
WYSIWIB: A Declarative Approach to Finding
API Protocols and Bugs in Linux Code

Julia L. Lawall,1 Julien Brunel,1∗Nicolas Palix,1 René Rydhof Hansen,2 Henrik Stuart,1 Gilles Muller3
1DIKU, University of Copenhagen, Copenhagen, Denmark

2Aalborg University, Aalborg, Denmark
3EMN/INRIA-Regal, Paris, France

{julia,brunel,npalix,hstuart}@diku.dk, rrh@cs.aau.dk, Gilles.Muller@emn.fr

Abstract

Eliminating OS bugs is essential to ensuring the reliability
of infrastructures ranging from embedded systems to servers.
Several tools based on static analysis have been proposed
for finding bugs in OS code. They have, however, emphasized
scalability over usability, making it difficult to focus the tools
on specific kinds of bugs and to relate the results to patterns
in the source code.

We propose a declarative approach to bug finding in
Linux OS code using a control-flow based program search
engine. Our approach is WYSIWIB (What You See Is Where It
Bugs), since the programmer expresses specifications for bug
finding using a syntax close to that of ordinary C code. The
key advantage of our approach is that search specifications
can be easily tailored, to eliminate false positives or catch
more bugs. We present three case studies that have allowed
us to find hundreds of potential bugs.

Keywords Protocol finding, bug finding, Linux.

1. Introduction

The Linux operating system (OS) is increasingly used
in environments ranging from embedded systems to large
servers. The OS used in such environments must be de-
pendable, even for rarely used hardware types and system
configurations. An important part of such dependability is
the absence of software bugs. Bugs such as invalid pointer
dereferences and memory leaks can lead to system crashes,
possibly long after the buggy code has been executed.

While Linux is considered to be a reliable OS for common
use, there are still situations where a software bug can crash
or hang the complete system. One common kind of bug
is the invalid use of API functions. In the case of Linux,

∗Author’s current address: ONERA, Toulouse, France

API functions defined for use within the Linux kernel are
associated with a variety of usage protocols, describing for
example how error handling should be performed and how
resources should be allocated and freed. Finding bugs in
the use of these API functions requires first identifying the
associated usage protocol and then finding code that violates
it. The Linux OS consists of over 19000 files, and provides
APIs at many levels, ranging from general purpose APIs for
managing memory, locks, files etc., to very specific APIs
for a single device family. Identifying the API functions,
the protocol for their usage, and code that violates these
protocols is thus a daunting task.

In recent years, a number of approaches have been pro-
posed that scan systems code for API protocols and bugs
in their usage [3, 4, 6, 11]. A goal of these approaches has
been to be highly scalable, and by using techniques such
as model checking, statistics, and data mining, it has been
possible to apply these approaches to software of millions of
lines of code such as the Linux kernel. A weakness of these
efforts, however, is that the user can do little to influence
the API protocol-finding and bug-finding strategies. API
usage protocols are detected using complex heuristics that
the user has little control over [3, 6]. Automata-based lan-
guages have been proposed for describing code patterns that
constitute bugs [3], but these specifications do not follow the
code structure. Both of these features make it difficult for the
user to understand why a given code fragment is considered
to be part of a API usage protocol or bug, or is overlooked.
Substantial effort is thus required when using such tools,
in order to identify the inevitable false positives and false
negatives.

In previous work, we have carried out an extensive study
of Linux code, focusing on the impact of API evolutions
[10]. In this study, we have observed that many of the Linux
API usage protocols follow a common pattern, related to
the purpose of the API functions, such as error handling or
managing memory allocation. We thus believe that taking
such patterns into account in the API protocol finding and

bug finding processes can ease the checking of the results
and make it possible to identify protocols for API functions
that are used very rarely, and thus are often overlooked by
statistics-based approaches.

In this paper, we propose a “WYSIWIB” (What You
See Is Where It Bugs) approach to API protocol and bug
finding in Linux code, based on the following steps: 1)
describe a class of API protocols generically, and apply
this description to the Linux source code to collect a set of
possible protocol instances, 2) describe various classes of
bugs that can be found in uses of a given kind of API protocol
generically, and instantiate these descriptions with respect to
the API protocol instances found in step 1, and 3) apply these
descriptions to the Linux source code to collect possible API
protocol violations. This approach directly exploits the user’s
knowledge of the source code and guides the validation
of the reported bugs based on information explicit in the
specification. Our approach is furthermore complementary
to statistics-based approaches, in that it describes what to
search for, while statistics-based approaches consider how
to select from the things that are found.

We have implemented our approach as a collection of
tools based on the Coccinelle transformation engine, that
we have developed in previous work [9]. A key feature of
Coccinelle is that specifications are written using a language
that is based on C code and the patch notation [8], which are
well known to Linux developers.

The contributions of this work are:

• We propose a new approach to finding API protocols in
Linux code, iteratively refining them, and using them to
find bugs. This approach chiefly builds on Coccinelle,
but provides some new tools.

• We present in detail a case study illustrating the use
of our approach for finding API protocols and bugs.
This case study involves general-purpose, widely used
classes of API protocols, relating to error handling.

• In our experiments, we find over 3000 potential API
protocols, with estimated false positive rates of under
15%.

• Based on these API protocols, we have used our ap-
proach to find 360 bugs that we have validated. Over
30 of these bugs have subsequently been fixed in Linux,
either by ourselves or others.

