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Abstract—Logging is a common and important programming
practice, but choosing how to log is challenging, especially in
a large, evolving software code base that provides many logging
alternatives. Insufficient logging may complicate debugging, while
logging incorrectly may result in excessive performance overhead
and an overload of trivial logs. The Linux kernel has over 13
million lines of code, over 1100 different logging functions, and
the strategies for when and how to log have evolved over time. To
help developers log correctly we propose a framework that will
learn existing logging practices from the software development
history, and that will be capable of identifying new logging
strategies, even when the new strategies just start to be adopted.

I. INTRODUCTION

Logging is the programming practice of inserting statements
in the source code to collect and report run time information.
This run time information is typically useful for debugging,
especially of rare events, which makes logging popular and
makes it important for software reliability. In order to log
effectively a developer must choose an appropriate position
in the source code for the logging statement, a severity level
e.g. warning or error, the correct logging function, and how
much to log. Deficient logging may leave the user with
insufficient information about the program execution, making
debugging difficult, while logging incorrectly may result in
unintended consequences such as performance overhead and
may overwhelm the person trying to understand a problem
with redundant information. Thus, developers working on
large code bases usually face two distinct, but related problems
when deciding how to log: there is no complete specification
on how to log, and it is challenging to learn how to log
properly, as it involves domain knowledge.

The Linux kernel is an open source operating system with
over 13 million lines of C code. In the source code of
Linux 4.2, released in August 2015, there are eight logging
severity levels, 1,124 logging functions, and 268,156 calls
to logging functions. Of the 1,124 logging functions, 81
were not present in Linux 3.16, released around one year
previously. While there are 4,396 files in the Linux kernel
documentation directory, only two of them contain at least
one section that explains how to log properly. An alternative
source of information on the latest programming practices,
including how to log properly, is the development history of
the Linux kernel. Developers may use the history for finding

recent changes to existing code, and for finding recently added
modules. The development history of the Linux kernel has
535,011 commits since 2005, and 54,827 commits in the
last 12 months. The speed at which Linux evolves makes it
challenging for developers to stay up-to-date with the latest
practices.

Recognizing the difficulty of correct logging, Zhu et al. [1]
propose a machine learning framework that learns the common
logging practices on where to log from existing logging
instances in the source code of large C# user space software.
The framework guides developers by suggesting where to log,
via the integrated development environment (IDE). Zhu et al.
identified the important factors for determining where to log
and extracted features from the source code to satisfy their
findings. However, the problems of determining the correct
logging function, determining the correct severity level, and
keeping up to date with the conventions of a fast-changing
code base, all of which are particularly relevant to the Linux
kernel, remain open.

We propose a framework that learns existing logging prac-
tices from features extracted from the software development
history, with the goal of enabling our methodology to detect
programming practice trends, e.g. API changes, before the
new practice becomes widely adopted. We will apply our
framework to the development history of the Linux kernel
for making suggestions of where to insert logging statements,
which logging function to use, and which severity level to use.

Our work proposes to extend previous work by detecting
programming practice trends, and by making suggestions of
the logging function and severity level to use. Our work will
also be different from previous work in terms of the source
used for extracting features: we propose to extract features
from the development history, and weight the features by age,
while previous work only considered the latest version of a
code base.

In this paper we present only our preliminary work, focusing
on the motivation and methodology of our approach. We leave
a complete design, implementation and evaluation for future
work.

II. BACKGROUND

Logging in the Linux kernel is challenging at two main lev-
els. The first challenge is to determine where to log. Here, the



developer must take into account the interaction between the
overhead of logging and the stringent performance constraints
of some parts of an operating system kernel. The second
challenge is to determine how to log. Here, the developer has
to carefully choose the right logging function and the right
severity level, to ensure that the information provided will be
helpful but not overwhelming. We examine these issues in
more detail in the rest of this section.

