
Documenting and Automating
Collateral Evolutions in Linux Device Drivers

Yoann Padioleau
Ecole des Mines

de Nantes
yoann.padioleau@acm.org

Julia Lawall
DIKU, University of

Copenhagen
julia@diku.dk

René Rydhof Hansen
Aalborg University
rrh@cs.aau.dk

Gilles Muller
Ecole des Mines

de Nantes
Gilles.Muller@emn.fr

ABSTRACT
The internal libraries of Linux are evolving rapidly, to ad-
dress new requirements and improve performance. These
evolutions, however, entail a massive problem of collateral
evolution in Linux device drivers: for every change that af-
fects an API, all dependent drivers must be updated ac-
cordingly. Manually performing such collateral evolutions is
time-consuming and unreliable, and has lead to errors when
modifications have not been done consistently.

In this paper, we present an automatic program transfor-
mation tool, Coccinelle, for documenting and automating
device driver collateral evolutions. Because Linux program-
mers are accustomed to manipulating program modifications
in terms of patch files, this tool uses a language based on the
patch syntax to express transformations, extending patches
to semantic patches. Coccinelle preserves the coding style
of the original driver, as would a human programmer.

We have evaluated our approach on 62 representative col-
lateral evolutions that were previously performed manually
in Linux 2.5 and 2.6. On a test suite of over 5800 relevant
driver files, the semantic patches for these collateral evolu-
tions update over 93% of the files completely. In the remain-
ing cases, the user is typically alerted to a partial match
against the driver code, identifying the files that must be
considered manually. We have additionally identified over
150 driver files where the maintainer made an error in per-
forming the collateral evolution, but Coccinelle transforms
the code correctly. Finally, several patches derived from the
use of Coccinelle have been accepted into the Linux kernel.

“The Linux USB code has been rewritten at least
three times. We’ve done this over time in order
to handle things that we didn’t originally need to
handle, like high speed devices, and just because we
learned the problems of our first design, and to fix
bugs and security issues. Each time we made chan-
ges in our api, we updated all of the kernel drivers
that used the apis, so nothing would break. And
we deleted the old functions as they were no longer
needed, and did things wrong.” Greg Kroah-Hartman,
OLS 2006.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.3.3
[Programming Languages]: Language Constructs and
Features; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement

General Terms
Languages, Reliability, Measurement

Keywords
Linux, device drivers, software evolution, collateral evolu-
tions, program transformation, domain-specific languages

1. INTRODUCTION
Evolution in systems software is essential, to improve per-

formance, enhance security, and support new hardware. De-
spite these benefits, however, evolution can also reduce code
quality, as an evolution that affects a library API can break
all code that depends on it. In this case, collateral evolutions
are needed in all dependent code to update it accordingly.
Collateral evolutions may range from changing the name of
a single library function at every call site to making multiple
distinct context-dependent changes throughout the affected
files.

In previous work, we have studied the problem of collat-
eral evolutions in the context of Linux device drivers [20].
Drivers make up around 50% of the Linux kernel source
tree, they rely heavily on Linux internal library APIs, and
their correctness is essential to the usability of the OS. Cur-
rently, collateral evolutions in driver code are typically per-
formed manually or using unstructured and error-prone reg-
ular expressions with tools such as sed or Perl. Manual
modifications are tedious and time-consuming, and regular
expressions are difficult to write for complex changes. In
some cases, the collateral evolution process has taken several
years [20]. Furthermore, while the developer who updates a
library often performs the needed collateral evolutions on the
drivers in the Linux source tree, many drivers are maintained
outside the kernel source tree by device experts or by users
who may not be familiar with the subtleties of the evolutions
in the internal libraries. Not surprisingly, bugs have been in-
troduced in performing collateral evolutions, ranging from
simple typing errors to semantic misunderstandings [20].

In this paper, we present a transformation tool, Coc-
cinelle, for documenting and automating device driver col-
lateral evolutions. To be useful to library developers and

driver maintainers, this tool must meet the following chal-
lenges:

Ease of use. Library developers and driver maintainers are
often not familiar with program transformation tools. To
gain acceptance, a program transformation tool must thus
fit with the notations and processes familiar to those working
on Linux code.

Preservation of coding style. Because a collateral evolu-
tion is just one step in the ongoing maintenance of a driver,
transformed driver code must follow the same coding style
as the original. This includes preserving the use of macros
and C preprocessor directives, which are notoriously difficult
to handle [7, 16].

Genericity. A transformation rule describing a collateral
evolution must be applicable to a wide range of drivers, in-
cluding those outside the Linux source tree, which may not
be available to the library developer. Thus, transformation
rules must be independent of irrelevant code variations in
device-specific code. Moreover, the C language allows some
operations, such as null pointer checks, to be expressed in
multiple ways. Transformation rules must also be insensitive
to these variations.

Efficiency. Recent versions of Linux include over 4000 driver
files, and some collateral evolutions that affect drivers affect
other kernel services as well. A transformation tool must be
efficient enough to allow interactive use, even when applied
to the entire Linux source tree.

Collateral evolutions in Linux device drivers, however,
have some properties that help address these challenges.
First, Linux developers already exchange code transforma-
tions in terms of a specific formal notation, the patch file [14].
This notation can thus provide the basis for a language for
expressing program transformations that is compatible with
the current habits of Linux developers. Second, there are
efforts to standardize the use of macros in Linux code [23].
Thus, it is tractable to directly parse driver code containing
preprocessor directives in most cases. Third, the structure
of the code that uses API functions is largely dictated by the
constraints imposed by the library, and thus is mostly im-
pervious to coding style. Indeed, many drivers are written
by copy-paste from an existing driver [12]. Finally, many
APIs are used in a fairly localized way, making it possible
to efficiently process even large driver files.

Building on these properties of driver code, we have de-
veloped the Coccinelle transformation tool. The main con-
tributions of our work are as follows:

• A WYSIWYG approach to describing collateral evo-
lutions in terms of semantic patches, which like tra-
ditional patches describe transformations using frag-
ments of ordinary C code. Semantic patches are thus
easy to create from sample driver source code, and easy
for other driver maintainers to read and understand.

• A parser that is able to accommodate many uses of
C preprocessing (cpp) directives directly. Comments
and whitespace are maintained where possible in the
transformed code to further preserve the ability to un-
derstand and maintain the driver.

• A notion of isomorphisms, which equate semantically
equivalent code fragments, to abstract away from vari-
ations in coding style, and the use of temporal logic to
abstract away from variations in device-specific execu-
tion paths. The resulting genericity implies that, as
shown in Section 5, a single semantic patch of under
50 lines can suffice to update over 500 files.

• Strategies to optimize the transformation process such
that the average treatment time per affected driver is
0.7 seconds and the entire Linux kernel can be pro-
cessed in less than 1 minute.

• An evaluation of Coccinelle on a range of over 60 typ-
ical collateral evolutions performed in earlier versions
of Linux. On this test suite, Coccinelle correctly up-
dates over 93% of the files previously identified by the
human programmer.

• A preliminary evaluation of the use of Coccinelle to
complete collateral evolutions that were only incom-
pletely performed on Linux code, as indicated by the
Linux kernel janitors mailing list and other similar
sources. 24 patches derived from the use of Coccinelle
have been accepted into Linux.

The rest of this paper is organized as follows. Section 2
presents current collateral evolution practice and how Coc-
cinelle aids in this process. Section 3 presents our language
SmPL for specifying semantic patches and Section 4 presents
the associated transformation engine. Section 5 evaluates
Coccinelle in terms of a variety of representative examples,
Section 6 describes some limitations of the approach, and
Section 7 describes our contribution to Linux. Finally, Sec-
tion 8 presents related work, and Section 9 concludes.

2. USING COCCINELLE
Collateral evolution in Linux device drivers typically pro-

ceeds as follows: When a library developer makes a change
in an internal Linux library that has an impact on the API,
he manually updates all of the relevant device-specific code
in the Linux source tree, based on his understanding of
the evolution and his familiarity with the affected drivers.
Next, the maintainers of the many drivers outside the Linux
source tree perform the collateral evolution in their own
code. These driver maintainers do not have first-hand knowl-
edge of the evolution, and thus must infer how it applies
to their code from any available code comments, informal
mailing list discussions, and often voluminous patches. Fi-
nally, motivated users apply the collateral evolutions to code
that was overlooked by the library developer or driver main-
tainer. A motivated user may have no previous experience
with either the evolution or the driver code, and thus the
problems faced by the driver maintainer are compounded in
this case. We now consider how Coccinelle can fit into the
various aspects of this collateral evolution process.

