
This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-931971-44-7

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Coccinelle: 10 Years of Automated Evolution
in the Linux Kernel

Julia Lawall and Gilles Muller, Sorbonne University/Inria/LIP6

https://www.usenix.org/conference/atc18/presentation/lawall

Coccinelle: 10 Years of Automated Evolution in the Linux Kernel

Julia Lawall
Sorbonne University/Inria/LIP6

Gilles Muller
Sorbonne University/Inria/LIP6

Abstract

The Coccinelle C-program matching and transformation
tool was first released in 2008 to facilitate specification
and automation in the evolution of Linux kernel code.
The novel contribution of Coccinelle was that it allows
software developers to write code manipulation rules in
terms of the code structure itself, via a generalization of
the patch syntax. Over the years, Coccinelle has been ex-
tensively used in Linux kernel development, resulting in
over 6000 commits to the Linux kernel, and has found its
place as part of the Linux kernel development process.
This paper studies the impact of Coccinelle on Linux
kernel development and the features of Coccinelle that
have made it possible. It provides guidance on how other
research-based tools can achieve practical impact in the
open-source development community.

1 Introduction

Today, everyone uses the Linux kernel, whether on a mo-
bile phone (86% of the smartphones sold in the first quar-
ter of 2017 were running Android [22]), in the cloud
(at the end of 2016, 92% of virtual machine instances
on Amazon’s Elastic Compute Cloud (EC2) were run-
ning Linux), or on a supercomputer (at the end of 2017,
all of the top 500 supercomputers were running Linux
[63]). To support these diverse computing environments,
the size of the Linux kernel has been steadily growing,
reaching 16.5 million lines of code in the recently re-
leased version 4.15 (Jan. 2018). Furthermore, the exist-
ing source code of the Linux kernel is continually chang-
ing, with around 13,000 commits per release recently, to
improve security, performance or maintainability, as well
as to provide support for new services such as new kinds
of devices, file systems, or hardware architectures.

A stumbling block in this continual revision of the
Linux kernel is that ultimately some developer has to
modify the source code. Developers have limited time,

may not fully understand what a given change entails,
and are prone to making mistakes, particularly when
changes affect many code sites, pervasively, across mul-
tiple kernel subsystems. These problems are further
compounded by the fact that the Linux kernel has a
widely dispersed and very diverse set of developers,
ranging from core maintainers, with many years of expe-
rience, to occasional contributors, to developers of out-
of-tree code who do not participate in the Linux kernel
developer community. Indeed, while over 1700 develop-
ers have contributed to each recent release, in each case a
third or more of these developers have contributed only a
single patch to that release. A potential solution is to for-
mally specify changes and automate them. To be used in
practice, such an approach must fit with the background
and habits of the developers themselves.

The Coccinelle C-program matching and transforma-
tion tool was first released in 2008 to facilitate specifi-
cation and automation of the evolution of Linux kernel
code [44]. Coccinelle was built around the observation
that Linux kernel developers already have a precise no-
tation for describing changes with which they are very
familiar, the patch [36]. A patch is an extract of source
code in which some lines are annotated with - or + in-
dicating that the line should be removed or added, re-
spectively. All contributions to the Linux kernel pass in
the form of patches through mailing lists where they are
commented on by other developers, and thus developers
are used to seeing and understanding them. Exploiting
this background of kernel developers, Coccinelle is de-
signed around a domain-specific language (DSL), SmPL
(Semantic Patch Language), for expressing changes in
terms of an abstracted form of patch, referred to as a se-
mantic patch. Unlike a patch, which is tied to specific
lines and files in the source code, a single semantic patch
can update all relevant locations in the entire code base.

Today, Coccinelle has been under development for 12
years. 59 semantic patches are part of the Linux kernel
source tree, and over 6000 Linux kernel commits, includ-

USENIX Association 2018 USENIX Annual Technical Conference 601

ing 900 from Linux kernel maintainers, use Coccinelle.
Coccinelle retains as a guiding principle the notion of
an abstracted patch. Nevertheless, it has grown, both
in terms of expressiveness and to improve performance,
based on lessons learned from the experiences of Linux
developers and other users. At the same time, it has suc-
cessfully integrated into the Linux kernel community.

