | *E
L ∈ L-expression ::= x | *E

The entry point is assumed to be a statement invoking one
of the defined procedures. The semantics is standard.

Binding-Time Analysis

Binding-time analysis infers a binding time for each program
construct based on the inferred binding time for each ab-
stract location and on the programmer’s declarations. Bind-
ing times are denoted as S (static) and D (dynamic), where
S v D. Programmer declarations are denoted as S, indicat-
ing that the location must be considered static when refer-
enced, D, indicating that the location must be considered
dynamic when referenced, and U , indicating that there is
no constraint on the binding time of the location. These
constraints are ordered as U v S and U v D. The oper-
ation c ⊕ b produces a binding time compatible with both
the constraint c and the binding time b, and is defined as
follows:

S ⊕ S = S D ⊕ b = D U ⊕ b = b

Note that S ⊕D is not defined, because S and D are incom-
patible. The operation ⊕ can thus be used both to compute
a new binding time and to check compatibility.

Let Σ be an environment mapping each location to a con-
straint, Γ be an environment mapping each location to a
binding time, and Φ be an environment mapping each func-
tion name to its definition. Correct annotation of a state-
ment S is specified by the judgment Σ,Γ,Φ `s S : Ŝ,Γ′,
where Ŝ is the binding-time annotated counterpart of the
statement S, and Γ′ is a new binding-time environment re-

flecting the assignments processed while analyzing S. Cor-
rect annotation of an expression E is specified by the judg-
ment Σ,Γ `e E : Êb, where b is a binding-time and Êb is
a binding-time annotated expression. Finally, correct an-
notation of an L-expression L is specified by the judgment
Σ,Γ `l L : L̂b, where b is a binding-time and L̂b is a binding-
time annotated L-expression. Binding times that satisfy
these rules can be inferred by standard techniques.

Most of the well-formedness rules are standard for a flow-
sensitive binding-time analysis of an imperative language
[15]. We thus present only the rules that involve the con-
straints derived from the specialization module:

Function Call: A specialization scenario for a function de-
clares the expected binding time of the parameter, as well as
the expected binding time of all possible dereferences of the
parameter, according to its type. The well-annotatedness
rule for a function call is as follows:

Σ,Γ `e E : Êb

f 7→ (x, [c, c1, . . . , cm], S) ∈ Φ

L∗(E) = [(κ1, δ1), . . . , (κm, δm)]

(c1 t (
⊔
{Σ(l) | l ∈ κ1}) t (

⊔
{Σ(p) | p ∈ δ1}))⊕

(
⊔
{Γ(l) | l ∈ κ1})

...
(cm t (

⊔
{Σ(l) | l ∈ κm}) t (

⊔
{Σ(p) | p ∈ δm}))⊕

(
⊔
{Γ(l) | l ∈ κm})

Σ′ = Σ[x 7→ c, *1x 7→ c1, . . . , *
mx 7→ cm]

Σ′,Γ[x 7→ c⊕ b],Φ `s S : S′,Γ′[x 7→ b′x]

update fn(f, S′)

Σ,Γ,Φ `s f(E) : f(Êb),Γ′

The analysis of a function call includes three parts: analysis
of the argument (the judgment Σ,Γ `e E : Êb), verifica-
tion that the binding-time of the argument and all possi-
ble dereferences of the argument match the specification of
the parameter (the middle group of hypotheses), and finally
analysis of the body of the called function (the final three
lines of the hypotheses).

The declaration for the parameter specifies a binding time
for each of the m possible levels of indirection, via the list
[c, c1, . . . , cm] stored in the function environment Φ. The
operation L∗(E) accesses the aliases of E at each possible
level of indirection. At each level, there are two kinds of
aliases: concrete aliases κ and dummy aliases δ. Concrete
aliases are program variables, and are associated with both
a binding time and a constraint. Dummy aliases are param-
eter dereferences. These locations only serve to propagate
the constraints on the parameters into the analysis of the
body of the function. At each level, the constraint on the
parameter is checked to be compatible with the constraints
on both kinds of aliases, and with the binding times of the
concrete aliases.