Coccinelle and the library developer. When modifying
a library, a library developer can use Coccinelle to reduce
the time needed for manual code modifications, to improve
the robustness of the collateral evolution process, and to
provide formal documentation of the changes that are re-
quired. To this end, a developer who modifies a library also

1 static int usb_storage_proc_info (
2 char *buffer, char **start, off_t offset,
3 int length, int hostno, int inout)
4 {
5 struct us_data *us;
6 struct Scsi Host *hostptr;
7
8 hostptr = scsi host hn get(hostno);
9 if (!hostptr) { return -ESRCH; }
10
11 us = (struct us_data*)hostptr->hostdata[0];
12 if (!us) {
13 scsi host put(hostptr);
14 return -ESRCH;
15 }
16
17 SPRINTF(" Vendor: %s\n", us->vendor);
18 scsi host put(hostptr);
19 return length;
20 }

(a) Simplified Linux 2.5.70 code

1 static int usb_storage_proc_info (struct Scsi Host *hostptr,
2 char *buffer, char **start, off_t offset,
3 int length, int hostno, int inout)
4 {
5 struct us_data *us;
6
7
8
9
10
11 us = (struct us_data*)hostptr->hostdata[0];
12 if (!us) {
13
14 return -ESRCH;
15 }
16
17 SPRINTF(" Vendor: %s\n", us->vendor);
18
19 return length;
20 }

(b) Transformed code

Figure 1: An example of collateral evolution, based on code in drivers/usb/storage/scsiglue.c

writes a semantic patch that describes the entailed collat-
eral evolutions. As presented in the next section, Coccinelle
uses a C-like notation for semantic patches, which means
that the developer can often start with a typical driver, per-
form the transformation by hand, apply diff to the old and
new versions to create a standard patch and then edit this
patch to abstract away from inessential details. To test his
intuitions and bring the affected drivers up to date, the de-
veloper applies the semantic patch across the kernel source
tree. If this initial semantic patch does not apply completely
to all of the affected drivers, e.g., due to unanticipated vari-
ations in coding style, then he must iteratively refine and
test it. To aid in this process, Coccinelle provides an in-
teractive mode based on Emacs’ ediff where the developer
can approve each change before it is applied to the source
code, and gives information about cases where the semantic
patch only partially matches the source code. Eventually,
the library developer is confident that the semantic patch
addresses all relevant cases. He can then apply it one final
time to the drivers in the Linux kernel source tree, with the
assurance that changes will be made uniformly in all rele-
vant files, and then publish it for use by driver maintainers
in a repository analogous to the current repository for stan-
dard Linux patches,1 providing a complete formal record of
the acquired expertise.

Coccinelle and the driver maintainer or motivated user.
When faced with a driver that is not compatible with a re-
cent version of the Linux kernel, a programmer can search
the repository of semantic patches for those corresponding to
collateral evolutions between the Linux version supported by
his driver and the desired one, and apply them to his driver.
This raises the issue, however, of whether a semantic patch
that was created without knowledge of his code will apply
correctly. Due to the copy-paste model of development and
the constraints on the use of the API, the semantic patch
is likely to be compatible with the driver code. Still, the
programmer can first read the semantic patch, which iden-
tifies in terms of C code fragments the complete set of code
patterns that are affected by the collateral evolution, and
compare them to the structure of his driver. Next, he can

1http://git.kernel.org/

apply the semantic patch using the Coccinelle interactive
mode. If Coccinelle indicates that the semantic patch only
partially matches the driver code, he can refine the semantic
patch, following the same iterative process as the library de-
veloper, or simply modify the affected code by hand, using
the semantic patch as a formal guideline. Finally, he may
contribute a refined semantic patch to the repository.

Summary. The benefits of Coccinelle for both a library de-
veloper and a driver maintainer are the closeness of the se-
mantic patch language to C code, the automatic transforma-
tion tool that makes it possible to easily and reliably apply
transformations to driver code, and the feedback provided
by the interactive usage mode and the partial matches. We
describe and assess these features in the rest of this paper.

3. SMPL IN A NUTSHELL
Coccinelle provides the language SmPL (Semantic Patch

Language) for writing semantic patches. The design of SmPL
is guided by the goal of providing a declarative, WYSIWYG
approach that is close to the C language and builds on the
existing patch notation. To motivate the features of SmPL,
we first consider a moderately complex collateral evolution
that raises many typical issues. We then present SmPL in
terms of this example.

The proc_info collateral evolution. The proc info collat-
eral evolution concerns the use of the SCSI API functions
scsi_host_hn_get and scsi_host_put, which access and
release, respectively, a structure of type Scsi_Host, and ad-
ditionally manage a reference count. In Linux 2.5.71, it was
decided that, due to the criticality of the reference count,
driver code could not be trusted to use these functions cor-
rectly and they were removed from the SCSI API [13]. This
evolution had collateral effects on the “proc info” callback
functions2 defined by SCSI drivers, which call these API
functions. To compensate for the removal of scsi_host_-
hn_get and scsi_host_put, the SCSI library began in Linux
2.5.71 to pass a Scsi_Host-typed structure as an argument

2A proc info callback function makes accessible at the user
level various information about the device.

1 @ rule1 @
2 struct SHT ops;
3 identifier proc info func;
4 @@
5 ops.proc_info = proc info func;
6
7 @ rule2 @
8 identifier buffer, start, offset, length, hostno, inout;
9 identifier hostptr, rule1.proc info func;
10 @@
11 proc info func (
12 + struct Scsi_Host *hostptr,
13 char *buffer, char **start, off_t offset,
14 int length, int hostno, int inout) {
15 ...
16 - struct Scsi_Host *hostptr;
17 ...
18 - hostptr = scsi_host_hn_get(hostno);
19 ...
20 - if (!hostptr) { ... return ...; }
21 ...
22 - scsi_host_put(hostptr);
23 ...
24 }

Figure 2: A semantic patch for performing the
proc info collateral evolutions. Metavariables are
shown in italics.

to these callback functions. Collateral evolutions were then
needed in the proc info functions to remove the calls to
scsi_host_hn_get and scsi_host_put, and to add the new
argument.

Figure 1 shows a simplified version of the proc info func-
tion of drivers/usb/storage/scsiglue.c based on the ver-
sion just prior to the evolution, from Linux 2.5.70, and the
result of performing the above collateral evolutions in this
function. Similar collateral evolutions were performed in
Linux 2.5.71 in 19 SCSI driver files inside the kernel source
tree. The affected code, shown in italics, is:

The declaration of the variable hostptr, which is moved
from the function body (line 6) to the parameter list (line
1), to receive the new Scsi_Host-typed argument.

The call to scsi_host_hn_get, which is removed (line 8),
entailing the removal of the assignment of its return value
to hostptr. The subsequent null test on hostptr is dropped,
as the SCSI library is assumed to provide a non-null value.

The calls to scsi_host_put, which are removed. Because
the proc info function should call scsi_host_put whenever
scsi_host_hn_get has been called successfully (i.e., returns
a non-null value), there may be many such calls, one per
possible control-flow path. In this example, there are two:
one on line 13 just before an error return and one on line 18
in the normal exit path.

The proc_info collateral evolution using SmPL. Fig-
ure 2 shows a SmPL semantic patch describing these col-
lateral evolutions. Overall, the semantic patch has the form
of a traditional patch [14], consisting of a sequence of rules
each of which begins with some context information delim-
ited by a pair of @@s and then specifies a transformation to
be applied in this context. In the case of a semantic patch,
the context information declares a set of metavariables. A
metavariable can match any term of the kind specified in its
declaration (identifier, integer expression, etc.), such that
all references to a given metavariable match the same term.

The transformation is specified as in a traditional patch file,
as a term having the form of the code to be transformed.
This term is annotated with the modifiers - and + to in-
dicate code that is to be removed and added, respectively.
The semantic patch in Figure 2 consists of two rules: rule1
(lines 1-5) finds the name of the proc info function in the
given SCSI driver file, and rule2 (lines 7-24) specifies the
transformation that should be applied to the definition of
that function.
Rule1 declares two metavariables (lines 1-4): ops and

proc info func. The metavariable ops is declared as an ar-
bitrary expression of type struct SHT, and represents the
structure that a SCSI driver passes to the SCSI library
to identify the driver’s callback functions. The metavari-
able proc info func is declared as an identifier and repre-
sents the name of the proc info function. The rest of this
rule (line 5) simply identifies the proc info function as the
function that is stored in the proc_info field of the struc-
ture ops. For example, the scsiglue driver stores the func-
tion usb_storage_proc_info in this field (code not shown).
Rule1 can match any number of times in a given driver file.
The rest of the semantic patch will be applied once for each
possible distinct set of bindings of the metavariables.
Rule2 declares metavariables to represent the parameters

of the proc info function and the Scsi_Host-typed local vari-
able (lines 7-10). The metavariable proc info func is speci-
fied to be inherited from rule1. The rest of the rule (lines
11 to 24) specifies the removal of the various code fragments
outlined above from the function body. Because the code
to remove is not necessarily contiguous, these fragments are
separated by the SmPL operator “...”, which matches any
sequence of instructions. The semantic patch also specifies
that a line should be added: the declaration specified in line
16 to be removed from the function body is specified to be
added to the parameter list in line 12 by a repeated refer-
ence to the hostptr metavariable. These transformations
only apply if the rule matches completely.