Coccinelle has been used in previous research [30,
31, 34, 46]. This paper instead focuses on its evolution
and impact. We examine its initial design (Sec. 2), and
how that design has been refined in response to experi-
ence with the tool and feedback from users (Sec. 3). We
then evaluate performance (Sec. 4) and the benefit of our
expressivity extensions (Sec. 5), quantify the impact of
Coccinelle in the Linux community (Sec. 6), and give an
overview of its wider use (Sec. 7). Finally, we present
some related work (Sec. 8) and conclude (Sec. 9), with
lessons learned about dissemination of a research tool.

2 Initial Design of Coccinelle

Coccinelle development began in 2006. It was first made
publicly available in binary in 2007 and in open source
in 2008. We first review the original design decisions for
Coccinelle, in terms of goals, expressivity, performance,
correctness guarantees, and dissemination.

2.1 Goals
Coccinelle was initially designed to solve a specific prob-
lem, that of porting Linux device drivers from Linux
2.4, a previous stable version, to stable version Linux
2.6, which had been released shortly before the start of
the project. The initial design was motivated by an ear-
lier paper on collateral evolutions in the Linux kernel
[45], i.e., evolutions needed in API clients in response to
changes in the API interface. The examples from that pa-
per showed that to automate Linux kernel collateral evo-
lutions it would be necessary to support transformations
on scattered parts of the source code with various kinds
of connections between them, including intraprocedural
control-flow paths with specific properties. As a small
research project could not encode the entire porting ac-
tivity, these kinds of connections, derived from program-
analysis concepts, would need to be expressed in a way
that would be accessible to Linux driver developers, who
could carry on the work. Targeting driver developers fur-
thermore implied that Coccinelle would have to allow the
user to reason about the code as it is shown to him, with-
out simplification to an internal representation, and that
it would have to treat a very large subset of C constructs,
including various gcc extensions, according to the needs
of arbitrary Linux kernel device driver code. Finally,
the generated code would have to retain the structure of

1 @ rule1 @
2 identifier fn, irq, dev_id;
3 typedef irqreturn_t;
4 @@
5 static irqreturn_t
6 fn(int irq, void *dev_id)
7 { ... }

8 @@
9 identifier rule1.fn;

10 expression E1, E2, E3;
11 @@
12 fn(E1, E2
13 - ,E3
14)

Figure 1: The first semantic patch submitted to Linux

the original source code, including comments and white-
space, to ensure the code’s continuing maintainability.

2.2 Design decisions affecting expressivity

Coccinelle provides a transformation language SmPL
(Semantic Patch Language) and an engine for applying
SmPL semantic patches to C code. SmPL was con-
ceived as a code pattern-matching language, mimicking
the patch syntax. A SmPL semantic patch consists of a
series of rules, analogous to patch hunks, each provid-
ing a code pattern to match or transform. Patterns are
comprised of concrete syntax, “. . . ”, and metavariables.
Concrete syntax matches itself, “. . . ” matches a possibly
empty sequence of arbitrary terms, e.g., the list of state-
ments between two other statements, and metavariables
match arbitrary terms of a particular type. Metavariables
are declared in a rule header and are used as ordinary
variables in the pattern, to make the patterns close to the
source code. Ideally, a Linux kernel developer should be
able to copy a typical code example and add metavariable
declarations, “. . . ”, and - and + annotations, to obtain a
transformation rule with minimal effort.

The semantic patch in Figure 1 illustrates the various
features of SmPL. This semantic patch completes an evo-
lution and associated collateral evolutions that had been
initiated by a Linux developer. The evolution changed
the type of a callback function, by removing its third pa-
rameter. This required additionally removing the third
argument from direct calls to this function. This change
is challenging because the names of the affected func-
tions are all different, implying that grep may not be
sufficient to find all occurrences. A common strategy is
to identify code to fix by compiler errors, iterating until
the kernel compiles successfully. In this case, some of
the direct calls had been overlooked due to being under
ifdefs or in the support for obscure architectures.