All of the experiments in this paper are based on a snap-
shot of Linux dated March 11, 2008,1 and were run on an
HP ProLiant server with two 3GHz quad-core Xeon pro-
cessors and 16GB memory. Verifying the sites reported in

1baadac8b10c5ac15ce3d26b68fa266c8889b163f in the git reposi-
tory http://git.kernel.org/git/?p=linux/kernel/git/
torvalds/linux-2.6.git;a=summary. All subsequent git codes
refer to this repository.

our experiments has involved studying tens of thousands
of lines of Linux code. Details about these experiments
that could not fit into the paper are available at our website:
http://www.emn.fr/x-info/coccinelle/bugs.

The rest of this paper is organized as follows. Section 2
reviews the aspects of Coccinelle that are necessary to un-
derstand this work. Section 3 describes our API protocol-
finding and bug-finding methodology. Section 4 presents
a case study, illustrating the processing of a common kind
of API protocol. Section 5 presents the results of two other
case studies. Section 6 surveys some current limitations of
our approach. Finally, Section 7 describes related work and
Section 8 concludes.

2. Coccinelle

Coccinelle is a tool for performing control-flow based
program searches and transformations in C code [2, 9]. It
provides a language, SmPL, for specifying searches and
transformations and an engine for performing them. In this
paper, we write SmPL code for defining semantic matches,
which are used for code searching. We present SmPL in
terms of a simple semantic match inspired by a case study
reported in Section 5.

The semantic match shown in Fig. 1 detects cases where
a value allocated using the Linux netlink memory alloca-
tion function nlmsg new is deallocated using the generic
deallocation function kfree skb. Such a deallocation is
undesirable, because the netlink library defines its own deal-
location function nlmsg free. The semantic match con-
sists of two rules: the first (lines 1-5) is named bad kfree
and is written in SmPL, and the second (lines 7-8) is written
using the SmPL interface to Python. Each rule begins with
the declaration of a collection of metavariables, and then
follows with either a C-code like pattern specifying a match
in the case of a SmPL rule, or ordinary Python code. In the
rest of this section, we describe each of these rules in more
detail, and present some other features of SmPL.

1 @bad kfree exists@ expression x,E; position p; @@
2
3 x = nlmsg new(. . .)
4 . . . when != x = E
5 kfree skb@p(x);
6
7 @ script:python @ x << bad kfree.x; p << bad kfree.p; @@
8 print "line: %s x: %s" % (p[0].line,x)

Figure 1. A semantic match searching for cer-
tain uses of kfree skb

The rule bad kfree defines three metavariables (line
1): x and E, which represent arbitrary expressions, and p,
which represents an arbitrary position in the source pro-
gram. Metavariables are bound by matching the code pattern

against the C source code. The notation @p binds the po-
sition variable p to information about the position of the
preceding token. Once bound, a metavariable must have the
same value within the current control-flow path, and thus,
for example, the occurrences of x on lines 3, 4, and 5 must
all match the same expression. The code pattern (lines 3-5)
consists of essentially C code, mixed with some operators to
raise the level of abstraction, so that a single semantic match
can apply to many code sites. The main abstraction oper-
ator is “...,” representing a sequence of terms. In line 3,
“...” represents the arguments of nlmsg new and in line
4 “...” represents the sequence of statements reachable
from a call to nlmsg new along any control-flow path. By
default such a sequence of statements is quantified over all
paths (e.g., over all branches of a conditional), but the anno-
tation exists next to the rule name indicates that for this
rule there need be only one. It is also possible to restrict the
kinds of sequences that can match “...” using the keyword
when. Line 4 uses when to indicate that there should be no
reassignment of x before reaching the call to kfree skb.

A SmPL rule only applies when it matches the code com-
pletely. Fig. 2 shows an extract of C code that uses the
function nlmsg new. The rule bad kfree matches the call
to nlmsg new on line 1 and the call to kfree skb on
line 9. The metavariable x is bound to the expression skb,
which occurs in both calls. The metavariable p is bound to
various information about the position of kfree skb, such
as the file name, line number, etc.

1 skb = nlmsg new(neigh nlmsg size(), GFP ATOMIC);
2 if (skb == NULL)
3 goto errout;
4
5 err = neigh fill info(skb, n, 0, 0, type, flags);
6 if (err < 0) {
7 /* -EMSGSIZE implies BUG in neigh nlmsg size() */
8 WARN ON(err == −EMSGSIZE);
9 kfree skb(skb);

10 goto errout;
11 }

Figure 2. Extract of net/core/neighbour.c.
Code matched by bad kfree is in italics.

A Python rule does not match against the source program,
but instead inherits metavariables from other rules and does
some processing of their values [12]. In this work, we only
use Python for printing out information about the found
protocols and bugs. Due to space constraints, we do not go
into more detail about these rules.

In the more general case, a semantic match can consist of
any number of rules, each of which can inherit metavariables
from any previous ones. A rule is applied once for each
possible set of values of the inherited metavariables. Besides
“...”, SmPL provides nests, <...pat ...>, and disjunc-
tions, (pat1| . . .|patn). A nest matches a sequence, like

“...”, but additionally can match zero or more occurrences
of pat within the matched sequence. A nest of the form
<+...pat ...+> matches one or more occurrences of
pat. A disjunction matches any of the patterns pat1 through
patn. We will present other features of SmPL as needed.

Convention In the examples, we use “...” for the Coc-
cinelle operator and [...] to represent omitted code. In
particular, we frequently replace Python code by [...]; in
such rules, the significant part is the list of inherited metavari-
ables, which indicates what will be printed.