Abstracting away from syntactic variations. A seman-
tic patch applies independent of spacing, line breaks, and
the presence of comments. For example, the semantic patch
of Figure 2 matches the code of Figure 1(a), even though
the opening brace of the function definition is on the same
line as the function header in the semantic patch (line 14 of
Figure 2) and on a different line in the code (line 4 of of Fig-
ure 1(a)). Moreover, the Coccinelle transformation engine
is parametrized by a collection of isomorphisms specifying
sets of equivalences that are taken into account when ap-
plying the transformation rule. Isomorphisms can be spec-
ified in an auxiliary file by the SmPL programmer, using a
variant of the SmPL syntax. Among the default set of iso-
morphisms is the property that for any x that has pointer
type, !x, x == NULL, and NULL == x are equivalent. This
isomorphism is specified as follows:

@@ expression *X; @@
X == NULL <=> !X <=> NULL == X

Given this specification, the pattern on line 20 of Figure 2
matches a conditional that tests hostptr using any of the
listed variants. In rule1, isomorphisms account for the var-
ious ways of initializing a structure field (line 5), i.e., via the
structure itself, via a pointer to the structure, or using the
C99 initializer syntax. In rule2, isomorphisms also allow

the local variable hostptr to be initialized to a constant at
the point of its declaration (line 16) and allow the braces
around the then branch of the test of the result of calling
scsi_host_hn_get to be omitted (line 20). All of these iso-
morphisms are exploited in transforming the relevant drivers
in the Linux kernel source tree. Our default set of isomor-
phisms contains 39 equivalences commonly relevant to driver
code.

.

.

.
��

hostptr = scsi host hn get(hostno);

��
if (!hostptr)

ssggggggggggggg
++WWWWWWWWW

++
{

��

us = hostptr→...;

����
return -ESRCH;

��
if(!us)

ss ��
}

--

{

��
SPRINTF(...);

��
scsi host put(hostptr);

��

scsi host put(hostptr);

��
return -ESRCH;

��
return length;

oo

}

��
}

Figure 3: CFG for Figure 1, lines 9-20 (a)

Abstracting away from control-flow variations. A de-
vice driver implements an automaton, testing various con-
ditions depending on the input received from the kernel and
the current state of the device, in order to determine an ap-
propriate action. Thus, a driver function is typically struc-
tured as a tree, with many exit points. An example is the
code in Figure 1a, which contains branches on lines 9 and
12. As the structure of this tree depends on device-specific
properties, it cannot be explicitly represented in a semantic
patch. Instead, the semantic patch describes the pattern of
runtime operations required by the library, which should be
the same across all drivers.

As an approximation of the pattern of operations per-
formed at run time by a driver, we use paths in the driver’s
control-flow graph (CFG). Thus, a sequence of terms in a
SmPL semantic patch matches a sequence of C-language
terms along such a path. In particular, the SmPL construct
“...” represents an arbitrary CFG path fragment. The need
for this approach is illustrated by the scsiglue proc info func-
tion of Figure 1a, for which the CFG is shown in Figure 3.
This function contains two calls to scsi_host_put, while
the semantic patch of Figure 2 contains only one. The right
side of the CFG of Figure 3 shows that there are two paths
that remain within the function after the test of hostptr,
one represented by a solid line and one represented by a dot-
ted line. Considering the entire execution of the function,
each path consists of the function header, the declaration of
hostptr, the call to scsi_host_hn_get, the null test, and
its own call to scsi_host_put and close brace, as specified
by rule2 of the semantic patch. Thus, the semantic patch
matches this code. The semantic patch furthermore matches

parse C file

��

parse a SmPL rule

��
expand isomorphisms

��
translate to CFG

''OOOOOO translate to CTL

vvnnnnnnn

match the CTL against the CFG
using a model-checking algorithm

��
modify matched code

��
unparse

@A
more rules

GF //

BC
more rules

EDoo

done��

Figure 4: The Coccinelle engine

proc info functions having any other number of branches and
a corresponding number of calls to scsi_host_put.

Other features. SmPL contains a number of other features
for matching other kinds of code patterns. These include
the ability to describe a disjunction of possible patterns to
be tried in order, the ability to specify code that should not
be present, and the ability to declare some parts of a pat-
tern to be optional. Semantic patches may furthermore use
almost all of C and many cpp constructs (#define, etc.),
and use metavariables abstracting over all kind of terms, in-
cluding identifiers, constants, expressions of various types,
statements, and parameter lists. All of these features are
illustrated in the examples in the appendix. These features
allow a semantic patch to match over and transform almost
any kinds of constructs, which is essential because of the
wide range of transformations required for collateral evolu-
tions.

4. THE COCCINELLE ENGINE
In our analysis of the collateral evolution problem, we

identified the need for an approach that fits with the habits
of Linux programmers, that can preserve coding style, that
can accommodate code variations, and that is efficient. The
language SmPL satisfies the first requirement, as it builds on
the Linux patch format. The challenge is then to implement
this language so as to satisfy the remaining requirements.
In this section, we present the Coccinelle transformation en-
gine, that takes as input a semantic patch and a driver, and
transforms the driver according to the semantic patch. Fig-
ure 4 shows the main steps performed by the engine. The
key points in its design are the strategies for (i) coping with
cpp, to be able to preserve the original coding style, (ii) ab-
stracting away from syntactic and control-flow variations,
and (iii) efficiently applying code transformations. The im-
plementation of Coccinelle amounts to over 60,000 lines of
OCaml code.

Coping with cpp. Because collateral evolutions are just one
step in the ongoing maintenance of a Linux device driver, the
Coccinelle engine must generate code that is readable and
in the style of the original source code, including the use

of cpp constructs. Furthermore, a collateral evolution may
involve cpp constructs. Therefore, Coccinelle parses C code
as is, without expanding cpp preprocessing directives, so
that they are preserved in both the transformation process
and the generated code.

It is non-trivial to parse C code that contains preprocess-
ing directives [7, 16]. While many macro uses can be parsed
as an identifier reference or a function call, others, such as
uses of the widely used list_for_each macro which expands
to a loop header, do not have the form of a valid C term. Fur-
thermore, conditional compilation directives such as #ifdef
can break the term structure, as illustrated by the following:

#if LINUX_VERSION_CODE >= 0x010346
int gdth_reset(Scsi_Cmnd *scp, int reset_flags) {
#else
int gdth_reset(Scsi_Cmnd *scp) {
#endif

We have developed a number of heuristics that, e.g., use in-
dentation to identify macro uses that represent loop headers,
and that recognize common patterns of conditional compi-
lation, such as the duplicated function header illustrated
above. These heuristics allow us to parse 99% of the code
in the recent Linux v2.6.21 kernel, and 99% of the code of
the over 5800 driver files in our test suite drawn from Linux
2.5 and 2.6. The remaining parsing problems are due to real
syntax errors, to code containing patterns not yet handled
by our heuristics, and to code for which it seems very diffi-
cult to propose heuristics. In the last case, because of the
small number of lines of code involved, we hope to convince
the Linux community to rewrite the code.

To preserve the original coding style, our C-code pars-
er also collects information about the whitespace and com-
ments adjacent to each token. When a token in the input
file is part of the generated code, the associated whitespace
and comments are generated with it in the unparsing phase.

Abstracting away from syntactic and control-flow vari-
ations. Abstracting away from syntactic variations is imple-
mented using the isomorphisms. Initially, a semantic patch
is parsed, to create a pattern consisting of the minus and
unannotated code, which is then decorated by the plus code
at the points at which this code should be inserted. The
isomorphisms are then applied to this pattern. Any subpat-
tern that matches any one of the set of terms designated as
isomorphic is replaced by a disjunction of patterns match-
ing the possible variants. The + code associated with the
subterms of such a term is propagated into all of the pat-
terns, so that the generated code retains the coding style of
the source program. As an example, given the null pointer
testing isomorphism described in Section 3, the pattern x-+y

== NULL, in which x is decorated by an indication that it
should be replaced by y, would be converted to a disjunc-
tion of the patterns x-+y == NULL, !x-+y, and NULL == x-+y.
This disjunction replaces x by y in whatever form the null
test occurs.

SmPL abstracts away from control-flow variations by tak-
ing the strategy of matching a sequence in a semantic patch
against a path in the matched code’s control-flow graph. To
reason about control-flow graphs, we have based the Coc-
cinelle engine on model checking technology, which is nat-
urally graph-based [10]. In this approach, each top-level
block of C source code (e.g., a function or macro definition)
is translated into a control-flow graph, which is used as the

model, and the SmPL semantic patch is compiled into a
formula of temporal logic (CTL [2], with some additional
features). The matching of the formula against the model
is then implemented using a variant of a standard model
checking algorithm [10]. While CTL is probably unfamiliar
to most driver maintainers, it serves only as an assembly
language, which driver maintainers do not have to read or
understand. We have found the use of an expressive logic
such as CTL to be crucial in rapidly developing a prototype
implementation, as it has allowed us to incrementally work
out the semantics of SmPL, without affecting the underlying
pattern-matching engine.