The semantic patch consists of two rules, on lines 1-
7 and lines 8-14, respectively. The first rule, named
rule1, declares three identifier metavariables fn, irq
and dev id, representing the name of the function to
match and the names of its two parameters, respectively.
The rest of the first rule is a pattern that matches a func-
tion definition, in which the parameters and return value
are indicated to have specific types (lines 5-6) and the

602 2018 USENIX Annual Technical Conference USENIX Association

body is allowed to be an arbitrary sequence of statements
(line 7). The second rule, which has no name, declares
four metavariables: the function name fn, whose value
is explicitly inherited from the previous rule (line 9), and
three expression metavariables, E1, E2, and E3, repre-
senting arbitrary argument expressions (line 10). The
rest of this rule matches a call to the function that was
identified in the first rule. In this call, the third argument
is indicated to be removed (line 13). A wider variety
of semantic patches is illustrated in various publications
[31, 43, 50] and at the Coccinelle website [10, 11].

To apply a semantic patch to a code base, Coccinelle
processes the C source code files one at a time. On each
file, it applies the first rule of the semantic patch to each
function or other top-level declaration, then applies the
second rule to the code resulting from the first rule ap-
plication, etc. Based on the needs observed in the prior
collateral evolution study, the processing of a function is
based on its intraprocedural control-flow graph. Thus,
at the statement level, e.g., line 7 of Figure 1, “. . . ” fol-
lows intraprocedural control-flow paths, using a seman-
tics based on a variant of CTL model checking [5]. By
default, a pattern must match all control-flow paths start-
ing from the control-flow graph node matching the be-
ginning of the pattern, to ensure that the semantic patch
describes a consistent view of the program behavior. For
example, when a pattern such as A(); ... B(); matches
code including a conditional, B(); must be reachable
from A(); via both branches of the conditional. Alter-
natively, a rule or an individual instance of “. . . ” can be
annotated with exists to indicate that only the existence
of a matching path is required. By default, “. . . ” cannot
contain any code that is matched by the code pattern im-
mediately preceding or following it, e.g., to allow match-
ing a call to a locking function and to the unlocking call
closest to it, as needed due to the fine-grained locking
found in the Linux kernel. Finally, a metavariable must
match identical terms within a single control-flow path,
but may match different terms in different control-flow
paths, e.g., different conditional branches [5].

2.3 Design decisions affecting performance

Coccinelle is intended to be used by a Linux developer
in the course of his ordinary work, whenever a recurring
transformation is needed. Accordingly, it must be usable
on a standard laptop without much disruption. A number
of the initial design decisions were guided by this goal.

The Linux kernel is very large, and indeed has more
than tripled in size between Feb. 2007 (version 2.6.20,
5M LOC) and Jan. 2018 (version 4.15, 16.5M LOC).
Processing the entire code base and achieving reason-
able performance on a developer’s laptop, thus requires
making some tradeoffs. To reduce running time, Coc-

cinelle focuses on regions of code that are most likely to
be relevant for collateral evolutions, at the expense of the
rest. A key observation is that an individual Linux kernel
file typically addresses a problem at a given level of ab-
straction, while references to other files, via #include

or function calls, typically move to a lower level of ab-
straction. Thus, the contents of header files and called
functions may be less relevant for collateral evolutions.

Based on the above observation, by default, Coccinelle
processes only .c files, includes only header files that are
located in the same directory as the .c file or that have
the same name as the .c file, and does not perform inter-
procedural analysis. Command-line options are provided
to additionally process header files, independently of any
files into which they may be included, and to include
header files directly referenced in a .c file or all header
files referenced recursively. The latter options, however,
increase the amount of code processed, and thus the pro-
cessing time. The use of these strategies is thus left up to
the user, who is expected to know whether such informa-
tion is relevant to the desired evolution. Finally, interpro-
cedural analysis within a single file can be encoded up to
a finite depth using a series of SmPL rules, each of which
matches the definition of a function for which a function
call was identified by a previous rule. More general in-
terprocedural analysis originally required the use of ex-
ternal scripts to collect the names of called functions and
to restart Coccinelle to process their definitions.