3. The Bug-Finding Process

There are many sources of information for finding bugs.
One can study bug reports [7], notice a suspicious coding
pattern while doing some other work on the code, or learn
from sources such as code comments [13] or newsgroups
about coding protocols that programmers may sometimes
overlook. The problem then is to turn this awareness of
the potential for bugs into actual bug detection. Typically,
bug finding depends highly on chance, as the person who is
aware of the protocol must be looking at the specific code
containing the bug and have the protocol in mind at that
time. The goal of this work is to enable a programmer who
becomes aware of a potential pattern of bugs in protocol
usage to easily and systematically search for instances of
this pattern throughout the code base, and to explore variants
of the pattern as they become apparent.

3.1. An experience in bug finding

To motivate our approach, we begin with a real story
drawn from our experience in finding bugs in Linux code. In
December 2007, a patch,2 shown in Fig. 3, was submitted
to Linux. This patch was based on the observation that the
function netif rx could free its argument, and that thus it
was not safe to refer to its argument after calling the function.
The developer had found and fixed the problem in one file.
We saw this patch and wondered whether there could be
other calls to the same function that have the same property.
We thus created a semantic match for detecting such calls,
shown in Fig. 4a. This semantic match matches a call to
netif rx followed by a dereference of the argument.

This semantic match found 2 bugs in Linux 2.6.24-rc5. In
the process of validating them, however, we found that the
function netif rx ni also had the same property. We thus
augmented the semantic match as shown in Fig. 4b to allow
it to match calls to either function (lines 6-10). The resulting
semantic match found 5 occurrences of this pattern that have
been acknowledged as bugs by the Linux developers. Our

2Git code d30f53aeb31d453a5230f526bea592af07944564.

--- a/drivers/net/smc911x.c
+++ b/drivers/net/smc911x.c
@@ -1299,9 +1299,9 @@

PRINT_PKT(skb->data, skb->len);
dev->last_rx = jiffies;
skb->protocol = eth_type_trans(skb, dev);

- netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;

+ netif_rx(skb);

spin_lock_irqsave(&lp->lock, flags);
pkts = (SMC_GET_RX_FIFO_INF()&RX_FIFO_INF_RXSUSED_)>>16;

Figure 3. A standard patch fixing one in-
stance of the netif rx problem

1 @r exists@
2 expression skb,e,e1;
3 position p;
4 identifier fld;
5 @@
6
7 netif rx(skb)
8 . . . when != skb = e
9 skb@p−>fld

10
11 @ script:python @
12 skb << r.skb; p << r.p;
13 @@
14 [. . .]

1 @r exists@
2 expression skb,e,e1;
3 position p;
4 identifier fld;
5 @@
6
7 (
8 netif rx(skb)
9 |

10 netif rx ni(skb)
11)
12 . . . when != skb = e
13 skb@p−>fld
14
15 @ script:python @
16 skb << r.skb; p << r.p;
17 @@
18 [. . .]

(a: original semantic match) (b: extended semantic match)

Figure 4. Semantic matches finding netif rx
problems

corrections for 4 of these bugs have been accepted into the
Linux kernel.3 The function containing the remaining bug
site is no longer part of Linux.

This episode clearly highlights how a flexible searching
tool such as Coccinelle can find bug patterns more efficiently
and completely than a human programmer. But still, it does
not go far enough. Rather than accidentally finding another
function that follows the same protocol as one that caused
a bug, one would like to be able to find all of the functions
that follow that protocol, and then create a bug finding rule
for each of them. Indeed, it can be useful to iterate this pro-
cess, instantiating a collection of semantic match templates
according to a set of protocols, where each template either
expresses a bug finding rule or collects more information.

3.2. Tools

We have developed a collection of tools based on Coc-
cinelle to support an iterated protocol finding and bug

3Git codes 299f590f26da9764f20e905879f0090552ff2e86,
505a41d43c24345f3fa77ddab152d1f82dd8264d, and
9b3efc0133a807070dbd21254102995b65969965.

finding process. This process, illustrated in Fig. 5, uses
four tools: Search, Instantiate, MakeBugReport,
and MultiSearch. Search, MakeBugReport, and
MultiSearch use Coccinelle in various ways, while
Instantiate is separate. We describe these tools below.

MakeBugReport MultiSearch

Instantiate
....

Instantiate

....

Collected
Info

Bug
Report

BugSM1' BugSM1'' BugSM1''' ProtSM1' ProtSM1'' ProtSM1'''

Instantiate Instantiate

Collected
Info

Search

ProtSM Linux

Linux

Linux

BugSMTemp3BugSMTemp2

BugSMTemp1 ProtSMTemp1

Figure 5. Protocol and bug-finding process

Search The protocol and bug finding process begins when
the programmer has an idea of a certain kind of function
or collection of functions, such as netif rx, whose usage
may be error prone. He expresses this idea as a protocol-
finding semantic match ProtSM that expresses various prop-
erties of the kind of code he is interested in and uses Python
to print relevant information about the matched terms. Fig.
6 illustrates such a semantic match, which detects any func-
tion that, like netif rx, may use kfree skb to free its
argument without having reassigned it first. The Python
code prints information about these functions in the format
expected by Instantiate, which consumes the result of
Search. The first field of this output is a tag that charac-
terizes this match. Multiple tags may be used to separate
various kinds of matched code into categories, as required
in Section 4. The remainder of the output is a sequence of
key-value pairs. By convention, we write the key in capital
letters. The value is typically some part of the matched code,
often the name of a matched function that was found to have
some property with respect to the protocol. For the semantic
match in Fig. 6, the output might contain, e.g.:
kfree_skb: FN:handle_ing TY:struct sk_buff *
kfree_skb: FN:netif_rx TY:struct sk_buff *
kfree_skb: FN:dev_queue_xmit TY:struct sk_buff *