The result of matching the CTL formula against the control-
flow graph is a collection of nodes where a transformation is
required, the fragment of the semantic patch that matches
these nodes, and the metavariable bindings. The engine then
propagates the - and + annotations on the semantic patch
to the corresponding tokens in the matched nodes of the
control-flow graph, and from there to the abstract-syntax
tree. The engine then unparses the abstract-syntax tree,
dropping any token annotated with - and adding the + code
from the semantic patch, as appropriate. Any metavariables
in the added + code are instantiated according to the bind-
ings returned by the CTL matching process.

Efficiency. The rule-matching process, including the model
checking, is reasonably efficient. Nevertheless, applying the
complete process to every file in the Linux source tree would
be expensive, and unnecessarily so, because there are typ-
ically many files that are not relevant to a given collateral
evolution. Thus, Coccinelle provides several optimizations
to quickly identify relevant files and functions. At a coarse
grain, the SmPL compiler collects key words, such as func-
tion and field names, that must appear in a file for the se-
mantic patch to apply. For instance, for the semantic patch
of Figure 2, these are the proc_info field and the names of
the scsi_host_hn_get and scsi_host_put functions. The
Coccinelle engine then uses grep, or the full-text indexing
and search tool glimpse [?] if this option was activated by
the user, to identify files that contain at least one of these key
words; other files are not even parsed. At a more fine grain,
for each rule, the SmPL compiler also collects atomic pat-
terns, such as function calls, that must appear in a function
for the rule to be applicable. Checking for these patterns is
done after parsing and CFG creation, but if some required
pattern is not present, the model checker is not invoked.
These optimizations make it possible to apply even complex
semantic patches to the entire Linux kernel source tree in a
reasonable amount of time (details in Section 5).

5. EXPERIMENTS
In this section, we evaluate the application of Coccinelle

to driver code, illustrating 62 collateral evolutions, in a wide
range, from simple to complex, and from highly specialized
to generic. First, we consider our running example, and de-
scribe some extensions to the semantic patch presented in
Section 3 and its performance on the Linux kernel. Second,
we consider collateral evolutions that apply at a very large
number of sites in driver code. Third, we consider collateral
evolutions that have proved difficult for developers, as evi-
denced by the errors that have been introduced. Finally, we
evaluate the complete set of collateral evolutions affecting
drivers in the bluetooth directory since Linux 2.6.12. Over-

all, these examples affect over 5800 driver files, from Linux
2.5 and 2.6. Our test machine is a 3.4GHz Pentium 4 PC
with 1024MB of RAM.

5.1 Methodology
In each of our experiments, we identified the relevant col-

lateral evolutions, wrote the semantic patches, applied these
semantic patches to driver code, and finally assessed the cor-
rectness of the results. In this, we were helped by some re-
cent developments in Linux patch management. The Linux
documentation on submitting patches requests that each
patch contain only one logical change, and this advice has
been largely followed in the recent patches we have studied.
It is thus generally possible to distinguish the patches con-
taining collateral evolutions from the ones containing device-
specific changes. Furthermore, since version 2.6.12, Linux
has used the git version control system, which permits ex-
tracting the versions of the various driver files immediately
before the application of any patch since Linux 2.5.0.3 This
allows us to test the semantic patches without interference
from other changes.

To identify collateral evolutions, we have applied our tool
patchparse [20] to Linux patches, to detect commonly oc-
curring changes. From this information and study of the af-
fected drivers, we have manually identified related changes,
which we have then implemented as a semantic patch. To
test the semantic patch, we have applied it to each of the
driver files in the patches identified by patchparse, in their
state just before the application of the collateral evolution,
and compared the result to the result generated by the (tra-
ditional) patch file. We have ignored whitespace and the
contents of comments, as well as any device-specific changes,
for patches that do not completely follow Linux policy.

5.2 Running example
We begin with the semantic patch presented in Section 3.

As compared to the simplified version of Figure 2, some ex-
tensions to the semantic patch are required to complete the
proc info collateral evolution, in practice. With respect to
the code in Figure 2, we annotate the testing of the re-
turn value of the call to scsi_host_hn_get and the call
to scsi_host_put as optional, as these are not present in
all drivers (indeed the frequent omission of scsi_host_put
was the motivation for the collateral evolution). Some fur-
ther minor additions were required to simulate isomorphisms
that have not yet been implemented in the general case. As
shown in Figure 5, we also extend the semantic patch with
two new rules, rule3 and rule4. Rule3 (lines 1-9) replaces
the use of the hostno parameter by a field access from the
new hostptr parameter, as required by the collateral evo-
lution. In this rule, the SmPL operators <... and ...>

enclose a term which is matched and transformed wherever
and however often it occurs, analogous to the /g modifier of
sed. Finally, rule4 (lines 11-23) adjusts any local calls to
the proc_info function. The resulting semantic patch is 63
lines of code, less than one tenth the size of the (traditional)
patch for these files (692 lines).

Figure 6 lists the 19 files in the Linux kernel source tree
affected by the proc info collateral evolution, the number

3http://git.kernel.org/git/?p=linux/kernel/git/
tglx/history.git;a=summary and http://git.kernel.
org/git/?p=linux/kernel/git/torvalds/linux-2.6.
git;a=summary

1 @ rule3 @
2 identifier rule1.proc info func, rule2.hostno, rule2.hostptr;
3 @@
4 proc info func(...) {
5 <...
6 - hostno
7 + hostptr->host_no
8 ...>
9 }
10
11 @ rule4 @
12 identifier func, hostptr, rule1.proc info func;
13 expression buffer, start, offset, length, inout, hostno;
14 @@
15 func(..., struct Scsi_Host *hostptr, ...) {
16 <...
17 proc info func(
18 + hostptr,
19 buffer, start, offset, length,
20 - hostno,
21 inout)
22 ...>
23 }

Figure 5: The remaining proc info rules

of lines of code in each file, the number of lines of code
in each proc info function, and the time required to trans-
form each file. The semantic patch applies in less than a
second in almost all cases, regardless of the size of the file
or the proc info function, and in less than 2 seconds in the
worst case. Furthermore, running Coccinelle on all the 5838
.c files in the image of Linux from just before the collateral
evolution takes 2 minutes, and correctly updates the 19 rele-
vant driver files. Coccinelle can also take advantage of index
information, as calculated by glimpse [?]. If this informa-
tion is used, it takes only 50 seconds to apply the semantic
patch to the whole kernel.

file proc info Running
LOC LOC time

block/cciss scsi.c 1451 39 0.2s
ieee1394/sbp2.c 2985 66 0.6s
scsi/53c700.c 2028 34 0.3s
scsi/arm/acornscsi.c 3126 113 0.4s
scsi/arm/arxescsi.c 408 29 0.2s
scsi/arm/cumana 2.c 574 32 0.1s
scsi/arm/eesox.c 684 31 0.1s
scsi/arm/powertec.c 486 32 0.2s
scsi/cpqfcTSinit.c 2071 113 0.4s
scsi/eata pio.c 985 62 0.2s
scsi/fcal.c 323 70 0.3s
scsi/g NCR5380.c 936 111 0.9s
scsi/in2000.c 2332 153 1.9s
scsi/ncr53c8xx.c 9481 37 0.9s
scsi/nsp32.c 3524 63 0.4s
scsi/pcmcia/nsp cs.c 1958 113 0.5s
scsi/sym53c8xx.c 14738 38 1.6s
scsi/sym53c8xx 2/sym glue.c 2990 37 0.4s
usb/storage/scsiglue.c 916 70 0.2s

Figure 6: Experiments with proc info

5.3 Mega-collateral evolutions
While some driver support libraries are highly specialized,

others are used by many kinds of drivers spread across the
Linux source tree. Evolutions in such libraries may entail
“mega”collateral evolutions, affecting up to hundreds of files
at thousands of code sites. When such collateral evolutions
are slightly complex, they often exceed the capacity of a

Manual evolution Coccinelle
Evolution Files patch LOC Maint. Duration Miss SP Patch/ Running time Miss %