The only program analysis performed by Coccinelle
is type inference. This analysis is best-effort, as non-
inclusion of header files means that type information may
be unavailable. Although the type information is incom-
plete, the inclusion of type information makes Coccinelle
very useful for tasks such as finding where a field of a
particular type of structure is referenced, without know-
ing the name of the variable pointing to that structure.
Coccinelle performs no alias analysis or other form of
dataflow analysis. Semantic patches that require con-
trol over aliases have to implement it explicitly, e.g., by
declaring that the code region matched by “. . . ” cannot
store the address of a given variable. This approach saves
execution time, as the analysis is only performed if and
to the extent that it is expected to be useful, and improves
the predictability of the tool, as the semantic patch writer
knows the strengths and limitations of the analysis.

2.4 Design decisions affecting correctness
guarantees

Automatic program transformation has the potential to
update code at a large scale reliably and efficiently, but
it can also introduce pervasive bugs across a code base,
if the transformation rules are incorrect or are imple-
mented incorrectly by the transformation engine. Coc-

USENIX Association 2018 USENIX Annual Technical Conference 603

cinelle only checks that a rule preserves the structural
well formedness of the code, e.g., ensuring that a state-
ment is replaced by a statement, an expression by an ex-
pression, etc. It does not check for semantic correctness.
This enables encoding bug fixes, which are intrinsically
not semantics preserving. Furthermore, it enables effi-
ciently applying rules, without complicated, typically in-
terprocedural, analysis to show correctness. The goal of
Coccinelle is to allow the user to express his knowledge
about the software and the required changes, in terms of
code fragments that resemble the affected code and that
can be easily checked to conform to the user’s intent.

2.5 Dissemination strategy
Reaching potential users is always a challenge for re-
search projects. An open-source development context
provides a diverse audience, which increases the chance
that individual users will pick up new approaches, but
makes it harder to impose a new approach on the en-
tire developer base than in a monolithic industry setting.
This is particularly the case of the Linux kernel devel-
oper community, which puts few restrictions on the tools
used by developers to create and manage code.

To validate the utility of Coccinelle and to encour-
age its use by Linux developers, the Coccinelle devel-
opers took the strategy of showing by example. The first
submitted patches (e.g., 632155e65944 on June 1, 2007
[61]) exploited only the Coccinelle parser [42]. Indeed,
as Coccinelle does not expand macros or reduce ifdefs,
its parser can find errors that are overlooked in typical
compile testing. The first submitted patch generated by
a semantic patch was 0da2f0f164f0 (July 5, 2007). This
patch was created using the semantic patch of Figure 1,
and included the semantic patch in the commit log. It
updated five files in the net, atm, and usb directories.

The next patch dd00cc486ab1 based on a semantic
patch was submitted on July 6, 2007, changing a call to
the memory allocator kmalloc followed by a memset

to clear the memory into a single call to the function
kzalloc, added in 2005. This patch affected 166 calls
distributed over 146 files. The semantic patch in the log
message received the comment “Cool!” from a devel-
oper,1 but the patch ran afoul of the Linux kernel re-
quirement that patches on different parts of the kernel be
submitted separately to the relevant maintainers. Indeed,
Coccinelle had shifted the burden from performing the
change, which was now fully automated, to routing the
individual changes to the proper maintainers, for which
no automatic support was then available.

The first patches explicitly mentioning “Coccinelle”
were submitted in December 2007, fixing various miss-
ing resource-release errors (76832d841643, etc.). These

1https://lkml.org/lkml/2007/7/7/98

attempted to set a precedent for how the tool should be
used, by including the URL of the tool, as well as the
XML-like tags <smpl> and </smpl> around the seman-
tic patch, to ease the tracking of the use of the tool. The
first commits from outside the group of Coccinelle devel-
opers, 77bbadd5ea89 and 52fd8ca6ad41, came in July
2008, from the developer of the kernel-level memory
checker kmemcheck. These patches corrected the type of
a flag passed to various lock-related function calls. Coc-
cinelle was released as open source in October 2008.

