
Minimizing Cache Misses in an Event-driven Network Server:
A Case Study of TUX

Sapan Bhatia
Georgia Institute of Technology

Atlanta, Georgia
sbhatia@cc.gatech.edu

Charles Consel
Phoenix group, INRIA

Talence, France
charles.consel@inria.fr

Julia Lawall
DIKU, University of Copenhagen

Copenhagen, Denmark
julia@diku.dk

Abstract

We analyze the performance of CPU-bound network
servers and demonstrate experimentally that the degra-
dation in the performance of these servers under high-
concurrency workloads is largely due to inefficient use of
the hardware caches. We then describe an approach to
speeding up event-driven network servers by optimizing
their use of the L2 CPU cache in the context of the TUX
web server, known for its robustness to heavy load. Our
approach is based on a novel cache-aware memory alloca-
tor and a specific scheduling strategy that together ensure
that the total working data set of the server stays in the L2
cache. Experiments show that under high concurrency, our
optimizations improve the throughput of TUX by up to 40%
and the number of requests serviced at the time of failure by
21%.

1 Introduction
To make information services readily available at the

scale at which they are sought on the Internet, network
servers need to be scalable. Two main factors contribute to
this requirement. First, server loads are known to be highly
variable, and can increase manifold with a sudden increase
in the popularity of the served resources, stressing servers
unexpectedly. The Slashdot effect [1] on web servers is a
well-known example of this phenomenon. Second, recent
advances in signal transmission media have achieved high
data-transmission rates with low error rates, shifting the per-
formance bottleneck from the physical media to the network
server itself. This makes it essential for servers to be opti-
mized for performance, and programmed so as to leverage
the increasing computational bandwidth of the underlying
hardware to achieve scalability.

When the amount of data manipulated by the server is
large, its throughput is limited by I/O activity such as disk
reads. Even though such servers often perform aggressive
caching, the amount of data requested concurrently is so
large and varied that some amount of disk activity is in-
evitable. Much research has been done to improve the scal-

ability of such servers. Event-driven programming with
some degree of explicit support to make for scalable I/O
operations [2, 3] has emerged as the paradigm believed to
be the most robust to heavy loads because of its low OS
overhead and offering of flexible scheduling.

With the increase in the size of the main memory avail-
able on server systems, the contribution of I/O operations to
the request processing overhead of servers has diminished
considerably. This phenomenon has led to the emergence
of a second category of servers with distinct performance
characteristics. Specifically, workloads on such servers in-
volve resources that fit completely in the main memory of
the server. These servers are referred to as CPU-bound net-
work servers.

In this paper, we consider the performance of CPU-
bound network servers, in which the contribution of I/O
operations to the average processing time of requests can
be neglected. In practice, many common configurations of
web, telephony and other servers fall into this category. A
common feature of such servers is fact that the request traf-
fic they receive is non-uniform, with marked load spikes
triggered by specific real-world events. 1 Heavy workloads
on such servers refer to data that not only remain in core,
but is often very small in size, consisting of a small set of
highly solicited files or records. Also, some categories of
servers such as telephony servers [5] inherently access rela-
tively small amounts of data to perform their function.

To be scalable and efficiently handle heavy loads, CPU-
bound network servers must effectively exploit data local-
ity. This is becoming especially important with the increas-
ing disparity between processor speeds and memory access
times. Although this importance has been emphasized in
the past [6], little is done in present-day network servers to
expressly avoid memory accesses. Set-associative caches
and compiler-enabled cache optimizations [7] reduce cache
collisions in contemporaneously accessed data to a certain
extent. However, under heavy loads, these optimizations are
often rendered ineffectual. Increasing the number of con-
current requests also increases the amount of data treated

1As an example, we found out that the information site of the Sydney
Olympic Games, which was served entirely out of RAM [4]

1

by the server at a time, generating a high rate of data-cache
misses.

We perform a workload-oriented optimization of CPU-
bound network servers, favoring in-core workloads. Using
a cache-aware memory allocator and a specific scheduling
strategy, we try to ensure that the current working set of
the server remains in the L2 cache. If it overflows, then
we ensure that it does so gracefully. Our approach does
not impact the behavior of the server with respect to I/O-
bound workloads. Furthermore, since increasing the size
of the served resources moves the bottleneck of operation
towards the underlying transport layer and the network, the
throughput benefits of our approach are best observed for
workloads requiring access to small amounts of data.