(change LOC) & Err. LOC SP LOC Avg. (Max.) OK
M1. rename function pci_module_init 180 3171 (400) 21 2 years 0 6 528x 0.4s (2.3s) 1 99%
M2. eliminate the pt_regs parameter 931 30083 (5467) 13 3 months 39 407 74x 1.1s (6.9s) 25 97%
M3. replace kmalloc/memset by kzalloc 556 22789 (4739) 47 1 year 25 309 74x 1.8s (90.0s) 56 90%
M4. constify file_operations structures 140 2569 (426) 4 5 months 2 48 54x 0.2s (0.9s) 0 100%
M5. rename type termios 100 2624 (566) 1 1 day 0 154 17x 0.5s (2.6s) 23 77%
M6. add path substructure 56 1779 (314) 1 1 day 0 16 111x 0.2s (0.9s) 0 100%
M7. change if()BUG(); to BUG_ON(); 82 2323 (517) 3 9 months 5 6 387x 0.3s (1.8s) 0 100%
M8. use ARRAY_SIZE macro 171 5407 (1099) 9 1 year 8 115 47x 1.0s (17.9s) 17 90%
M9. drop \#include<linux/config.h> 1124 44580 (2978) 15 1 year 0 2 22290x 0.2s (2.8s) 35 97%
M10. remove Scsi_Cmnd typedef 24 3508 (688) 3 1 year 0 9 390x 0.4s (1.8s) 4 83%
M11. remove ACPI tracing macros 32 9311 (2252) 3 4 months 1 41 227x 0.2s (0.5s) 1 97%
M12. use the new IRQF_ constants 525 8750 (1548) 3 3 months 0 36 243x 0.4s (10.5s) 0 100%
M13. remove .owner fields 304 3909 (341) 5 2 months 1 39 100x 0.3s (5.2s) 0 100%
M14. remove dev_link_t and client_handle_t 45 9381 (2727) 1 1 day 0 661 14x 4.8s (34.8s) 4 91%
M15. replace MODULE_PARM by module_param 55 1451 (290) 5 10 months 2 113 13x 0.5s (2.9s) 16 71%
M16. reuse existing .owner/.name fields 128 3039 (445) 3 5 months 1 106 29x 0.3s (1.5s) 7 95%
M17. remove unnecessary casts 22 2378 (505) 2 12 days 0 14 170x 0.1s (0.2s) 0 100%
M18. replace kcalloc(1,...) with kzalloc 178 4100 (652) 5 1 year 0 16 256x 0.2s (2.2s) 1 99%
M19. convert dvb_frontend_ops field to

a structure
55 3940 (1266) 1 1 day 1 96 41x 0.3s (1.3s) 8 85%

M20. constify make ethtool_ops structures 100 1814 (316) 1 1 day 0 16 113x 0.3s (2.0s) 2 98%
M21. changes in INIT WORK 245 15445 (3264) 11 1 month 0 493 31x 2.6s (90.0s) 90 63%
M22. use the platform_driver type 97 9784 (2971) 8 1 year 17 210 47x 0.5s (6.1s) 19 80%
M23. rename get_property 59 2553 (313) 1 28 days 0 31 82x 0.2s (0.7s) 1 98%

Figure 7: Mega collateral evolutions

single programmer. Many driver maintainers may end up
applying the collateral evolution, over a long period of time.
Automation and documentation are highly desirable here,
both to speed up the collateral evolution process and to aid
the maintainers of drivers outside the kernel source tree who
have to update their code.

To study the phenomenon of mega collateral evolutions,
we have used patchparse to collect the set of changes that
occur 100 or more times between Linux 2.6.12 and Linux
2.6.20. From these changes, we have identified 35 mega col-
lateral evolutions, of which, due to time constraints, we have
studied 23 in detail, as listed in Figure 7. In each case, we
developed the semantic patch by studying the patterns oc-
curring in only a small subset of the relevant drivers. This
exemplifies the process that would typically be carried out
by a library developer who has to update all affected drivers
across the Linux kernel source tree.

The left side of Figure 7 describes the collateral evolution
process in the manual case. The number of relevant files
ranges from 22 (with many relevant code sites in each file) to
over 1000. The collateral evolutions in these files lead to over
100,000 lines of patch code; the column “patch LOC” gives
the total number of lines of code in a patch affecting a driver
file, including patch code for header files and non-driver files,
as an indication of the number of lines of code that must be
scanned through by a driver maintainer to understand the
collateral evolution, while the column “change LOC” gives
only the number of added and removed lines in the driver C
files, as an indication of the amount of work that is required.
In some cases, the collateral evolutions were all done by
a single person, who submitted all relevant patches within
the same day (although the work was probably done over a
longer period). In other cases, the collateral evolutions were
done by up to over 40 people, who submitted their patches
over a period of up to one or two years. While there are
only 166 maintainers in all, this does not include those who
have to update the drivers outside the kernel source tree.
Indeed, two members of our research group were recently

confronted with the task of updating a third-party driver so
that it would work with the latest version of Linux. Finally,
programmers made errors or missed collateral evolution sites
in several cases, including in 39 files in M2 and in 25 files in
M3.

The right side of Figure 7 describes the collateral evolution
process with Coccinelle. Some collateral evolutions involve
only a uniform renaming or removal of code while others
require considering many variations and interrelated code
fragments that may be scattered throughout the file. Thus,
the semantic patches range in size from two lines to remove
an include file (M9) up to over 600 lines to capture the spe-
cific treatment required for each of a large set of functions
(M14). While Coccinelle times out for three files (in M3 and
M21; we use a timeout of 90 seconds), the average execution
time per .c file that is affected by the semantic patch is only
0.7 seconds. In general, larger semantic patches take more
time, but the complexity of the code, particularly the num-
ber of nested loops in the functions affected by the collateral
evolution, can also have an impact.

For 94% of the files overall, the semantic patch performs
the collateral evolution correctly. In the few remaining files,
the transformation engine overlooks an affected code site,
typically either because of dataflow or interprocedural ef-
fects, for which support is currently limited. M15 and M21
have the lowest percentages of correctly handled files (71%
and 63% respectively). For M15, in many cases it is neces-
sary to reason about whether various top-level entities are
defined before or after each other in the file. Because this
information is not typically relevant to API evolutions, Coc-
cinelle currently treats each top-level element in isolation,
with no information about its position. For M21, which
also has the second-largest semantic patch, there are many
special cases to take into account and the rule is not yet
complete. Nevertheless, in both cases, the documentation
and automation provided by the semantic patch can offer a
good foundation for the remaining manual transformations.

M5, in which the semantic patch updates fewer than 80%

Manual evolution Coccinelle
Evolution Files Patch LOC Miss SP Patch/ Running time Miss % OK

(Change LOC) & Err. LOC SP LOC Avg. (Max.)
C1. rename mem map (un)reserve functions 30 1401 (138) 1 20 70x 0.4s (0.7s) 0 100%
C2. reorganize i2c client structure 20 1593 (377) 7 104 15x 0.3s (0.7s) 0 100%
C3. proc_info 19 2416 (218) 3 63 38x 0.5s (1.9s) 0 100%
C4. add lock in interrupt callbacks 28 851 (327) 7 111 8x 2.7s (29.6s) 8 73%
C5. change agp (un)register driver protocol 11 568 (91) 2 31 18x 0.1s (0.1s) 0 100%
C6. change type of argument in 3 block-related functions 6 385 (23) 1 54 7x 0.2s (0.4s) 0 100%
C7. eliminate fields in BCState structure 15 443 (146) 0 46 10x 0.3s (0.8s) 4 73%
C8. end request(X) becomes end request(CURRENT,X) 28 1716 (350) 2 5 343x 0.6s (6.6s) 1 96%
C9. drop CLEAR INTR statement macro 26 673 (137) 0 34 20x 0.2s (1.0s) 0 100%
C10. rename fields in PStack structure

and getters introduction
24 61892 (613) 3 48 1289x 0.3s (0.8s) 1 96%

C11. change in arguments of usb (de)register dev 9 470 (153) 1 43 11x 0.6s (1.5s) 5 44%
C12. reorganize fields of input dev/gameport structures 55 1260 (544) 4 37 34x 0.1s (0.4s) 4 93%
C13. rename constant macro ATA MAX PRD 6 101 (12) 0 11 9x 0.1s (0.2s) 0 100%
C14. remove pci present() calls in conditions 82 1944 (403) 0 89 22x 3.0s (90.0s) 16 76%
C15. rename and reorganize calls to scsi set pci device 23 383 (59) 1 5 77x 1.0s (9.5s) 0 100%
C16. remove snd magic cast/kmalloc/... calls 165 12278 (2383) 3 66 186x 0.2s (1.2s) 9 95%
C17. rename and reorganize calls to atomic dec 4 140 (26) 4 90 2x 3.7s (7.5s) 0 100%
C18. introducing pci set consistent dma mask 12 283 (44) 1 17 17x 0.3s (0.4s) 0 100%
C19. factorize code via tty wakeup 62 4455 (1197) 16 74 60x 0.5s (1.7s) 9 86%
C20. rename pci alloc/free consistent functions 3 145 (40) 2 8 18x 0.2s (0.3s) 0 100%

Figure 8: Error-prone collateral evolutions

of the drivers correctly, illustrates the potential benefit of
the documentation that Coccinelle provides. This collateral
evolution primarily involves renaming the type termios, but
in 23 files, the library developer additionally added initial-
ization of some structure fields. In another 22 files, the same
conditions appear to hold, but the initialization is not added.
It may be that the code in some other part of the file deter-
mines whether the initialization should be introduced, but
if there are no changes near this part of the code, it will not
be present in the patch file. A semantic patch on the other
hand, specifies all relevant context code and no other, which
can aid the driver maintainer in inferring the conditions un-
der which the collateral evolution should be performed.

5.4 Error-prone evolutions
We next consider some collateral evolutions that have

proved difficult for developers, as evidenced by the errors
that have been introduced. For this, we have used patch-

parse, as described above, to find collateral evolution can-
didates from Linux 2.5 and 2.6. We have furthermore used
grep to check for files that were relevant to the collateral
evolution but overlooked by the developers who created the
patch files. From this analysis, we have identified the 20 col-
lateral evolutions that are listed in Figure 8. As for the mega
collateral evolutions, these range from simple to complex.