Performance constraints (where to log): One of the main
requirements on operating system code is that it be unob-
trusive. Thus logging, which incurs a performance overhead,
can be incompatible with critical execution paths, such as
the processing of high speed network traffic. As a concrete
example of the difficulty of choosing where to log and the
performance consequences of logging in the wrong place, we
consider the Linux BCM4706 ethernet driver1 of which an
extract is shown in Figure 1. This driver contains three badly
placed logging function calls, of which one is shown in the
final if statement of Figure 1 (lines 31-32). The if condition
shown here (line 30) is the same at all three logging calls, and
is related to the hardware properties of the device. Thus, if one
of the tests is true, then they are all true, and they are all true
for every processed packet. We found that the execution time
overhead caused by emitting these three logging messages per
network packet caused the driver throughput to slow down
by 37.93 times, from 4.4MBps to 116KBps. The first author
has submitted a fix for this issue, which has been accepted
into the Linux kernel.2 This example shows that logging
must be done only when it is absolutely needed, and that
it should be limited to code that is not performance critical.
Performance constraints, however, are not always explicit in
the source code, making correctly localizing logging code hard
for developers.

Debugging challenges (how to log): A general challenge
at the kernel level is debugging itself, because of the high de-
gree of concurrency between processes and interrupts, because
of the lack of the runtime support required to use conventional
debuggers, and because of the close interaction with hardware,
which itself can have unpredictable behavior. These factors
can make error conditions difficult to reproduce, implying that
it is essential that any log messages that are produced be
comprehensive and unambiguous. These issues in turn have
led to evolution in the Linux kernel logging API, and have
resulted in a huge number of different logging functions with
different properties.

The top of Figure 2 shows the growth in the number of
Linux kernel logging functions over the last roughly 10 years,
from Linux 2.6.12 released in 2005 to Linux 4.2 released in
2015. During that period, the number of logging functions
increased by 3.42 times. This increase mirrors the increase in
the number of lines of source code, which has grown by 3.17
times in the same period, as shown in the bottom of Figure 2.
As the kernel indeed continues to grow, we may expect that the

1drivers/net/ethernet/broadcom/bgmac.c
2Linux kernel commit 8edfe3b6.

1 static int bgmac_dma_rx_skb_for_slt(struct bgmac *bgmac,
2 struct bgmac_slot_info *slot)
3 {
4 struct device *dma_dev = bgmac->core->dma_dev;
5 dma_addr_t dma_addr;
6 struct bgmac_rx_header *rx;
7 void *buf;
8

9 /* Alloc skb */
10 buf = netdev_alloc_frag(BGMAC_RX_ALLOC_SIZE);
11 if (!buf)
12 return -ENOMEM;
13

14 /* If poison ok, hardware will overwrite */
15 rx = buf + BGMAC_RX_BUF_OFFSET;
16 rx->len = cpu_to_le16(0xdead);
17 rx->flags = cpu_to_le16(0xbeef);
18

19 /* Map skb for the DMA */
20 dma_addr = dma_map_single(dma_dev, buf +
21 BGMAC_RX_BUF_OFFSET,
22 BGMAC_RX_BUF_SIZE, DMA_FROM_DEVICE);
23 if (dma_mapping_error(dma_dev, dma_addr))
24 ...
25

26 /* Update the slot */
27 slot->buf = buf;
28 slot->dma_addr = dma_addr;
29

30 if (slot->dma_addr & 0xC0000000)
31 bgmac_warn(bgmac,
32 "DMA address using 0xC0000000 bit(s)...\n");
33

34 return 0;
35 }

Fig. 1. Logging causing performance problems
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Fig. 2. Number of logging functions and number of lines of code

number of logging functions will also keep growing, further
complicating the logging choices facing the developer.