The cache optimizations described in this paper are opti-
mistic, and are guided by code annotations provided by the
server programmer. The annotations guide a kit of program
analysis and transformation tools that we have developed.
These tools parse and analyze event-driven servers written
in the C language, and modify their memory management
behavior to use our optimization strategy. They also gen-
erate program-specific library functions that can be used to
modify the scheduling behavior of the application. We have
used these tools to optimize the TUX web server.2 TUX
is widely regarded to be a high-performing Web server [8],
and thus, speedups in TUX are a strong indication of the
effectiveness of our approach.

The design and implementation of the TUX web server
is used to describe caching problems in servers as well as
to illustrate our approach in detail in the rest of the pa-
per. The remaining sections of the paper are organized as
follows: Section 2 explains slow-downs in servers caused
due to cache inefficiencies. Section 3 gives an overview of
our optimization approach. Section 4 presents a case-study
in which we apply our approach to TUX. Section 5 evalu-
ates our approach experimentally. Section 6 presents related
work, and finally, Section 7 concludes.

2 Cache-Related Slowdowns
Cache usage is said to be poor when cached items are

evicted regularly prior to being used, resulting in frequent
memory accesses. Poor cache usage is observed in two
main situations that result in data and instruction cache
misses respectively. These situations are discussed below.

Data-cache misses due to an explosion in total per-
request data. When the amount of per-request data exceeds
a certain threshold, the total live data set at certain stages
can no longer be accommodated in the hardware caches,
causing the eviction of live cache items. Such situations are
most commonly observed in high-concurrency workloads,
which increase the volume of per-request data by virtue of
an increased number of concurrent requests.

Figure 1 illustrates this behavior for an unmodified TUX
web server running on Linux 2.6.7.3 We find that through-

2TUX is commercially distributed as the Redhat content accelerator
3Our experiments with other servers (e.g. thttpd, boa, mathopd and

 2000

 4000

 6000

 8000

 10000

 1 10 100 1000 10000

R
eq

/s

Concurrency

(a) Throughput

 0

 10000

 20000

 30000

 40000

 1 10 100 1000 10000
 500

 1000

 1500

 2000

 2500

 3000

 3500

S
am

pl
es

Concurrency

L2 cache misses
L2 i-cache misses

(b) L2 Cache misses

Fig. 1. (a) Throughput degradation in the TUX
web server with increasing concurrency (b)
Corresponding increase in L2 cache misses
(d-cache on the left and i-cache on the right)

put degrades and L2 data cache misses increase steadily as
concurrency increases, up to about 4000 concurrent connec-
tions. From here on, performance continues to degrade even
though L2 cache misses decrease sharply. We attribute the
former effect to an explosion in the amount of per-request
data and the latter to the fact that the server is close to over-
load. When the server is overloaded, it does not have suffi-
cient resources to accept new incoming connections, caus-
ing incoming connections to either remain incomplete or be
rejected [9]. This reduces the number of concurrent requests
and hence the amount of per-request data as well.

Instruction-cache misses due to request scattering.
Servers inherently benefit from the instruction cache by
virtue of executing the same instructions repetitively in dif-
ferent request contexts. When a batch of instructions is
applied to consecutive incoming requests, the second and
consecutive applications can be expected to yield instruc-
tion cache hits. Very often, though, batches are received at
intervals of time that are shorter than the time of treatment
of a single request but longer than that of individual stages.
This causes requests to be scattered in the processing graph
of the server, resulting in competition amongst the stages
involved for the instruction cache.

Such an increase in the number of i-cache misses being
used can be observed in the leftmost part of Figure 1(b). As
concurrency decreases below 40, we find that throughput
drops (and response time increases), as low overall concur-
rency implies low stage concurrency. One prominent indi-

Apache) have yielded results that are comparable to those in TUX.

cation of this effect is the decreasing number of bus trans-
actions required for instruction fetches (i.e., L2 instruction
cache misses), as concurrency increases. Thus, although the
total L2 cache misses increase, the decrease in L2 i-cache
misses for concurrency less than 40 compensates for them,
and there is an improvement in throughput. Exceptionally,
for concurrency less than 10, we observe low performance
in spite of few cache misses. The apparently low perfor-
mance during this phase results from the fact that the CPU
and caches are under-utilized, and the load is far too low to
exercise the full computational bandwidth of the server.

We conclude from these two contradicting considera-
tions, that the strategy used to manage requests in a server
must make a tradeoff between these two effects. In par-
ticular, throttling the number of requests treated at various
stages to avoid an explosion in per-request data must be
balanced with accumulating requests to favor the instruc-
tion cache. Since the degradation in performance due to
the former effect is the dominant one, our strategy revolves
around trying to eliminate data-cache misses, while at the
same time reconciling the instruction-cache criterion.