After having developed the protocol-finding semantic
match, the programmer gives it to Search, which uses
Coccinelle to apply it to each file of the Linux kernel. The
results are collected in a single output file. The programmer
may inspect this result to assess its accuracy. If it contains

1 @ kfree exists @ identifier f,x; type T; expression E; @@
2
3 f (. . .,T x,. . .) { . . . when != x = E
4 kfree skb(x); . . . }
5
6 @ script:python @ f << kfree.f ; t << kfree.T; @@
7 print "kfree_skb: FN:%s TY:%s" % (f,t)
8

Figure 6. A protocol-finding semantic match,
to start the protocol and bug finding process

entries that do not correspond to valid protocols or it is
missing some protocols that the programmer is otherwise
aware of, then he can refine the semantic match to eliminate
these false positives and false negatives.

Instantiate Having obtained information about a collec-
tion of protocols from the initial protocol-finding semantic
match, the programmer then considers what kinds of bugs
are relevant or what other information might be needed to
find bugs. For each case, he writes a semantic match tem-
plate, which is a semantic match that is parameterized by
the various keys used in reporting the result of the previous
step. He then applies Instantiate to the semantic match
template, the result of the initial protocol-finding semantic
match, and a tag. The result is a collection of semantic
matches, one for each element of the result of the previous
step that is associated with the tag.

Fig. 7 illustrates a semantic match template that is used
to find bugs. It performs the same search as the previous
one, but this time an occurrence of a function h is considered
to be a bug. The information printed by such a semantic
match should be in the form expected by an emacs mode that
we have developed, based on the emacs org mode.4 Our
emacs mode allows one to jump directly from a bug report
to the relevant fragment of code in the Linux source tree.
Key words can be highlighted in color, according to their
purpose within the semantic match. This emacs mode makes
it significantly easier to validate the reported potential bugs.

1 @ r @ TY E; expression E1; position p,p1; @@
2
3 FN(. . .,E@p,. . .)
4 . . .
5 (E = E1 | E@p1)
6
7 @ script:python @ p << r.p; p1 << r.p1; @@
8 cocci.print main(p)
9 cocci.print secs("ref",p1)

Figure 7. A semantic match template for bug
finding

Semantic match templates can also be constructed to
4http://orgmode.org/

search for further information. In this case, the template
prints its result using the key-value pair notation of Fig. 6.

MakeBugReport and MultiSearch MakeBugReport
is used to search for bugs based on a collection of instan-
tiated semantic match templates. It takes as input a collec-
tion of semantic matches produced by Instantiate, uses
Coccinelle to apply each of them to the Linux kernel, and
collects the result into a bug report for further processing
with emacs. MultiSearch is similar, for semantic match
templates that search for further information. In either case,
examining the results may cause the programmer to refine
the corresponding semantic match template or reveal new
kinds of bugs that are relevant to the protocol, for which new
semantic match templates can be developed.

4. Case Study: Inconsistent Error Checks

We now present a case study illustrating our methodol-
ogy. This case study focuses on error handling. The C
programming language does not provide any built-in error
handling mechanism, and thus applications must define their
own protocols for detecting and handling exceptional condi-
tions. In Linux OS code, pointer-typed functions typically
return either NULL, a value constructed with ERR PTR,5 or
both to indicate failure. The frequency of use of each of
these strategies across the various directories of the Linux
kernel is shown in the graph below (in some directories,
these strategies are too rarely used to be visible in the graph).
Code calling a function that may fail must then perform ap-
propriate tests before dereferencing the result. Performing
insufficient or inappropriate tests can lead to invalid pointer
dereferences that can crash the Linux kernel. We thus con-
sider how to classify functions in terms of the error checking
protocols that callers must follow and how to find various
kinds of bugs in their use.

ar
ch

bl
oc

k
cr

yp
to

dr
iv

er
s fs

in
cl

ud
e

in
it

ip
c

ke
rn

el lib m
m ne

t
sa

m
pl

es
sc

ri
pt

s
se

cu
ri

ty
so

un
d

us
r

vi
rt

0

500

1000

1500

of

 f
un

ct
io

ns

functions returning NULL
functions returning ERR_PTR

4.1. Protocol detection

For protocol detection, we use a semantic match that
separates functions into the following categories: 1) Func-

5ERR PTR is a macro that coerces an error flag to a pointer. For con-
ciseness, we refer a value constructed with ERR PTR as just “ERR PTR”.

tions that indicate an error only by returning NULL; 2) Func-
tions that indicate an error only by returning ERR PTR; 3)
Functions that may indicate an error using either NULL or
ERR PTR; 4) Functions that always return a valid pointer
(i.e., a pointer that can safely be dereferenced).

To motivate the strategies used by our protocol finding
semantic match, we consider the Linux functions simple -
alloc urb and clk get shown in Fig. 8. Relevant code
is highlighted in italics. As illustrated by lines 8 and 25,
a function may explicitly return NULL or ERR PTR, or, as
illustrated in lines 14 and 17, it may store such values in some
variable and then return the value of that variable. Often,
however, the return value is derived from a more complex
expression, typically a function call, about which we have
no direct information. Nevertheless, it may be possible to
infer some information about such an expression from the
uses of its value. For example, in line 10, the conditional
test implies that the variable urb is NULL at the point of the
return, and in line 15, the dereference of urb means that
its value can subsequently be assumed to be a valid pointer.
These observations allow us to conclude that simple -
alloc urb is in category 1. Similar observations allow us
to identify functions in the other categories. For clk get,
however, we do not have enough information to classify the
function, due to the function call in line 24. In this case, we
classify the function as unknown.