In Figure 8, the column “Errors” indicates the number of
driver files in the (traditional) patches where at least one er-
ror occurred. Some collateral evolutions (C7, C9, C13, C14)
have 0 errors as the collateral evolution was performed cor-
rectly for the files in the traditional patch, but some relevant
files were overlooked. Errors are either due to mistakes or
to conflicts with other modifications done concurrently on
the Linux kernel by other developers. Errors that we have
observed include neglecting to delete a local variable that
then shadows an added parameter, adding code that uses
variables that are defined at other collateral evolution sites
but not the current one, neglecting to adjust some uses of
a variable that changes type, deleting too much code, skip-
ping some collateral evolution sites, and introducing syntax
errors.

Overall, in 90% of the driver files, the semantic patch per-
forms the collateral evolution correctly. For one file there is
a timeout, as the number of nested loops causes state explo-
sion in the model checker. The difficulties in the remaining
cases are as for the mega collateral evolutions.

5.5 Updating a complete directory
When the maintainer of a driver that is not inside the

kernel source tree would like to be able to use his driver
with a new Linux version, he has to perform on his own all of
the collateral evolutions that concern his driver, between its
current version and the new one. To simulate this situation,
we consider the problem of updating all of the drivers in
a single directory from Linux 2.6.12 to the recent version
2.6.20. To select the directory, we have applied patchparse

to each of the subdirectories of drivers and sound to obtain
the number of commonly occurring changes found in each
case, and taken drivers/bluetooth, which is at the median,
as representative of the typical case.

The complete set of collateral evolutions affecting the dri-
vers/bluetooth directory are those listed in Figure 9 plus
four others for which we were not able to write semantic
patches, typically because we were not able to fully under-
stand the collateral evolution from the available information.
Of the collateral evolutions affecting bluetooth, seven were
previously identified as mega collateral evolutions, and all
but one of the others are common to a number of other direc-
tories. Developing a library of semantic patches for this di-
rectory thus requires very little directory-specific work, and
a driver maintainer can assume that the semantic patches
have been tested on drivers exhibiting a wide variety of cod-
ing styles. All of the semantic patches apply correctly to all
of the bluetooth files.

6. CURRENT LIMITATIONS
The experiments described in Section 5 show that Coc-

cinelle is expressive enough to specify transformations in-
volving a wide range of C and cpp constructs, and power-
ful enough to apply them to a wide range of driver code.
Despite these good results, we have observed some limita-

Manual evolution Coccinelle
Evolution Files Patch LOC SP LOC Patch LOC/ Running time % OK

(Change LOC) SP LOC Avg. (Max.)
B1. replace kmalloc/memset by kzalloc (M3) 12 224 (46) 309 1x 1.0s (1.6s) 100%
B2. move the pkt_type substructure 11 769 (136) 14 55x 0.2s (0.4s) 100%
B3. adding error return value to config() 4 3046 (60) 137 22x 0.4s (0.5s) 100%
B4. drop #include <linux/config.h> (M9) 12 35470 (12) 3 11823x 0.1s (0.1s) 100%
B5. eliminate the pt_regs parameter (M2) 8 26979 (28) 407 66x 0.4s (0.6s) 100%
B6. unify event and detach handlers 4 3488 (96) 69 51x 0.3s (0.3s) 100%
B7. unify event and attach handlers 4 5201 (182) 107 49x 0.2s (0.3s) 100%
B8. remove dev_link_t and client_handle_t (M14) 4 9381 (192) 661 14x 1.6s (2.2s) 100%
B9. embed dev_link_t into struct pcmcia_device 4 3990 (107) 66 60x 0.2s (0.2s) 100%
B10. introduce skb copy from linear data{ offset} 3 2408 (8) 60 40x 0.3s (0.4s) 100%
B11. release firmware() fixes 1 232 (1) 91 3x 0.2s (0.2s) 100%
B12. make file_operation structures const (M4) 1 990 (2) 48 21x 0.1s (0.1s) 100%
B13. changes in INIT WORK (M21) 1 10705 (7) 493 22x 0.8s (0.8s) 100%
B14. annotate DECLARE WAIT QUEUE HEAD 1 166 (2) 11 15x 0.1s (0.1s) 100%
B15. use bitfield instead of p state and state 4 3341 (39) 141 24x 0.3s (0.4s) 100%
B16. add pcmcia disable device 4 1124 (32) 97 12x 0.2s (0.2s) 100%
B17. default suspend and resume handling 4 1664 (97) 253 7x 0.5s (0.5s) 100%
B18. remove unneeded Vcc pseudo setting 4 1170 (20) 77 15x 0.6s (0.9s) 100%
B19. remove dev list from drivers 4 2130 (72) 32 67x 0.1s (0.1s) 100%
B20. move event handler 4 1179 (24) 22 54x 0.1s (0.1s) 100%
B21. remove .owner field from struct usb driver (M16) 4 1520 (4) 39 39x 0.1s (0.1s) 100%
B22. gfp flags annotations 2 3414 (4) 134 25x 0.3s (0.4s) 100%
B23. Kill skb->list 1 1677 (8) 33 51x 0.1s (0.1s) 100%
B24. transform skb queue len() binary tests

into skb queue empty()
1 830 (4) 79 11x 0.1s (0.1s) 100%

B25. remove references to pcmcia/version.h 4 684 (4) 3 228x 0.1s (0.1s) 100%
B26. convert users to tty unregister ldisc() 1 168 (4) 5 34x 0.1s (0.1s) 100%

Figure 9: Collateral evolutions affecting the bluetooth directory. Patch LOC includes only patches containing
bluetooth files.

tions of Coccinelle that have prevented some of the semantic
patches from applying completely in all cases. We now dis-
cuss the most important of these limitations, and consider
how the partial matches provided by Coccinelle can aid the
driver maintainer in these cases.

Currently, the Coccinelle transformation engine detects
intra-procedural control-flow relationships, but not data-flow
relationships or inter-procedural control-flow relationships.
These relationships need to be taken into account when the
programmer names a complex subterm that is relevant to
the collateral evolution, or breaks a complex function into
multiple helper functions. If the data-flow or interprocedu-
ral control-flow follows a regular pattern, then a transfor-
mation rule can be rewritten to explicitly take this case into
account. For example, the pattern f(g()); can be rewritten
as x=g();...f(x);, where x is a metavariable. But this so-
lution is insufficient for the general case, where an arbitrary
number of aliases are introduced or a computation is broken
into functions at arbitrary points. In other cases, code is
not factorized into another function but into a macro. A
macro can interact in arbitrary ways with its calling con-
text, including referring to local variables and labels. In
our examples, this mainly poses a problem when a semantic
patch relies on type information, as such information is only
available for global variables defined before the macro def-
inition. We are working on adding more general data-flow
and interprocedural control-flow relationships to Coccinelle.

A semantic patch describes code that is to be added by
referring to the code to which it is to be attached. In some
cases, such as the addition of an include file or a structure
field initialization, there may be many valid positions for the
new code, and the human programmer may choose between
them based on aesthetic considerations that are difficult to
encode precisely. This can lead to a proliferation of rules

that consider the many possible cases and that are still not
entirely successful at reproducing the strategy of the pro-
grammer. SmPL already allows a rule to specify that an
include should be added at the end of a list of includes with
a specific prefix, such as linux, which is sufficient in some
cases. For structure field initializations, it may be possible
to extend the language to, e.g., integrate an initialization at
a point that corresponds to the position of the field declara-
tion in the structure type.

Currently, Coccinelle does not transform the contents of
strings, such as those used in debugging. Indeed, strings
tends to be more free form than executable code, and thus
it seems difficult to write transformation rules that are gen-
erally applicable. This can, however, prevent complete ap-
plication of a collateral evolution such as M3 in which a
value is deleted, as it is not possible to remove references to
it in any print statements in which it occurs.

Partial matches. The limitations due to data-flow effects,
inter-procedural effects, and interactions with macros typ-
ically cause a semantic patch not to apply at some rele-
vant sites. If the user believes that a collateral evolution
should be applied in a certain driver, e.g., because the driver
uses the affected API, he can request that Coccinelle pro-
vide information about partial matches. For example, Fig-
ure 10 illustrates a simplified version of the semantic patch
used for collateral evolution M3 and an extract of relevant
driver code. Although the driver code involves the functions
kmalloc and memset that are transformed by the semantic
patch, the semantic patch does not match because the loca-
tion storing the result of calling kmalloc is renamed and the
new name is used in the call to memset. Detecting this case
requires using data-flow information. The partial matches
returned by Coccinelle indicate that a call to kmalloc and

The semantic patch:
@ r @ expression x, E1, E2; @@
- x = kmalloc(E1,E2)
+ x = kzalloc(E1,E2)

...
- memset(x,0,E1);

An extract of drivers/mtd/onenand/onenand_bbt.c:
this->bbm = kmalloc(sizeof(struct bbm_info), GFP_KERNEL);
if (!this->bbm) return -ENOMEM;
bbm = this->bbm;
memset(bbm, 0, sizeof(struct bbm_info));

The resulting partial match:
in rule: r
pattern: x = kmalloc(E1,E2) matches on line: 233
with environment: x = this->bbm, E1 = sizeof(struct bbm_info)

E2 = GFP_KERNEL

pattern: memset(x, 0, E1); matches on line: 239
with environment: x = bbm, E1 = sizeof(struct bbm_info)

Figure 10: kmalloc/memset partial matches

a call to memset were matched, the former with an environ-
ment in which the metavariable x is bound to this->bbm and
the latter with an environment in which the same metavari-
able is bound to bbm. The user is thus informed that this
is a potential matching site, but there is an incompatibility
in the metavariable bindings. He can then either extend the
semantic patch or treat the given driver manually.