3 Cache Optimizing CPU-Bound Servers
In this section, we present our approach to use a cache-

aware memory allocator, Stingy, in coordination with a spe-
cific scheduling strategy to optimize an event-driven net-
work server. We will describe its application to TUX in
much greater detail and with concrete examples in the fol-
lowing section. A presentation of this methodology from
the programming-language point of view, focusing on the
program analyses involved can be found elsewhere [10].

3.1 In a nutshell

Although servers manipulate very specific data, typical
global optimizations [11, 12] performed to organize them in
a cache-friendly way are ad-hoc and do not necessarily lead
to efficiency. Our approach is to deploy a memory alloca-
tor that allocates memory objects from a region that is laid
out with a knowledge of the underlying cache. This layout
ensures that every location in the region maps into a unique
region in the L2 cache. The result is that the objects allo-
cated are also guaranteed not to conflict with one another.
This strategy is much more aggressive than the current ap-
proaches for cache-friendly allocation in OSes such as the
Slab allocator [11], and exploits the flexibility of scheduling
of the application and the knowledge of its structure, as they
permit one to predict the lifetime properties of the various
data manipulated.

Currently, only the data manipulated by the server are
managed by the allocator. Library functionalities on which
the application depends use their default allocation strategy.
The same applies to dynamic services. We set aside these
extensions for future work. For dynamic services, we en-
visage specific interfaces to the server that enable them to
manipulate memory objects in a cache-aware way. In this
work, however, we provide the basis for our optimization

methodology in the context of static workloads.
Our optimizations are applied to an event-driven server

through automated tools. These tools include an analysis
stage and a transformation stage. The analysis determines
the amount of stack, global and per-request data used by
the server. The transformations then generate a customized
memory allocator that maintains the memory objects dis-
covered by the analysis in a cache-aligned memory region,
and modify the server to request these objects from the al-
locator.

Specifically, for each object allocated as part of the per-
request data, the allocator maintains a pool of pre-allocated
objects that are initialized and handed out when the server
requests them. Since it is inefficient to have the allocator
make the decision as to whether a free object is available for
every allocation separately, we propagate part of this effort
into the scheduler, which applies it to batches of requests.
The scheduling strategy also includes a criterion to try to
exploit instruction cache locality by accumulating requests.
These aspects are described in more detail in the following
sections.

3.2 From the implementer’s point of view
The approach to optimizing an existing server consists

of four steps, each performed with the help of a specific
tool. The steps to be performed are: (i) Analyzing memory
usage, (ii) Generating a customized memory allocator, (iii)
Modifying the server to use the customized allocator (iv)
Modifying the server’s scheduler. The first three steps are
automated, subject to a preparatory step to bring the server
into a format that can be analyzed by the tools. The fourth
step must be carried out manually, but can use certain li-
brary functions generated by the first three.

4 Case Study: TUX
In this section, we describe the effort of applying our ap-

proach by explaining the steps listed in the previous section
in the context of TUX. However, first, we give an overview
of how to prepare the server for our tools.

4.1 Preparatory step
The tools that are used to apply our approach operate on

event-driven programs whose scheduling and memory man-
agement activities can be summarized using the constructs
specified in Figure 2. Figure 2 also gives the names of the
concrete functions in TUX implementing these constructs.
If certain statements bypass these constructs by accessing
low-level data structures directly, then wrapper functions
must be introduced. This may happen, for instance, if a
stage is queued in the context of a request by directly ma-
nipulating the data structure defining the request context in-
stead of doing so by invoking Schedule Stage. In TUX,
we did not require any such rewriting. The above interface
is described through source-code annotations such as the
ones illustrated in Figure 3. The add tux atom function
is identified as the interface construct QueueStage. Its first
argument is labeled with “T”, indicating that it represents

Construct Description Implementation in TUX
Queue Stage : S × T → void A function that queues a request to be executed at a particular stage. add tux atom
Schedule Stage : S × T → void A function to execute a stage in the context of a request. tux schedule atom
Scheduler : void→ void Entry point into the implementation of the scheduler. event loop
Malloc : int→ O A function to allocate a block of memory for object O. kmalloc,kmalloc req,get abuf,

sock alloc,kmem cache alloc
Free : O → void A function that frees the memory allocated for object O. kfree, kfree req,sock release,

kmem cache free,free abuf

Where,
S ⊂ [0,∞) is the set of stages.
T ⊂ [0,∞) is the set of request.
O is the set of objects used by various stages in the course of processing requests.