The body S of the called function is analyzed with respect
to the current constraint environment Σ extended with the
constraints on the possible dereferences of the parameter (*i

refers to i dereferences of x), and the current binding-time

environment Γ extended with the parameter bound to its
binding time. The operator update fn is then used to update
an implicit store of annotated function definitions with the
annotated body Ŝ. The resulting binding-time environment
Γ′ reflects the side-effects made by the body of the called
function to non-local variables.

Assignment Statement: The binding time of the as-
signment statement is the least upper bound of the binding
times inferred for the subexpressions. This binding time is
checked to be compatible with the constraints on both the
concrete and dummy aliases. If there is only one concrete
alias the new binding time of this location is the binding
time of the assignment, as shown by the following rule:

Σ,Γ `l L : L̂b
′

Σ,Γ `e E : Êb
′′

b = b′ t b′′

L(L) = ({l}, δ) Σ(l)⊕ b ∀p ∈ δ,Σ(p)⊕ b
Σ,Γ,Φ `s L =E; : L̂b

′
=b Êb

′′
;,Γ[l 7→ b]

If there are multiple concrete aliases, then the new binding
time of each possible location is the least upper bound of
the binding time of the assignment and the previous binding
time of the location.

Variable Reference: The binding time of a variable refer-
ence x is computed from the constraint Σ(x) and the current
binding time Γ(x), as follows:

Σ,Γ `e x : xΣ(x)⊕Γ(x)

Dereference Expression: The binding time of a deref-
erence expression takes into account the binding time of the
dereferenced expression E, as well as the binding times and
constraints associated with the possible aliases.

Σ,Γ `e E : Êb L(*E) = (κ, δ) b′ =
⊔
{Γ(l) | l ∈ κ}

cc =
⊔
{Σ(l) | l ∈ κ} cd =

⊔
{Σ(p) | p ∈ δ}

Σ,Γ `e *E : (*Ê)(cctcd)⊕(btb′)

Evaluation-Time Analysis

The forward dependency analysis performed by binding-
time analysis is not sufficient to guide the construction of
a meaningful specialized program. Two kinds of problems
can occur. First, if a variable is referenced when consid-
ered dynamic, the reference can appear in the specialized
program and all possible reaching initializations of the vari-
able must appear in the specialized program as well, even
those that are static. Second, if the specialization-time value
of a static expression cannot be “lifted”, i.e., converted to
syntax, the expression must be considered dynamic when it
occurs in a dynamic context.3 Both of these adjustments
require the backwards propagation of information, and are
performed by evaluation-time analysis [15].

When the evaluation-time analysis determines that a static
assignment must appear in the specialized program, the as-
signment is reannotated to be both static and dynamic.
This reannotation does not interfere with the propagation

3For compile-time specialization, for example, an address is
not liftable.

of static information through the program, and thus the
binding-time constraints continue to be satisfied.

The reannotation of a static, non-liftable value occurring in
a dynamic context as dynamic can constrain the propaga-
tion of static information during specialization. Consider
the following example:

intD *S x;

if (x != NULL)
... *(x+1) ...

The declaration for x indicates that the result of the ex-
pression *(x+1) is dynamic. Thus, the static pointer-typed
expression (x+1) occurs in a dynamic context, and must
itself be considered dynamic. This reannotation in turn im-
plies that x is considered dynamic, in contradiction to the
declaration *S in the type of x, and that the addition is not
performed during specialization. Nevertheless, triggering an
error at this point, and thus requiring x to be declared to
be completely dynamic, would preclude simplification of the
conditional test, which only depends on static information.
Thus, the constraint on a variable having a non-liftable value
is only guaranteed to be satisfied when the variable occurs
in a static context. This property is ensured by the checks
performed in the binding-time analysis and by the fact that
the evaluation-time analysis does not reannotate such refer-
ences.