Among the more than 1,000 logging functions provided
by the Linux kernel in its most recent release, we can
distinguish between a small set of generic logging functions,
complemented by a huge collection of logging functions that
are dedicated to a particular service, such as a particular device
driver or a particular file system. The original kernel logging
function, which was already present in Linux 1.0 in 1994, was
printk, which was accompanied by a family of 8 macros
representing different severity levels. These severity levels
allow the developer to globally turn on or off log messages
with various degrees of criticality, to address performance
considerations and to avoid overloading the kernel logs with
too much information. Starting in 1996, a new set of API



/* XFS logging functions */
static void __xfs_printk(const char *level,

const struct xfs_mount *mp, struct va_format *vaf)
{
if (mp && mp->m_fsname) {
printk("%sXFS (%s): %pV\n", level, mp->m_fsname, vaf);
return;

}
printk("%sXFS: %pV\n", level, vaf);

}

#define define_xfs_printk_level(f, kern_level) \
void f(const struct xfs_mount *mp, const char *fmt, ...)\
{ \

struct va_format vaf; \
va_list args; \

\
va_start(args, fmt); \
vaf.fmt = fmt; \
vaf.va = &args; \
__xfs_printk(kern_level, mp, &vaf); \
va_end(args); \

} \

define_xfs_printk_level(xfs_emerg, KERN_EMERG);
define_xfs_printk_level(xfs_alert, KERN_ALERT);
define_xfs_printk_level(xfs_crit, KERN_CRIT);
define_xfs_printk_level(xfs_err, KERN_ERR);
define_xfs_printk_level(xfs_warn, KERN_WARNING);
define_xfs_printk_level(xfs_notice, KERN_NOTICE);
define_xfs_printk_level(xfs_info, KERN_INFO);
#ifdef DEBUG
define_xfs_printk_level(xfs_debug, KERN_DEBUG);
#endif

Fig. 3. Logging functions of the XFS module

functions, with names like pr_debug and pr_info, started
to be introduced with the severity level built in. Today, 93 such
functions are available for different classes of kernel services,
such as device drivers (e.g,, dev_dbg) or network device
drivers (e.g,, netdev_dbg). Specific services may in turn use
these logging API functions to define service-specific logging
functions that encapsulate the logging of various service-
specific information. The latter functions are typically both
defined and used in a single module. For example, Figure 3
shows the logging functions defined by the XFS file system.
These logging functions support a variety of severity levels
and make it possible to systematically include environment
information such as the module name and the mount point
used by the file system, when this information is available.

The difficulty of choosing among the available logging
functions is further compounded by their changing usage over
time. Figure 4 shows the evolution in the use of logging
functions, again over roughly the last 10 years. In the figure,
the lower three lines represent the rate of calls, i.e., the number
of calls per line of code, to printk (dashed and dotted red),
to the generic logging API functions (“new api”, solid blue),
which we recognize as those logging functions beginning with
the prefixes pr_, ata_, dev, fs_, hid_, net, or v4l,
and to all other logging functions (“others”, dotted grey). The
upper line (“total”, dashed black) indicates the rate of any of
these calls. We observe that consistently around half (51.84%
in Linux 4.2) of the calls are to printk or the generic API
functions, while the other half (48.16% in Linux 4.2) are to
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Fig. 4. Number of calls to logging functions per SLOC

Fig. 5. Our tool

the service-specific functions. However, the rate of use of the
generic API functions, which was initially almost nonexistent,
has been steadily growing, while that of printk, which was
initially highly prevalent, has been steadily shrinking. Finally,
we can also observe that the overall rate of logging calls is
decreasing slowly, reducing by 9.26% in the last 10 years.
This may suggest that there are contexts in which logging is
no longer needed or no longer desired, further complicating
the task of the developer.

III. METHODOLOGY

The goal of our tool is to provide relevant information to
help developers decide when to log, which severity level to
use, and which logging function to use, focusing on error
paths. We are designing our tool to be a patch and file
verification tool, as might be used in a commit hook of a
source code management system such as git. An overview
of the usage of our tool is shown in Figure 5. Our tool takes
as input a patch or file, and then passes this patch or file
to the feature extraction pipeline, shown in detail in Figure
6. The obtained features are then used to query a previously
trained model that returns a log label. The log label represents
the set of logging decisions, including when to log, which
logging severity level to use, and which logging function to
use. Finally, the inferred log label is compared to the current
logging properties of the code, and fixes are proposed for any
inconsistencies.