1 // from drivers/usb/misc/usbtest.c
2 static struct urb *simple alloc urb (
3 struct usb device *udev,
4 int pipe, unsigned long bytes)
5 {
6 struct urb *urb;
7
8 if (bytes < 0) return NULL; // explicit null
9 urb = usb alloc urb (0, GFP KERNEL);

10 if (!urb) return urb; // null inferred from test
11 . . .
12 if (!urb−>transfer buffer) {
13 usb free urb (urb);
14 urb = NULL;
15 } else memset (urb−>transfer buffer, 0, bytes);
16 // null or valid pointer inferred from assignment or dereference
17 return urb;
18 }
19
20 // from arch/powerpc/kernel/clock.c
21 struct clk *clk get(struct device *dev, const char *id)
22 {
23 if (clk functions.clk get)
24 return clk functions.clk get(dev, id);
25 return ERR PTR(−ENOSYS);
26 }

Figure 8. Functions returning error codes.

We now consider how to write a semantic match that ex-
ploits these intuitions. It is used in the role of “ProtSM” at the
root of Fig. 5. The semantic match first rewrites the program
to make the information implied by NULL and IS ERR tests
explicit. For example, line 10 of Fig. 8 becomes if(!urb)

1 @rn exists@
2 identifier relevant.f,fld; position prelevant.pf,ret null,e null;
3 expression E,E1;
4 @@
5
6 f @pf (. . .) { . . . when any
7 (
8 return@ret null NULL;
9 |

10 E@e null = NULL
11 . . . when != (E=E1 | E−>fld)
12 return@ret null E;
13)
14 }

Figure 9. Finding NULL returns

{urb = NULL; return urb;}. The rest of the se-
mantic match is in three phases, of which the main rules
are shown in Figs. 9 to 11.

Phase 1: finding known return values The first phase
finds functions that somewhere return NULL, ERR PTR, or
a valid pointer. The rule for the NULL case, shown in Fig. 9,
checks that a function contains either an explicit return of
NULL (line 8) or an assignment of some expression to NULL
followed by a return of that expression (lines 10-12). The
position of such a return is saved in the variable ret null
for reference in subsequent rules. The annotation when any
in line 6 allows any code to appear between the beginning of
the function and the matched return or assignment; without
this annotation, the “...” would match the shortest path
from e.g. the beginning of the function body to the first
assignment matching E = NULL, whereas we want the
assignment that is closest to the return.

Phase 2: finding unknown return values This phase
finds cases where a return value is derived from an expres-
sion that is not NULL, ERR PTR or an explicit pointer, and
that is never dereferenced. We have no information about
such expressions, and so a function returning such a value
must be in the category unknown.

Fig. 10 shows the rule br implementing this phase. This
rule considers two cases, represented by the disjunction on
lines 8-16. The first disjunct (lines 9-12) matches the case
where the returned expression is initialized in an assignment
that does not match one of the assignments found in rules
rn (Fig. 9), re, or rp (the analogues for ERR PTR and valid
pointers), and this assignment is not followed by a derefer-
ence or a reassignment of the returned value. The second
disjunct (lines 14-15) matches the case where the returned
expression is a variable that is never dereferenced or initial-
ized. Such a variable is assumed to be global or a parameter,
that is initialized to an unknown value. In both cases, the
position of the returned expression is recorded in the variable
bad return to indicate that its value is unknown.

1 @br exists@
2 identifier relevant.f,E3!={NULL},fld; position prelevant.pf ;
3 position p2 != {rn.e null,re.e err,rp.e ptr}, bad return;
4 expression E,E1,E2;
5 @@
6
7 f @pf (. . .) {
8 (
9 . . . when any

10 E@p2 = E1
11 . . . when != (E−>fld | E = E2)
12 return E@bad return;
13 |
14 . . . when != (E3−>fld | E3 = E2) // parameter/global variable case
15 return E3@bad return;
16)
17 }

Figure 10. Finding unknown return values

Phase 3: classifying the functions The four rules shown
in Fig. 11 use the information collected in phases 1 and 2
to classify a function as category 1. Similar rules identify
functions in category 2. Category 3 functions are those
that were found to return NULL somewhere and ERR PTR
somewhere in phase 1. Category 4 functions are those that
were found to always return a valid pointer in phase 1. Other
pointer-typed functions are considered unknown.

We consider only the rules for category 1 in detail. The
rule precat1 identifies functions where the position of every
return has been stored in phase 1 in either the variable
ret null or the variable ret ptr. For each return it
furthermore checks that the position of its argument was not
also stored in the variable bad return in phase 2. Next,
the rule cat1 checks that at least one return NULL; or
assignment to NULL is under a conditional. We have found
that in other functions, the return of NULL is typically only
there to satisfy the type checker of the C compiler, and is
dead code in practice. Finally, the last rule prints out the
name of each function that satisfies cat1.