Fig. 2. Set of abstractions supplied as input to the analysis tools.

vo id a d d t u x a t o m (t u x r e q t ∗req , a t o m f u n c t ∗atom)
a t t r i b u t e ((QueueStage (” T ” , ” S ”))) ;

vo id ∗t u x m a l l o c (i n t s i z e)
a t t r i b u t e ((Mal loc (” i n t ”))) ;

vo id k f r e e (vo id ∗mem)
a t t r i b u t e ((F ree (”O ”)) ;

s t a t i c i n t e v e n t l o o p (t h r e a d i n f o t ∗ t i)
a t t r i b u t e ((S c h e d u l e r)) ;

t u x r e q t ∗ t u x m a l l o c r e q () ;
t u x r e q t ∗ t u x m a l l o c r e q w r a p (i n t s i z e) {

r e t u r n (t u x m a l l o c r e q ()) ;
}

Fig. 3. Example annotations and wrappers for
TUX.

the task context, and the second with “S”, indicating that it
represents the stage to be queued. Similarly, the functions
tux malloc and tux free are identified as the Malloc
and Free constructs respectively. The tux malloc req
function, used to allocate a request data structure, cannot
be labeled directly as it does not accept any argument cor-
responding to the size of the allocated data. This function
must hence be wrapped in a new function that accepts as
argument the object size.

4.2 Memory analysis with memwalk

The tool memwalk provides conservative approxima-
tions of three quantities: (i) The amount of stack used by
the program (ii) The amount of per-task state allocated and
deallocated, categorized for the various objects. (iii) The
amount of global state used by the program. It does so by
first discovering the overall control-flow of the server and
summarizing it in a data structure called a Stage Call Graph
(SCG), which contains the stages of an event-driven server
at its nodes and events at the edges.

The SCG extracted for TUX is shown in Figure 4 (edge
labels omitted).

4.3 Generating a customized allocator using
stingygen

The tool stingygen accepts the output of the tool
memwalk and generates a memory map that contains an
area dedicated to each region of memory identified by
memwalk. The region corresponding to per-request data
contains a sub-region for each object type. Two objects

http_post_header [nf=1,sc=20]

http_send_body [nf=7,sc=72]

http_process_message [nf=45,sc=234]

http_dirlist_head [nf=6,sc=72]

list_directory [nf=2,sc=642]

do_dir_line [nf=3,sc=1140] http_dirlist_tail [nf=9,sc=80]

do_send_abuf [nf=71,sc=56]

flush_request [nf=1,sc=0]

http_lookup_vhost [nf=6,sc=413]

parse_request [nf=47,sc=846]

Fig. 4. Memory usage analysis of TUX.

that may not be live at the same time can share such a sub-
region. The schema of this memory map is shown in Fig-
ure 5. The memory map consists of three parts: (i) the cache
slab, which overlaps with the L2 cache, (ii) the low slab,
which lies below the cache slab (iii) the high slab, which
lies above the cache slab. The cache slab contains all the
data of the server under normal circumstances, and is the
part in which the stack, global data and per-request data are
arranged. It is laid out in such a way that distinct locations
in it map into distinct locations in the L2 cache. On the
x86 architecture, this amounts to using a range of physically
contiguous memory. The role of the low and high slabs is
described later in this section.

The remainder of the section provides details on the ar-
rangement of the specific regions:

The stack is maintained at the lowest addresses of the
cache slab, with the low slab to back it up. Since the stack
grows downwards, a stack overflow causes data on the stack
to spill into the upper part of the low slab. This situation can
result if the estimation of stack utilization is too optimistic,
underestimating the amount of stack memory required. Al-
though this spill of data into the low slab may cause cache
misses, this arrangement ensures that such a misestimation
does not overwrite other program data or cause a memory
access violation.

Fig. 5. Layout of the Stingy allocator’s mem-
ory pool.

Global data are maintained in the region just above the
stack area. This choice is motivated by the fact that the size
of globals is known before-hand and fixed, and so we are
assured that they will not need to be spilled into the regions
above or below.

Per-request data are maintained in the upper (dominant)
region of the cache slab. Each object is allocated a portion
of this region, with the size as calculated in the analyses
described in the previous section. The reason we choose
the uppermost region of the cache is to be able to spill data
into the high slab in case it is infeasible to store it all in
the cache slab. Such situations arise particularly when the
size of an object allocated is workload-specific, in which
case, a conservatively approximated amount of space can
be reserved in the cache slab, and the worst-case amount in
the high slab.