In the rest of this section, we describe the model training
process. The result of the training process can be saved for
reuse and can be shared to simplify and speed up the use of
our tool.

A. Machine Learning Overview

Figure 6 shows our feature and label extraction frame-
work, which represents a typical supervised machine learning



Fig. 6. Feature and label extraction framework

pipeline [2]. The goal of the machine learning process is to
construct a model that is able to label data elements based on
their features. Features and labels are representations of the
data that must be created to feed the model training process.
A feature represents one attribute of the data, such as the error
code returned in the error path of a function. A label represents
a property of the data, such as the need to log the code snippet.
The combination of all features extracted from one instance
of the data makes up a training example, and the label of that
data instance represents the knowledge the model is learning.

Our training framework, as illustrated in Figure 6, has three
parts, the dotted line divides the graph into three data repre-
sentation spaces: data space, feature space, and classification
category. The data space contains the Linux kernel source
code, patches and meta data, all provided by the Linux kernel
git repository. Git is the source code management system
used by the Linux kernel, and makes available all of this
information. The feature space shows the processing pipeline
of the features extracted from data using the Coccinelle C-code
matching and transformation engine [3]. The classification
category contains the log label, representing the name of the
logging function and the log severity level. The log label is also
extracted from the data using Coccinelle. Finally, the circle in
the lower right of Figure 6 represents the model being trained
with a set of features and a label. We use the J48 decision tree
algorithm provided by Weka [4] for training the model.

B. Finding the logging functions

Choosing a label for a given code fragment in the training
phase relies critically on knowing whether the code fragment
includes logging code. Zhu et al. [1] in their work on user-
level C# code have identified logging functions by searching
for some relevant keywords in method names. This, however,
seems potentially insufficient for the wide variety of logging

functions used in the Linux kernel. A possible alternative
solution would be to unfold function and macro definitions for
calls that contains string parameters, and verify the presence
of calls to basic printing functions such as printk. We
have found, however, that non-logging functions may also
contain calls to printk-like functions, and thus this approach
may result in false positives. We thus decided to rely on
properties of call sites rather than names or function and macro
definitions for finding logging functions.

Our methodology for finding logging functions combines
three semantic patterns. The first is that the function should
be called at least once on an if branch ending in a return
statement, representing a typical value-error-check scenario.
However, many other functions such as resource release func-
tions and recovery operations are called in the same way,
making this criterion not sufficient. The second pattern is that
the function should have at least one argument that is a string
constant, which we expect will represent the message string.
Again, this pattern is not exclusive to logging functions; for
example, we have observed that functions like strcmp (string
comparison) may also be used according to this pattern. The
third pattern is that the function should have a variable number
of arguments, which is common to printf like functions, but
is also not exclusive to logging functions. We found that none
of these patterns alone produces a list with a low number of
false positives, but the combination of the three produces very
good results. We used Coccinelle [3] to describe the patterns,
and to extract the function names.

C. Features

In this section we will describe our feature extraction and
processing pipeline which is used during the model training
and by our tool.

Zhu et al. [1] identified important factors for determining
where to log in large user space software written in the
object-oriented language C#. They identified three categories
of source-code features representing the attributes of error
paths that are relevant for logging: structural features, textual
features, and syntactic features. Structural features refer to
the structure of the source code, including the error type,
or the exception type, and the methods and functions called.
Textual features represent the code as flat text attributes for
classification using a bag-of-words model in which the features
are the frequency of occurrence of each word. Syntactic
features capture eight semantic patterns from the source code,
such as the number of called methods and functions.