7. IMPACT ON LINUX
In addition to reproducing previous collateral evolutions,

we have also developed several semantic patches to complete
collateral evolutions in files that were previously overlooked
and to automate various tasks identified by the Kernel Jan-
itor Project.4 These semantic patches apply not only to
device drivers, but also to files in other Linux subsystems.

We have submitted patches generated using these seman-
tic patches to the Linux community, with the semantic patch
included in the commit log. As we are not kernel develop-
ers, some of our semantic patches did not perform the right
transformations in all situations. In some of these cases,
developers from the Linux kernel mailing list who had no
previous exposure to SmPL were able to read the semantic
patch and propose appropriate corrections.

Several of the patches we have submitted have been ac-
cepted into the latest version of Linux, affecting over 150
files. Others have been accepted into a subsystem main-
tainer’s tree, or lost in the flood of patches submitted to the
kernel. Indeed, it is common for a kernel developer to have
to submit a patch multiple times before it is accepted. A
developer who updates his code manually may have to redo
the changes each time, while when using Coccinelle, we can
simply apply the semantic patches again.

8. RELATED WORK

Influences. The design of SmPL was influenced by a num-
ber of sources. Foremost among these is our target do-
main, the world of Linux device drivers. Linux programmers
manipulate patches extensively, have designed various tools
around them [17], and use its syntax informally in e-mail to

4http://janitor.kernelnewbies.org/

describe software evolutions. Other influences include the
Structured Search and Replace (SSR) facility of IDEA [18],
which allows specifying patterns using metavariables and
provides some isomorphisms, the work of De Volder on JQue-
ry [3], which uses Prolog logic variables for browsing source
code, and the work of Lacey and de Moor on formally spec-
ifying compiler optimizations using CTL [11].

Other work. Refactoring is a generic program transforma-
tion that reorganizes the structure of a program without
changing its semantics [6]. Some of the collateral evolutions
in Linux drivers can be seen as refactorings. Refactorings,
as originally designed, however, apply to the whole program,
while in Linux, the entire code base is not available, as many
drivers are developed outside the Linux source tree. Henkel
and Diwan have also observed that refactoring does not ad-
dress the needs of evolution of libraries when the client code
is not available [9]. Their tool, CatchUp, can record some
kinds of refactorings and replay them on client files. Nev-
ertheless, CatchUp is only implemented in the Eclipse IDE
and only handles a few of the fixed set of Eclipse refactor-
ings.

A number of program transformation frameworks have
recently been proposed, targeting industrial-strength lan-
guages such as C and Java. CIL [19] and XTC [8] are essen-
tially parsers that provide some support for implementing
abstract syntax tree traversals. No program transforma-
tion abstractions, such as pattern matching using repeated
metavariables, are currently provided. CIL also manages
the C source code in terms of a simpler intermediate repre-
sentation. Rewrite rules must be expressed in terms of this
representation rather than in terms of the code found in a
relevant driver. Stratego is a language for writing program
transformations [24]. Convenient pattern-matching is built
in, implying that the programmer can specify what transfor-
mations should occur without cluttering the code with the
implementation of transformation mechanisms. Neverthe-
less, only a few program analyses are provided and others,
such as control-flow analysis, have to be implemented in the
Stratego language. This leads to rules that are very complex
for expressing even simple collateral evolutions.

A number of tools for bug-finding have recently been tar-
geted toward operating systems code, including the work of
Engler et al. [4] and Microsoft’s SDV [1]. These tools gen-
erate reports of possible bugs that the driver maintainer has
to check and correct by hand. Nevertheless, there is no ex-
plicit direction on how to construct the bug fix. To address
this problem, Weimer has proposed to infer automatically
a possible bug fix that both satisfies the verification rule
that prompted the bug report and is close to the code found
in the original source program [25]. While our semantic
patches are directed towards transformation, not bug find-
ing, they do show explicitly how to construct the new code.
Furthermore, when a collateral evolution has already been
done manually, it is possible to detect bugs by applying the
semantic patch to the old code and then comparing the re-
sult to the updated code created by hand.

Analysis tools in Linux. The Linux community has re-
cently begun using various tools to better analyze C code.
Sparse [21] is a library that, like a compiler front end, pro-
vides convenient access to the abstract syntax tree and typ-

ing information of a C program. This library has been used
to implement some static analyses targeting bug detection,
building on annotations added to variable declarations, in
the spirit of the familiar static and const. Sparse-detected
bugs are mentioned regularly in Linux patches. Smatch [22]
is a similar project developed by the Linux kernel janitors
and enables a programmer to write Perl scripts to analyze
C code. These examples show that the Linux community is
open to the use of automated tools to improve code quality,
particularly when these tools build on the traditional areas
of expertise of Linux developers.

9. CONCLUSION
In this paper, we have proposed a transformation tool,

Coccinelle, for documenting and automating device driver
collateral evolutions. Our experiments with the Coccinelle
prototype on 62 collateral evolutions, illustrating a wide
range of situations, demonstrate the practicality of the ap-
proach. In most cases, the semantic patches have been suc-
cessfully applied to the vast majority of the relevant files.
Coccinelle has even identified code sites that were not cor-
rectly updated in the original patches. This merely empha-
sizes the need for improved tool support and more compre-
hensive documentation of collateral evolutions.

Our study shows that it is possible to provide tools that
can help the OS developer manage internal OS evolution in
a easier way, with more confidence. In practice, evolution
in an OS is essential, if it is to keep up with the continuous
evolution of hardware (new buses, new processors, etc.). In
fact, this need for evolution is common to all OSes, however,
the developers of Linux have chosen to face evolution most
directly while others stack layers upon layers leading to an
intricate software architecture. Therefore, we believe that
the use of Coccinelle is not limited to Linux, and could be
envisioned in any systematic evolution process.

As a next step, we plan to design semantic patches to doc-
ument all collateral evolutions in recent versions of Linux.
Such an extensive study will benefit both industrial and aca-
demic developers of dedicated drivers and Linux variants.
We are also investigating other uses of semantic patches, as
guidelines for improving code quality, as API documenta-
tion, and for bug finding.

Acknowledgments
This work has been supported in part by the Agence Na-
tionale de la Recherche (France) and the Danish Research
Council for Technology and Production Sciences.

Availability
Coccinelle, the semantic patches, the default set of isomor-
phisms, and the driver files used in our experiments are avail-
able on our web page:
http://www.emn.fr/x-info/coccinelle/.

10. REFERENCES
[1] T. Ball, E. Bounimova, B. Cook, V. Levin,

J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis
of device drivers. In Eurosys’06 [5], pages 73–85.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[3] K. De Volder. JQuery: A generic code browser with a
declarative configuration language. In 8th
International Symposium on Practical Aspects of
Declarative Languages, pages 88–102, Charleston, SC,
Jan. 2006.

[4] D. R. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In OSDI’00,
pages 1–16, San Diego, CA, Oct. 2000.

[5] The first ACM SIGOPS EuroSys conference (EuroSys
2006), Leuven, Belgium, Apr. 2006.

[6] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[7] A. Garrido. Program refactoring in the presence of
preprocessor directives. PhD thesis, University of
Illinois at Urbana-Champaign, 2005.

[8] R. Grimm. XTC: Making C safely extensible. In
Workshop on Domain-Specific Languages for
Numerical Optimization, Argonne National
Laboratory, Aug. 2004.

[9] J. Henkel and A. Diwan. CatchUp! capturing and
replaying refactorings to support API evolution. In
27th international conference on Software engineering,
pages 274–283, St. Louis, MO, USA, May 2005.

[10] M. Huth and M. Ryan. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge
University Press, 2000.

[11] D. Lacey and O. de Moor. Imperative program
transformation by rewriting. In Compiler
Construction, 10th International Conference, LNCS
2027, pages 52–68, Genova, Italy, Apr. 2001.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in
operating system code. In OSDI’04, pages 289–302,
San Fransisco, CA, Dec. 2004.

[13] LWN. ChangeLog for Linux 2.5.71, 2003.
http://lwn.net/Articles/36311/.