4.4 Modifying the server to use the customized alloca-
tor

The tool stingify replaces all the old allocations and
deallocations of per-request data with invocations to the
Stingy allocator. The size and other parameters are replaced
with the identifier of the per-request object retrieved by the
tool memwalk. The per-request data in TUX is aggregated
into a relatively small number of structures, limiting the
benefits of a tool for this activity. However, when the num-
ber of objects is large, the utility of stingify is greater,
as manual replacements require effort and are prone to er-
rors. Furthermore, it can be used to perform quick replace-
ments when experimenting with different configurations of
the server.

4.5 Modifying the scheduler

The last step in enabling the Stingy allocator is to mod-
ify the scheduler to support it. Before we describe the con-
crete modifications to make and propose strategies to best
go about the process, we will describe the usual implemen-
tation of schedulers in event-driven programs.

4.5.1 Schedulers in event-driven programs

Figure 6(a) illustrates a typical scheduler in a server limited
by I/O. The scheduler consists of a loop that starts by han-
dling global activities like updating stats, updating timers
and checking for time-outs, handling signals etc. Next, it
polls for requests that have just completed a read or write
to or from an I/O device, and are waiting to be serviced. It

then iterates through this set of active requests, scheduling
each request in the context of the request’s current stage.

A high-level view of the scheduler of TUX is shown in
Figure 6(b). This scheduler is similar, but not identical. The
key difference between the scheduler of TUX and the one
shown in Figure 6(a) is that the former considers the re-
quests with I/O completed as a part of the total set of active
requests to be treated. A stage may terminate at an arbitrary
point, and the request made eligible to be scheduled in the
next stage. All requests waiting to be processed are thus
considered by the scheduler. Requests that have just com-
pleted an I/O action are added to the set of active requests
asynchronously by the helper processes. The scheduler or-
ders requests on the basis of their priority. Accepting new
requests is given the highest priority by treating all incom-
ing requests before considering requests at other stages.

4.5.2 Our scheduling strategy

Our scheduling strategy requires the inclusion of two cri-
teria in the scheduler. The first is support for the Stingy
allocator. The scheduler must check if enough per-request
memory is available for a request before it is elected. This
is done by invoking the query function generated by the tool
stingygen. The second criterion is to favor the instruc-
tion cache by bringing requests in early stages of process-
ing up to the mark with requests in advanced stages. These
criteria can be handled by defining additional request prior-
ities.

We first change the scheduler of TUX to iterate through
stages instead of individual requests, considering the entire
lot of requests active at a particular stage. Once we have
done so, we sort requests on the basis of three new pri-
orities: (i) Requests that have attained maximal flow at a
particular stage by using up all the per-request memory al-
located for them at that stage are given the highest priority,
as no more requests can be accumulated with them. (ii) Re-
quests for which the amount of per-request memory avail-
able is insufficient are given the lowest priority, as they will
likely cause cache misses. (iii) The remaining requests are
given a medium priority that is lower than the priority of the
first class of requests, as it is possible that requests in early
stages of processing may eventually come to the level of
these requests, increasing the size of the batch. This priority
is weighted, with more favorable weights given to requests
that are earlier in the course of treatment, as compared to
those that are advanced.

This final scheduler is illustrated at the bottom of Fig-
ure 6.

5 Benchmarks
We now describe an evaluation of our optimizations

by comparing the performance of unmodified and opti-
mized versions of TUX. We first discuss our benchmarking
methodology, focusing on the characteristics of the server
we wish to measure, the tools used to measure them and
finally describe our results.

w h i l e (1) {
/ / Update s y n c h r o n o u s t i m e r s , s t a t i s t i c s e t c .
DoUpdates () ;
/ / Handle n o t i f i c a t i o n s r e c e i v e d t h r o u g h s i g n a l s
H a n d l e S i g n a l s () ;
/ / E x t r a c t s e t o f r e q u e s t s w i th I /O comple t ed
r e q u e s t s w a i t i n g = P o l l I O (c u r r e n t r e q u e s t s) ;
/ / T r e a t w a i t i n g r e q u e s t s
f o r e a c h r e q i n r e q u e s t s w a i t i n g {

/ / Look up c u r r e n t s t a g e o f t h e r e q u e s t
c u r s t a g e f n = G e t C u r r e n t S t a g e (r e q) ;
S c h e d u l e S t a g e (req , c u r s t a g e f n) ;

}
}

(a) Standard

w h i l e (1) {
/ / Accept any new incoming r e q u e s t s
i f (NewReques tsWai t ing ())

AcceptNewRequests () ;
i f (! Empty (a c t i v e r e q u e s t s)) {

f o r e a c h r e q i n a c t i v e r e q u e s t s {
c u r s t a g e f n = G e t C u r r e n t S t a g e (r e q) ;
S c h e d u l e S t a g e (req , c u r s t a g e f n) ;