Experimental results The table below shows the result of
applying Search to the above semantic match, in terms
of the number of pointer-typed functions that are classified
into each category. In each case except unknown, we have
manually checked the classification of every function. The
few false positives derive from the inadequate interpretation
of the values tested by conditionals. In the case of category
1, the false positives are typically in cases where the return
value can actually be unknown. For category 3, most of
the false positives are actually in category 2, since the val-
ues of conditional tests imply that a NULL return value is
impossible.

classified false positives
category 1 1640 9
category 2 478 1
category 3 112 9
category 4 623 5
unknown 7123 N/A

1 @precat1 depends on rn && !re@
2 identifier relevant.f ; position prelevant.pf ;
3 position any rn.ret null; position any rp.ret ptr;
4 position p != br.bad return; expression E;
5 @@
6
7 f @pf (. . .) { . . . when strict
8 (return@ret null E@p; | return@ret ptr E@p;)
9 }

10
11 @cat1 depends on precat1 exists@
12 identifier relevant.f ; position prelevant.pf ;
13 position any rn.ret null, rn.e null; expression E; statement S;
14 @@
15
16 f @pf (. . .) {
17 <+. . .
18 if(. . .) { <+. . . (return@ret null E; | E@e null = NULL) . . .+> }
19 else S
20 . . .+>
21 }
22
23 @ script:python depends on cat1 @
24 f << relevant.f ; pf << relevant.pf ;
25 @@
26 print "category1: FN:%s" % f

Figure 11. Classifying the functions

Approaches based on data mining or statistics infer proto-
cols from frequently occurring patterns of usage [3, 6]. The
graph below shows that many of the category 1-3 functions
that we have classified are only rarely called directly, and
thus would be likely to be missed by data-mining based ap-
proaches. Some functions are indicated as never being called
because they are only used as the value of a function pointer.

0 1 2 3 4 5 6 7 8 9 10-19 20-29 30-247

of calls (n)

0
200
400
600
800

1000

of

 f
un

ct
io

ns
 w

it
h

n
ca

lls

4.2. Bug finding

Both inappropriate and insufficient error-handling tests
are undesirable. We write bug-finding semantic match tem-
plates for each case, and instantiate them with respect to the
functions identified in the protocol-finding phase.

Inappropriate tests Fig. 12 shows a semantic match tem-
plate to be used in the role of BugSMTemp for finding in-
appropriate tests for each category 1 function, FN. The rule
match detects the case where an expression x is assigned the
result of calling FN (line 3) and then tested using IS ERR
(line 5). This check, however, is not sufficient, because there
may be some other value of this expression that can reach
the test, via another execution path, and it might be legiti-
mate to test this other value for IS ERR. The second rule,

other match, detects an initialization of x that is at a different
position from any one matched in the first rule (line 11), as
required by the constraint on the position metavariable p1
(line 8). Finally, the Python code, which prints the result, is
triggered only if the first rule matches and the second one
does not (line 15). The semantic match template for category
2 functions is similar, but checks for NULL tests.

1 @match exists@ expression x, E; position p1,p2; @@
2
3 x@p1 = FN(. . .)
4 . . . when != x = E
5 IS ERR(x@p2)
6
7 @other match exists@
8 expression match.x, E1, E2; position p1!=match.p1,match.p2;
9 @@

10
11 x@p1 = E1
12 . . . when != x = E2
13 IS ERR(x@p2)
14
15 @ script:python depends on !other match@
16 p1 << match.p1; p2 << match.p2; @@
17 [. . .]

Figure 12. Finding inappropriate tests

The table below shows the result of applying MakeBug-
Report to this semantic match template, in terms of the
number of potential bug sites found and the number of false
positives. A potential bug site is a single function call for
which there is at least one inappropriate test match. 28 poten-
tial bug sites are reported in all. There are 7 false positives
for category 2; one is due to a limitation in Coccinelle’s
treatment of variable declarations that initialize more than
one variable, three are due to confusion between multiple
functions with the same name but different return types, and
the remainder are due to inadequate interpretation of values.
For category 4, 16 of the false positives are due to a con-
fusion between a category 4 function and a non-category 4
macro with the same name. All of the bugs for categories 1
and 2 have been corrected, either by ourselves or others.

reported sites bugs false positives
category 1 2 2 0
category 2 26 19 7
category 4 44 23 21

The code below illustrates a bug found with the semantic
match template for category 2 functions. When the call
on line 2 returns ERR PTR, control jumps to the out label
(line 5). There the result of the call is retested, but for being
non-NULL (line 6). This test succeeds, because ERR PTR is
different from NULL. The subsequent dereference (line 6),
then crashes the kernel, because aaci is an invalid pointer.

1 // aaci probe in sound/arm/aaci.c
2 aaci = aaci init card(dev);
3 if (IS ERR(aaci)) { ret = PTR ERR(aaci); goto out; }
4 [. . .]
5 out:
6 if (aaci) snd card free(aaci−>card);

Insufficient tests We have also developed semantic match
templates to find insufficient tests, such as when there is
no NULL test between a call to a category 1 function and
a dereference of the returned value. These semantic match
templates are available on our website (cf. Section 1).