[14] D. MacKenzie, P. Eggert, and R. Stallman.
Comparing and Merging Files With Gnu Diff and
Patch. Network Theory Ltd, Jan. 2003. Unified
Format section, http://www.gnu.org/software/
diffutils/manual/html_node/Unified-Format.html.

[15] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. In USENIX Winter, 1994.

[16] B. McCloskey and E. Brewer. Astec: a new approach
to refactoring c. In ESEC/FSE-13: 10th European
software engineering conference/13th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 21–30, New York, NY, USA, 2005.
ACM Press.

[17] A. Morton. Patch management scripts, Oct. 2002.
http://www.zip.com.au/~akpm/linux/patches/.

[18] M. Mossienko. Structural search and replace: What,
why, and how-to. OnBoard Magazine, 2004.
http://www.onboard.jetbrains.com/is1/articles/

04/10/ssr/.

[19] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In
Compiler Construction, 11th International
Conference, LNCS 2304, pages 213–228, Grenoble,

France, Apr. 2002.

[20] Y. Padioleau, J. L. Lawall, and G. Muller.
Understanding collateral evolution in Linux device
drivers. In Eurosys’06 [5], pages 59–71.

[21] D. Searls. Sparse, Linus & the Lunatics, Nov. 2004.
http://www.linuxjournal.com/article/7272.

[22] The Kernel Janitors. Smatch, the source matcher,
June 2002. http://smatch.sourceforge.net.

[23] L. Torvalds. Linux kernel coding style.
linux/Documentation/CodingStyle.

[24] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in
StrategoXT-0.9. In Domain-Specific Program
Generation, LNCS 3016, pages 216–238.
Spinger-Verlag, 2004.

[25] W. Weimer. Patches as better bug reports. In
Generative Programming and Component Engineering,
pages 181–190, Portland, Oregon, USA, Oct. 2006.

APPENDIX
In this appendix, we give the definitions of the first ten se-
mantic patches described in Figure 8. We have reformatted
and simplified most of the semantic patches to be able to
give a broad overview. The complete semantic patches are
available from our web site.

C1. This semantic patch essentially just replaces one set
of functions by another. The first two rules illustrate how
it is possible to define transformations involving preproces-
sor code. The third rule specifies a disjunction of possible
transformations; the first one that matches is used.

@@ identifier page; @@
- #define cs4x_mem_map_unreserve(page) mem_map_unreserve(page)

@@ identifier page; @@
- #define cs4x_mem_map_reserve(page) mem_map_reserve(page)

@@ expression E; @@
(
- mem_map_reserve(E)
+ SetPageReserved(E)
|
- mem_map_unreserve(E)
+ ClearPageReserved(E)
|
- cs4x_mem_map_unreserve(E)
+ ClearPageReserved(E)
|
- cs4x_mem_map_reserve(E)
+ SetPageReserved(E)
)

C2. In this case, we show only the first rule, which moves a
field from the top-level of a data structure initialization into
a substructure. Because structure initializers are unordered,
the initialization of the field name is removed from wherever
it occurs. An added initialization, on the other hand, has
to be specified adjacent to some syntax element, to which it
will be attached. Here the initialization of the dev field is
specified to be added at the end of the initializer.

@@ identifier I; expression E; @@
struct i2c_client I = {
- .name = E,
...
+ .dev = { .name = E, },
};

C3. This semantic patch appears in Sections 3 and 5.2.

C4. This semantic patch consists of two parts, one to add
locks in interrupt callbacks and another to make some other
transformations that were made at the same time in some of
the files. We show only the code for the former. rule1 iden-
tifies the interrupt function by the structure field in which it
is stored. rule2 finds a particular test and replaces it with
code to take a lock. All locking code within remainder of the
function body is removed, and a unlock is added before any
return. If no return is present at the end of a function, Coc-
cinelle considers that a return; is implicitly present, and
thus unlock is added in that case as well.

@ rule1 @ struct IsdnCardState cs; identifier interrupt; @@
cs.irq_func = &interrupt;

@ rule2 @
identifier intno, dev id, regs, cs;
statement S; identifier rule1.interrupt;
@@
interrupt(int intno, void *dev id, struct pt_regs *regs) {

...
struct IsdnCardState *cs = dev id;
...

- if (!cs) { ... return; }
+ spin_lock(&cs->lock);

<...
(// more kinds of locking are considered in
- spin_lock(...); // the actual implementation
|
- spin_unlock(...);
)

...>
+ spin_unlock(&cs->lock);

return;
}

C5. This semantic patch introduces a new structure value.
The metavariable representing the name of the structure is
declared as a fresh identifier, and thus Coccinelle re-
quests it interactively from the user for each match.

@ rule1 @
fresh identifier agp driver struct; identifier fn, ent, d;
@@
+ static struct agp_driver agp driver struct = {
+ .owner = THIS_MODULE,
+ };
fn (struct pci_dev *d, struct pci_device_id *ent) {

...
(
- agp_register_driver(d);
+ agp driver struct.dev = d;
+ agp_register_driver(&agp driver struct);
|

if (...) {
...

- agp_register_driver(d);
+ agp driver struct.dev = d;
+ agp_register_driver(&agp driver struct);

...
return 0;

}
)

...
}

@@ identifier rule1.agp driver struct; @@
- agp_unregister_driver();
+ agp_unregister_driver(&agp driver struct);

C6. This semantic patch consists of a number of rules, each
considering a different way in which a value of the appro-
priate type may be available. In the last rule, when is used

to skip over all of the declarations, which do not match a
statement metavariable S1, to the first statement.

@@ identifier driver, minor; @@
- set_blocksize(mk_kdev(driver->channel->major, minor),
- CD_FRAMESIZE);

@@ kdev_t x; identifier fn, bdev; expression E; @@
fn(..., struct block_device *bdev, ...) {
<...
(
- block_size(x)
+ block_size(bdev)
|
- set_blocksize(x, E)
+ set_blocksize(bdev, E)
)
...>
}

@@ kdev_t x; identifier bdev; expression E; @@
struct block_device *bdev;
<...

(
- block_size(x)
+ block_size(bdev)
|
- set_blocksize(x, E)
+ set_blocksize(bdev, E)
)

...>

@@ kdev_t dev; fresh identifier bdev; statement S,S1;
identifier bsize; identifier fn; @@
fn(...) {
...

+ struct block_device *bdev = bdget(kdev_t_to_nr(dev));
- unsigned bsize = block_size(dev);
+ unsigned bsize = block_size(bdev);

... when != S1
+ bdput(bdev);

S
...

}

C7. This semantic patch removed some structure field ini-
tializations, and then moves the associated values into the
initializer for another structure.

@r1@ struct BCState *b;struct IsdnCardState *i;identifier f,g; @@
<...
(
- b->BC_SetStack = f;
|
- i->bcs->BC_SetStack = f;
|
- b->BC_Close = g;
|
- i->bcs->BC_Close = g;
)
...>

@r2@ identifier str;struct BCState *b;struct IsdnCardState *i; @@
(
i->bc_l1_ops = &str;
|
b->cs->bc_l1_ops = &str;
)

@@ identifier r2.str, r1.f, r1.g; @@
struct bc_l1_ops str = {

...
+ .open = f,
+ .close = g,
};

@@ struct IsdnCardState *i; @@
(
- i->bcs->BC_SetStack
+ i->bc_l1_ops->open

|
- i->bcs->BC_Close
+ i->bc_l1_ops->close
)

C8. This collateral evolution is quite simple. However, in
the original patch it was applied both to calls to end_request
and to calls to swimiop_send_request, which is completely
unrelated.

@@ expression X; @@
- end_request(X)
+ end_request(CURRENT,X)

C9. The first four rules essentially replace a macro by its
definition. In the third rule a global variable declaration is
inserted after the last include that refers to a non-local file.
The remaining rules remove uses of CLEAR_INTR. The second
to last rule is a special case of this removal which leaves a
single statement in the branch of a conditional. In this case,
the braces are removed as well.

@ rule0 @ expression E; @@
DEVICE_INTR = E

@ rule1 @ identifier X; @@
- #define DEVICE_INTR X

@ depends on rule0 @ identifier rule1.X; @@
#include <...>
+ static void (*X)(void) = NULL;

@@ identifier rule1.X; @@
- DEVICE_INTR
+ X

@ depends on rule0 @ identifier rule1.X; @@
- CLEAR_INTR;
+ X = NULL;

@@ statement S; @@
if(...)

- {
- CLEAR_INTR;

S
- }

@@ @@
- CLEAR_INTR;

C10. In this collateral evolution a collection of structure
fields are renamed. The first rule performs the transforma-
tion required when a structure field reference occurs on the
left hand side of an assignment, and the second rule performs
the transformation required when a structure field reference
occurs in function position. There are seven affected fields.
We show only one, for conciseness.

@@ expression E1, E2; @@
- E1->l1.l1l2 = E2;
+ E1->l2.l1l2 = E2;

@@ expression E1, X, Y; @@
- E1->l1.l1l2(E1, X, Y)
+ L1L2(E1, X, Y)