}
}
i f (n o t h i n g t o d o)

S l e e p () ;
}

(b) TUX
w h i l e (1) {

/ / O(1) e l e c t i o n o f t h e h i g h e s t p r i o r i t y s t a g e
/ / Get t h e h i g h e s t p r i o r i t y (eg . 5) and use i t t o
/ / g e t t h e c u r r e n t s t a g e queue .
c u r p r i o r i t y = G e t C u r r e n t H i g h e s t P r i o r i t y () ;
c u r s t a g e = Ge tNex tS t age (c u r p r i o r i t y) ;
c u r b a t c h = G e t A c t i v e R e q u e s t s (s t a g e) ;
f o r e a c h r e q i n c u r b a t c h {

c u r s t a g e f n = G e t C u r r e n t S t a g e (r e q) ;
S c h e d u l e S t a g e (req , c u r r e n t s t a g e f n) ;

}
i f (n o t h i n g t o d o)

S l e e p () ;
}

(c) TUX Modified

Fig. 6. Scheduler of a typical event-driven server limited by I/O

5.1 Tools

We considered a variety of server benchmarking tools to
use in our experiments. We needed a tool that was well
identified and also captured the key property we were inter-
ested in, namely, the performance of a server under work-
loads of specific concurrencies.

There are three main regions in a typical server’s per-
formance regime with respect to increasing concurrency.
The first, as we mentioned in Section 2, is the phase in
which the load is well below exercising the full computa-
tional bandwidth of the server. In this phase (the elastic
zone4), the throughput tends to increase linearly with ad-
ditional load. When the computational bandwidth of the
server is neared, i.e., for in-core workloads, when CPU uti-
lization nears 100%, the server enters it’s plastic zone. In
this stage, performance starts to degrade due to inefficien-
cies in caching. Finally, when the size of the incoming re-
quest stream increases beyond a final threshold, it goes into
its failure zone. Then, connections begin to get dropped due
to queue overflows, requests get detained for long periods of
time due to lack of CPU allocation, and the server starts to
become unproductive.

One popular index of measurement is the uniform load,
in terms of the number of requests per second that a server
can handle before it enters the failure zone, and becomes
saturated. httperf [13] is a tool that is known for being
able to sustain server overload by avoiding client-side bot-
tlenecks, like the number of available file descriptors, the
size of socket buffers etc. We use this tool in our work to
compute the maximum number of requests the server can
handle before failure.

Although httperf is suitable for measuring this value of
maximum simultaneous connections, it is not optimal for a

4The terms elastic zone, plastic zone and failure zone are borrowed
from material sciences terminology.

controlled application of high-concurrency workloads. This
is because httperf (and like benchmarks) simply generate re-
quests uniformly at regular intervals of m/rate, where m is
the number of requests in a burst. Concurrency in this case
can only be escalated when the server is close to overload,
since otherwise the server responds to request bursts in pe-
riods that are too small to allow concurrency to build up.
This escalation in concurrency close to overload is a result
of the detention of requests over long periods of time in the
failure zone of the server.

For this reason, we decided to use Apachebench [14],
which serves this second purpose. Apachebench takes the
desired concurrency, c, of requests as a command line pa-
rameter, and keeps the total number of parallel requests in
the server close to c, measuring total throughput for the
benchmarked period. With Apachebench, we measure per-
formance in the server’s plastic zone. Apachebench has
been used to evaluate servers under high request concur-
rency before [15], and is used commonly in industry.

5.2 Environment

We ran the load generators on a system with two Xeon
processors running at 3GHz each, with 1MB of cache and
with an Intel e1000 Gigabit Ethernet card. The server ran on
an Intel Pentium IIIM running at 1.4GHz, with 1MB of L2
cache. Running the Netperf [16] benchmark for both clien-
t/server pairs quickly showed that even for raw data trans-
fers using the protocol stack, the bottleneck of data transfer
was on the server side. The measurements provided in this
paper were obtained with Linux kernel 2.6.7. The experi-
ments conducted consisted of repeatedly requesting a set of
small files.