The table below shows the result of applying MakeBug-
Report to the semantic match templates for finding insuf-
ficient tests, in terms of the number of potential bug sites
found and the number of false positives. A potential bug
site is a single function call for which the result is some-
where dereferenced without a prior required check. 233
potential bug sites are reported in all, of which most are for
category 1 functions. We have manually verified all of the
reported bugs. In all there are 72 false positives, with again
most being for category 1. The causes for the false positives
vary. A common cause is that some other value is tested,
and the result of this test implies that the value returned by
the category 1 function cannot be NULL. This could be ad-
dressed by integrating a dataflow analysis into Coccinelle.
Another common cause is that a previous NULL test uses a
subsystem-local abort operator, such as FAIL, and the se-
mantic match does not recognize this as breaking the control
flow. Information about such operators could be collected
using our protocol-finding strategy. Correcting these bugs
often requires creating error-handling code, which can be
non-trivial. Thus, we have submitted few patches to Linux
based on these bugs reports. Nevertheless, over half of the
category 2 bugs have been fixed, by ourselves or others.

reported sites bugs false positives
category 1 201 139 62
category 2 21 17 4
category 3 11 5 6

The code below shows an example of a typical bug found
with the semantic match template for category 1 functions.
This code calls the function alloc ctrl packet (line
2), which calls the generic memory allocation function
kzalloc and returns NULL if the memory allocation fails.
In this case, the dereference in line 6 will crash the kernel.

1 // ipw send setup packet in drivers/char/pcmcia/ipwireless/hardware.c
2 ver packet = alloc ctrl packet(
3 sizeof(struct ipw setup get version query packet),
4 ADDR SETUP PROT, TL PROTOCOLID SETUP,
5 TL SETUP SIGNO GET VERSION QRY);
6 ver packet−>header.length =
7 sizeof(struct tl setup get version qry);

5. Other Experiments

We now present our results for two other case studies:
one on the use of functions involved in resource allocation
and another generalizing the netif rx example.

Allocation and deallocation functions Linux code con-
tains many functions that allocate and deallocate resources.
Often these are wrappers around generic allocation functions,

such as kmalloc, that additionally perform service-specific
initializations. In this case study we identify such functions,
and find bugs in their usage.

In contrast to the protocol-finding semantic match pre-
sented in Section 4, which considers function definitions,
here the protocol-finding semantic match focuses on a spe-
cific pattern of function calls, namely a first call that returns
a pointer typed value that is compared to NULL, to detect
failure of the allocation, and then a second call that deallo-
cates the value before the enclosing function returns an error
value. This strategy can detect allocation functions that do
not call a known allocation function, such as kmalloc, di-
rectly. Nevertheless, it can lead to false positives, as accessor
functions and functions that search for an element within a
list can be used in a similar way. We thus refine the semantic
match to consider only cases where the same deallocation
function is used consistently within a given file and where
the fields of the allocated value are always initialized be-
fore being referenced. This strategy identifies 304 pairs of
allocation and deallocation functions.

Due to the complexity of many allocation and dealloca-
tion functions and the lack of relevant documentation, we
have not checked all of the returned pairs. Instead, we have
focused on those that cause bugs to be reported in the bug-
finding phase. Of these, 39 are false positives. We expect
that the actual number of false positives should be similar,
as an invalid protocol is not respected by most call sites, and
thus leads to bug reports.

The bug finding semantic match template is similar to
the protocol finding semantic match, except that it reports a
bug whenever the allocated data is not stored or freed before
leaving the function with an error value. As shown in the
table below, this semantic match reports 261 possible bugs,
of which we have judged that 141 are real bugs, and 120 are
false positives. We have begun submitting corresponding
patches to the Linux community. Many of the false positives
are due to cases in which one of a small set of functions
is used to either store a certain type of allocated data in
some way or to deallocate it, implying that no deallocation
is needed before returning. While the generic bug finding
rule does not give good results for this type of data, it could
easily be extended to take into account these cases.

reported sites bugs false positives
alloc/dealloc 261 141 120

Bug detection inspired by the netif example The third
case study is motivated by the example presented in Section
3. The essential feature of the bug that was originally found
was that the function netif rx could free its argument, and
that thus it was not safe to refer to its argument after calling
the function. Because use after free is a general problem,
we write a semantic match to find functions that possibly or
definitely free some argument, and then a semantic match

template to find calls to such function that are followed by a
dereference of that argument.

The table below summarizes the number of bugs and false
positives found. Most of the false positives are where the
identified function FN decrements a reference count and pos-
sibly frees its argument. At some calls to FN, the reference
count is known to be greater than 1, and thus the decrement
cannot cause the argument to be freed.

reported sites bugs false positives
guaranteed free 10 5 5
possible free 22 9 13

6. Current Limitations

Coccinelle was originally designed to perform program
transformations. Although our approach has found many
bugs in Linux code, our case studies have also revealed some
limitations of Coccinelle for protocol and bug finding. These
include the lack of an interprocedural analysis, the lack of
a dataflow analysis, and the need to make some kinds of
inferred information explicit in the code.

In our experience, semantic matches to find bugs often
start out simple, e.g., with the idea that a call to an allocation
function should be followed by a call to a deallocation func-
tion along all paths. They must then be refined, to eliminate
any identified false positives and false negatives. These re-
finements may entail working around the above limitations,
such as making the propagation of values explicit by match-
ing both variable initializations and variable uses (cf., Section
4), to get around the lack of a built-in dataflow analysis.

We have begun the development of a simple dataflow anal-
ysis that can be used to propagate ranges of integer values,
as is needed for detecting array bounds errors [12]. Never-
theless, such program analyses are necessarily approximate.
If the user does not understand the limitations of the anal-
ysis, he may find it more difficult to see how to refine the
semantic match to improve the result. Thus, there is a trade-
off between the current approach in which the action of the
semantic match is expressed explicitly in its implementation,
and a more implicit approach based on a range of more or
less powerful program analyses. We plan to investigate this
tradeoff in future work.