The Linux kernel is written in the C language, which is
not object-oriented, but it makes heavy use of object-oriented
concepts such as classes and methods, implemented mostly
through the use of structures and pointers. This has made it
possible to create a mapping between the features defined by
Zhu et al. [1] and the features that are found in the Linux
kernel. Many of Zhu et al.’s features could be adapted directly,
such as using functions instead of methods, but we added a
feature named entry point, and we removed a feature named
EmptyCatchBlock.



An entry point is a pointer to a function associated with an
event. The Linux kernel activates the entry point in response
to a known event such as the user requesting a file open
operation. Entry points are widely used in the Linux kernel,
and all functionalities provided by modules such as device
drivers and file systems are registered in the Linux kernel
through the declaration of entry points. We added entry points
to the structural and textual features because knowing the
entry points that lead to a particular fragment of code, poten-
tially interprocedurally, is essential to understanding the code
fragment’s functionality. In the case of EmptyCatchBlock,
another difference is the lack of recognizable try-catch-throw
exception handling in the Linux kernel and consequently the
lack of empty catch blocks as a particular feature. We use
Coccinelle to extract features from the source code.

We apply a set of feature selection and noise handling
techniques before training the model to increase the accuracy
of the suggestions of our tool. As our approach is similar to the
approach used by Zhu et al. [1], we do not include a detailed
description of this process due to space limitations.

D. Labels

The label represents the knowledge that the model is learn-
ing: where to log, which logging function to use and which
logging severity label to use. The label plays a somewhat
different role when training the model, where it is part of the
training data, and when using the tool, where it is the result
produced by the model.

When training the model, the label is chosen based on the
presence of a call to a logging function in the data. Our
training framework infers the label automatically, based on
the set of logging functions identified as described in Section
III-B. For the cases in which there is no call to a logging
function, the label is not logged. For the cases in which
a call to a logging function is present, the label encapsulates
the function name and the logging severity level. The logging
severity level is determined by following the call graph of the
logging function until reaching a call to a logging function
that explicitly includes a log level, such as KERN_WARNING.

When using the tool, as illustrated in Figure 5, only the
features are used to query the machine learning model. The
model then produces a label that represents the correct logging
decision for that set of features. However, a label is also
extracted from the data, as done in the training phase, to
identify the current state of logging in the code. This extracted
label is then compared to the label inferred by the model.
If the labels are identical, it means that the logging strategy
taken by the patch or file is already correct. If they differ,
however, it means that the logging performed by the patch or
file can be improved, and we are designing our tool to emit a
fix suggestion.

IV. THREATS TO VALIDITY

In the current state of our work, the main threat to validity is
an internal threat to validity, in the correctness of our strategy
for identifying logging functions. This identification strategy

determines how our model is trained, and thus the correctness
of its results. To address this threat, we have carefully studied
the list of identified logging functions, and cross checked it
against the results of other more approximate strategies, such
as searching for certain kinds of substrings in function names,
to ensure that no obvious candidates are overlooked.

V. RELATED WORK

The work most closely related to ours is that of Zhu et
al. [1] on providing logging suggestions for C# code that
we have already described extensively. ErrLog [5] is a tool
with similar goals that has been applied to various user-
level infrastructure software and that tries to recognize error
conditions and ensure that all are logged. Other tools that have
been developed around logging include an empirical study of
logging practices in open-source software [6], LogEnhancer
that extends existing log messages with relevant information
[7], and SherLog for helping developers effectively use infor-
mation in log messages to guide debugging [8].

Various machine-learning approaches have been applied to
improving the quality of Linux kernel code, including the work
of Engler et al. [9] on identifying bugs from deviant code
patterns, and an extension of that work by Li and Zhou [10].
Our work, in contrast, specifically targets logging, and uses
specific properties of logging code.

VI. CONCLUSION

In this paper, we have identified the unique features and
challenges of correct logging at the operating system kernel
level, exemplified by the Linux kernel, and we have proposed
a machine-learning based methodology for helping developers
make correct logging decisions. In the future, we plan to
complete and implement our methodology, and evaluate our
approach on the recent history of Linux kernel code.
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