5.3 Results

Figure 7(a) illustrate a plot between the number of re-
quests serviced per second by TUX, and the number of re-

 4000

 6000

 8000

 10000

 12000

 14000

 4000 6000 8000 10000 12000 14000

R
eq

/s

Target req/s

14
48

57
74

83

2845

36857
28504

Original
Final

(a) Req/second close to overload
(httperf)

 8000

 10000

 12000

 14000

 16000

 18000

 1 10 100 1000 10000

R
eq

/s

Concurrency

Original
Final

(b) Throughput

 12000
 16000
 20000
 24000
 28000
 32000
 36000
 40000
 44000
 48000

 1 10 100 1000 10000

S
am

pl
es

Concurrency

Original
Final

(c) L2 Cache misses

Fig. 7. (a) Throughput of TUX with increas-
ing concurrency. (b) Corresponding increase
in L2 cache misses (c) Peak performance of
TUX for uniform load.

quests per second generated for it by httperf. Note that this
load is generated uniformly over the period of benchmark-
ing. The maximum number of concurrent connections over
a benchmarked period is also displayed at points at regular
intervals in these graphs. We observe that the peak perfor-
mance of the server, i.e., the load handled just before enter-
ing its failure zone increases by about 21%.

Figure 7(b) shows the variation of requests serviced per
second with increasing concurrency in the two servers. Fig-
ure 7(c) shows the number corresponding variation in L2
cache misses. We note that requests serviced increase by
up to 40% for a concurrency of about 2500 and L2 cache
misses decrease by up to 75%.

5.4 Analysis
Apachebench As mentioned earlier, we use apachebench
to analyze performance in the plastic zone of the servers,
and httperf to analyze their failure zones. We observe that
in Figure 7 over the plastic zone, the number of L2 cache
misses decreases drastically in the modified versions of the
servers. As a result of this decrease, performance now stays
relatively consistent over the entire zone. Early on, when
concurrency is in the neighborhood of 40, the increase in
performance can also be expected to be due to a reduction
in i-cache misses.

httperf To understand performance improvements close
to the failure zone, we must keep in mind that there is an
escalation in concurrency as a server approaches overload.
This trend can be observed in Figure 7(a). Since our modifi-
cations make the servers more robust to high concurrencies,

the modified servers can handle this load close to overload
better than the unmodified ones. The result is that the point
at which the server fails is delayed, and the server scales to
a higher peak performance.

6 Related Work
The scalability of servers has been an intensively re-

searched topic in the systems community. Much of this
research has been done in the context of servers with a con-
siderable amount of I/O activity. In this section, we will
focus on the works that are most pertinent in the context of
CPU-bound servers.

Chandra and Mosberger introduced multi-accept
servers [17] that were shown to bring about significant
gains in performance as compared to traditional servers.
Brecht et al. [18] have shown that performance could be en-
hanced with small modifications in the above strategy. The
results of both these works concur with the observations
presented in ours, in that, (i) The former advocates that
servers aggressively accept requests and treat requests in as
large batches as possible, improving locality with respect
to instructions and static data.(ii) The latter advocates that
these batches be limited in size, to prevent the total working
data set of the server from exploding. Our approach strikes
a balance between these two policies in an adaptive way
and derives itself from the characteristics of the underlying
cache.

Larus and Parkes have presented another cache-aware
scheduling strategy called Cohort scheduling [7]. Our
scheduling strategy includes a policy that effectively imple-
ments a variant of Cohort scheduling, favoring the batching
of requests as long as it can be done without causing data-
cache misses. Larus and Parkes applied Cohort scheduling
to a threaded server, by changing the implementation of the
underlying threading library. In this work, we have applied
what amounts to cohort scheduling to an event-driven server
using automated tools. Better instruction-cache locality was
also the goal of Blackwell [19], in his work on optimizing
TCP/IP stacks. He showed that by processing several pack-
ets in a loop at every layer, one could induce better reuse of
the corresponding instructions.

Cache-conscious data placement has been used to opti-
mize the caching behavior of generic programs [12, 20, 21].
These works use program analysis and profiling information
to efficiently arrange objects in memory, and fields within
objects. While the goal of these efforts is to reduce the num-
ber of cache misses in generic programs, our work focuses
on the specific problem of reducing data cache misses in
event-driven servers, since they have a well defined struc-
ture and concurrency behavior.

Recent work has advocated policies for resource aware
scheduling. The Capriccio threading library [15] is one ex-
ample, in which scheduling aims to balance the utilization
of various resources at blocking points in the server applica-
tion. These blocking points are points at which potentially
blocking system calls are invoked, and are extracted auto-

matically. The resources tracked by Capriccio were mem-
ory, CPU and file descriptors. Blocking points in a program
can be seen as end points of implicit stages in a server. In re-
lation to Capriccio, our work could be seen as a special kind
of resource-aware scheduling which aims to constrain cache
usage. Similar to Capriccio, the SEDA architecture [22] had
dynamic resource controllers, which dynamically adapted
resource usage at various stages based on observed perfor-
mance. SEDA also did not specifically explore caching in-
efficiencies in CPU-bound servers.