7. Related Work

Engler et al. [3] initiated the idea of using a checker
that is neither sound nor complete to provide the scalability
needed to find bugs in systems code. The checker uses rules
expressed as automata, that have a structure quite different
from C code. Engler et al. [4] also proposed to search for
protocols in the form of pairs of functions that occur together
frequently. Their approach tends to find a very large number
of candidate protocols, on which statistics are used to select

the most likely. There is no opportunity for the user to
interject his understanding of the code structure. Later work
uses automata to characterize the behaviors of typical classes
of protocols, and then the user can participate in assigning
specific functions to roles in such an automaton [5]. But
the specifications remain distant from the source code. This
work is not publicly available for comparison with related
projects.

Li and Zhou use data mining to collect sets of terms that
often occur together, and thus identify a number of complex
protocols in Linux and other open source systems [6]. Ra-
manathan et al. show that including path sensitivity in this
process significantly improves precision [11]. These tools
are not publicly available. Coccinelle semantic matches also
take into account control-flow paths. While the protocols we
have detected in the case studies in this paper involve essen-
tially only two operations, more complex protocols could
be detected by writing more complex semantic matches. In
contrast to a data mining based approach, in our approach
the programmer must be aware of the basic structure of the
protocol, but we can exploit this property to ease the protocol
and bug validation process.

Weimer and Necula [14] propose an approach similar to
that of Engler et al. [4], but they focus on execution paths
that include error-handling code, which gives them both a
smaller set of potential protocols and a smaller set of false
positives. In our second case study, we have also found
it useful to focus on the kinds of code that occur in error-
handling. Our use of this code is tailored via the SmPL
code to the class of protocol being considered, rather than
following a fixed strategy as in Weimer and Necula’s work.

The Static Driver Verifier (SDV) [1], developed at Mi-
crosoft, uses model checking to prove that certain bugs do
not occur in systems code. Specifications amount to au-
tomata describing invalid behaviors. These automata are
expressed in a C-like notation, but do not follow the structure
of the code to be processed. Because SDV gives a guarantee
of correctness, rather than just finding potential bugs, it is
more expensive than the aforementioned approaches. It is
thus better suited to being applied to individual drivers rather
than to an entire operating system.

8. Conclusion and Future Work

In this paper, we have presented a framework for search-
ing for protocols and bugs in Linux code. A principal goal
of this framework is to allow users to quickly and easily
interject their understanding of the code structure into the
protocol and bug finding process. Our framework is based
on the use of the Coccinelle transformation tool that pro-
vides a specification language that is close to C code. We
have complemented Coccinelle with a collection of tools for
managing a series of searches that allow a uniform approach

to protocol and bug finding, based on strategies encoded by
the user. We are currently submitting patches based on our
results to the Linux developer community.

Coccinelle is unique among the tools used for protocol
and bug finding that we know of in that it supports program
transformation, via semantic patches. This makes it possible
to specify not only how to find bugs but also how to fix
them. For some of our examples, such as replacing the use
of a generic deallocation function by a specific one, the
change is very systematic and developing a semantic patch
is straightforward. More work is necessary, however, to
identify larger classes of bugs that can be fixed automatically.

Availability Coccinelle is available at
http://www.emn.fr/x-info/coccinelle/

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In Eurosys, pages
73–85, Leuven, Belgium, Apr. 2006.

[2] J. Brunel, D. Doligez, R. R. Hansen, J. Lawall, and G. Muller.
A foundation for flow-based program matching using tem-
poral logic and model checking. In 36th Principles of Pro-
gramming Languages (POPL), pages 114–126, Savannah,
GA, USA, Jan. 2009.

[3] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written com-
piler extensions. In OSDI, pages 1–16, San Diego, CA, USA,
Oct. 2000.

[4] D. R. Engler, D. Y. Chen, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in
systems code. In SOSP, pages 57–72, Banff, Canada, Oct.
2001.

[5] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler.
From uncertainty to belief: Inferring the specification within.
In OSDI, pages 161–176, Nov. 2006.

[6] Z. Li and Y. Zhou. PR-Miner: automatically extracting im-
plicit programming rules and detecting violations in large
software code. In 10th European Software Engineering Con-
ference, pages 306–315, Lisbon, Portugal, 2005.

[7] Lkml: The Linux kernel mailing list. http://www.tux.
org/lkml/.

[8] D. MacKenzie, P. Eggert, and R. Stallman. Comparing and
Merging Files With Gnu Diff and Patch. Network Theory Ltd,
Jan. 2003.

[9] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Docu-
menting and automating collateral evolutions in Linux device
drivers. In Eurosys 2008, pages 247–260, Glasgow, Scotland,
Mar. 2008.

[10] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding
collateral evolution in Linux device drivers. In Eurosys, pages
59–71, Leuven, Belgium, Apr. 2006.

[11] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-
sensitive inference of function precedence protocols. In 29th

International Conference on Software Engineering, pages
240–250, Minneapolis, MN, USA, 2007.

[12] H. Stuart. Hunting bugs with Coccinelle. Master’s thesis, Uni-
versity of Copenhagen, Copenhagen, Denmark, Aug. 2008.

[13] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment: bugs
or bad comments*/. In SOSP, pages 145–158, Stevenson,
WA, USA, Oct. 2007.

[14] W. Weimer and G. C. Necula. Mining temporal specifica-
tions for error detection. In Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS),
volume 3440 of Lecture Notes in Computer Science, pages
461–476, Edinburgh, UK, Apr. 2005.