3 Evolutions in the Coccinelle Design

In retrospect, the design decisions presented in the previ-
ous section reflect a number of fundamental hypotheses
about how to design a program transformation system
that will be useful to and used by kernel developers:

Expressivity: Linux kernel developers will find it easy
and convenient to describe needed code changes in terms
of fragments of removed and added code.

Performance: Many interesting Linux kernel evolutions
can be implemented reliably without incurring the cost of
collecting and correlating information in multiple C files.
Indeed, Linux kernel development relies on humans, who
typically focus on one file at a time, and thus all relevant
information should be directly apparent in a single C file.

Correctness: Proving correctness is not necessary be-
cause Linux kernel developers can easily incorporate
their knowledge of kernel invariants into a semantic
patch. Giving the developer control over the rules im-
plies that the developer can control the rate of false posi-
tives, and can easily check for them in the results.

Dissemination: It is effective to show how a tool can be
useful, rather than attempting to impose its use.

While Coccinelle still builds on these hypotheses, ex-
perience in using the tool and feedback from Linux ker-
nel developers have provided lessons that have motivated
various evolutions. We highlight those that have had the
greatest impact on the use and usability of the tool.

3.1 Expressivity evolutions

Many changes, both simple and complex (e.g., Figure
1), can be expressed purely in terms of code structure.
Some kinds of changes, however, require more semantic
information. Two evolutions that have greatly enhanced
the expressivity of Coccinelle have been the introduction
of position variables and scripting rules.

Position variables. A position variable is a Coccinelle
metavariable that matches the position where a term oc-
curs in a file. Position variables allow rematching the

604 2018 USENIX Annual Technical Conference USENIX Association

1 @ rule1 @
2 expression t, f, e;
3 position p1, p2;
4 @@
5 init_timer@p1(&t);
6 ... when != f = e
7 t.function =@p2 f;
8

9 @ rule2 @
10 expression rule1.t, d, e;
11 position rule1.p1, p3;
12 @@
13 init_timer@p1(&t);
14 ... when != d = e
15 t.data =@p3 d;

16 @@
17 expression rule1.t, rule1.f,
18 rule2.d;
19 position rule1.p1, rule1.p2,
20 rule2.p3;
21 @@
22 (
23 - init_timer@p1(&t);
24 + setup_timer(&t,f,d);
25 |
26 - t.function =@p2 f;
27 |
28 - t.data =@p3 d;
29)

Figure 2: init timer conversion

same code in a later rule, as well as ensuring that a match
in one rule is different than a match in an earlier rule.

Figure 2 illustrates the use of position variables to
convert calls to init timer to setup timer when the
init timer call is followed by initializations of the
timer data and function fields. The first two rules
(lines 1-15) identify instances of the same init timer

call with two different properties (the when annotations
in lines 6 and 14 indicate assignments that should not
occur in the matched region). The last rule (lines 16-29)
transforms init timer calls that satisfy both properties.
This rule includes a disjunction, such that all of the rel-
evant code fragments can be transformed at once, wher-
ever they occur, as once a transformation takes place, all
previously bound position variables are invalidated.

Scripting language interface. The scripting language
interface was initially motivated by the goal of using
Coccinelle for bug finding [56]. While bugs that mainly
depend on the code structure, such as use after free, could
be found, the pattern-matching features of Coccinelle
were not sufficient to detect bugs such as buffer over-
flows that require reasoning about variable values.

To allow reasoning about arbitrary information, sup-
port was added in 2008 for scripting-language rules.
The first language supported was Python, which was ex-
pected to be familiar to Linux developers. Coccinelle is
implemented in OCaml, and OCaml scripting was added
in 2010, for the convenience of the Coccinelle devel-
opers. Scripts were originally designed to filter sets of
metavariable bindings established by previous rules. Fig-
ure 3 shows an example, which drops a semicolon after
an if header if the subsequent statement is indented, sug-
gesting that the latter statement is intended to be the if

branch. A script rule compares the indentation of the
two statements (line 11) and discards metavariable bind-
ing environments (line 12) in which the conditional is
aligned with or to the right of the subsequent statement.