7 Conclusion & Future Work
In this paper, we analyzed the performance of event-

driven servers that are CPU-bound and demonstrated that
caching inefficiencies can lead to poor performance. We
presented an approach consisting of a cache-aware mem-
ory allocator and a specific scheduling strategy that together
ensure that L2-cache-miss rate in the application is mini-
mized. Our approach is applied with the help of a set of
tools that operate on event-driven programs written in the
C language. We described a case study in the context of
a high-performing real-world server, TUX. Our optimiza-
tions improves the throughput under high concurrency by
up to 40%, reduces L2 data-cache misses by about 75% and
improves the maximum load handled before failure by 21%.

As future work, we are looking to apply our approach
to other CPU-bound servers, such as telephony servers that
serve the SIP protocol. We are also considering additional
OS-support for the Stingy allocator and specific interfaces
that allow our approach to be extended to dynamic services.

References
[1] L. A. Wald and S. Schwarz, The 1999 Southern Cal-

ifornia Seismic Network Bulletin, July/August 2000,
Seismological Research Letters.

[2] V. S. Pai, P. Druschel, and Zwaenepoel, “Flash: An Ef-
ficient and Portable Web Server,” in USENIX Annual
Tech Conference, June 1999.

[3] K. Elmeleegy, A. Chanda, A. L. Cox, and
W. Zwaenepoel, “Lazy asynchronous I/O for event-
driven servers,” in USENIX Annual Tech Conference,
June 2004.

[4] L. M. Ramaswamy, Georgia Institute of Technology,
Personal communication.

[5] “Session Initiation Protocol (SIP),” The Internet Engi-
neering Task Force, 1895 Preston White Drive, Suite
100, Reston, VA 20191-5434 – USA, Mar. 2001, re-
quest for Comments 2543.

[6] Y. Ruan, V. S. Pai, E. Nahum, and J. Tracey, “Eval-
uating the impact of simultaneous multithreading on
network servers using real hardware,” in USENIX An-
nual Tech Conference, June 2004.

[7] J. R. Larus and M. Parkes, “Using cohort scheduling
to enhance server performance,” in USENIX Annual
Tech Conference, Oct. 2002.

[8] Standard Performance Evaluation Corporation, “The
SPECWeb99 Benchmark. quarterly results.” URL:
http://www.spec.org/osg/web99/results/.

[9] G. Banga, P. Druschel, and J. Mogul, “Better oper-
ating system features for faster network servers,” in
Workshop on Internet Server Performance, June 1998.

[10] S. Bhatia, C. Consel, and J. Lawall, “Memory-
manager/scheduler co-design: Optimizing event-
driven servers to improve cache behavior,” in Proceed-
ings of the 2006 ACM International Conference on
Memory Management, Ottawa, Canada, 2006.

[11] J. Bonwick, “The slab allocator: An object-caching
kernel memory allocator,” in USENIX94, 1994.

[12] B. Calder, C. Krintz, S. John, and T. Austin,
“Cache-conscious data data placement,” in Eighth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-VIII), Oct. 1998.

[13] D. Mosberger and T. Jin, “httperf - a tool for measur-
ing web server performance,” in Workshop on Internet
Server Performance, June 1998.

[14] The Apache Foundation, “Apache HTTP server
project,” URL: http://www.apache.org.

[15] R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer, “Capriccio: scalable threads for internet
services,” in SOSP03, Oct. 2003.

[16] H.-P. company Information Networks Division, Net-
perf: A network performance benchmark, Feb. 1996.

[17] A. Chandra and D. Mosberger, “Scalability of Linux
event-dispatch mechanisms,” in USENIX Annual Tech
Conference, June 2001.

[18] T. Brecht, D. Pariag, and L. Gammo, “Accept()able
strategies for improving server performance,” in
USENIX Annual Tech Conference, June 2004.

[19] T. Blackwell, “Speeding up protocols for small mes-
sages,” in SIGCOMM Symposium on Communications
Architectures and Protocols, Aug. 1996.

[20] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache-
conscious structure layout,” in Proceedings of the
ACM SIGPLAN’99 Conference on Programming Lan-
guage Design and Implementation (PLDI’99), May
1999.

[21] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-
conscious structure definition,” in Proceedings of the
ACM SIGPLAN’99 Conference on Programming Lan-
guage Design and Implementation (PLDI’99), May
1999.

[22] M. Welsh, D. Culler, and E. Brewer, “SEDA: An ar-
chitecture for well-conditioned, scalable internet ser-
vices,” in SOSP01, Oct. 2001.