Ultimately, the original motivation for scripting, i.e.,
finding bugs such as buffer overflows, was not success-

1 @r@
2 expression E; statement S;
3 position p1,p2;
4 @@
5 if@p1 (E);
6 S@p2
7

8 @script:python@
9 p1 << r.p1; p2 << r.p2;

10 @@
11 if (p1[0].col >= p2[0].col):
12 cocci.include_match(False)

14 @@
15 expression E; statement S;
16 position r.p1;
17 @@
18 if@p1 (E)
19 - ;
20 S

Figure 3: Drop spurious semicolon after if header

ful. The code patterns were small and generic, and the
scripts implementing the required analyses were com-
plex. Still, scripting has been a major leap forward for
the expressiveness of Coccinelle, and new scripting func-
tionalities have been added as new needs have emerged.
Early on, libraries were added for generating formatted
error messages. In 2009, initialize and finalize

scripts were introduced to allow defining state global to
the processing of all files, to facilitate the collection of
statistics. In 2010, scripts became able to create new
code fragments to be stored in metavariables and inher-
ited by subsequent rules. In 2016, to improve perfor-
mance and reduce semantic patch size, it became pos-
sible to add script code to metavariable declarations, to
define predicates that would discard metavariable bind-
ings early in the matching process. Finally, scripting en-
ables iteration, which allows a semantic patch to submit
new “jobs” to the Coccinelle engine, in order to perform
analysis across multiple files.

3.2 Performance evolutions

While avoiding including header files reduces the vol-
ume of code to process, the Linux kernel remains a large
and growing code base. Furthermore, parsing the code
without relevant macro definitions from header files in-
volves using heuristics, which can increase the parsing
time. Thus, further optimizations were needed.

Indexing. An early observation was that performance
could be improved by not parsing files that could not be
matched by the semantic patch. Indeed, many seman-
tic patches contain keywords such as the names of API
functions that must be present for the semantic patch to
match and that occur only a moderate number of times in
the Linux kernel. Coccinelle initially used the Unix com-
mand grep to find the files containing these keywords,
but this was still slow, given the large code size.

A second approach was to use glimpse [24] to pre-
pare an index in advance, and then to only process the
files indicated by the index. As the index is smaller
than the kernel source code and is organized efficiently,

USENIX Association 2018 USENIX Annual Technical Conference 605

the use of glimpse substantially improves performance,
particularly for semantic patches that involve kernel API
functions. Nevertheless, glimpse was originally only
freely available to academic users, had to be manually
installed, and creating an index on each kernel update
is time-consuming. In 2010, this was complemented by
support for id-utils, which is part of many Linux distri-
butions and for which index creation is much faster. In
2013, the support for users who do not have an index
available was rewritten to essentially reimplement the
grep operation in OCaml, reducing system calls and bet-
ter taking into account the specific needs of Coccinelle.

Parallelism. By default Coccinelle works on each .c

file independently, and thus is ripe for parallelism. Nev-
ertheless, when Coccinelle was first developed, there was
no convenient support for parallelism in OCaml. In-
stead, the Coccinelle distribution included a shell script
to launch multiple Coccinelle instances in parallel, each
covering a different part of the code base. Users, how-
ever, were uneasy about using Coccinelle via an exter-
nal script. Furthermore, processing different files can re-
quire very different amounts of time, and the lack of load
balancing in this static solution meant that many cores
could end up idle. Meanwhile, the Parmap OCaml par-
allelization library [14] became available, and between
2015 and 2017 increasing support was provided for par-
allelism, still at the .c file level, within Coccinelle itself.

Supporting finer grained parallelism, at the function
level, was also considered. Initial experiments, how-
ever, suggested that the cost of passing around the state
built up within the matching of a given file outweighed
the benefits of parallelism. In contrast, Coccinelle treats
each file independently, so the amount of state that needs
to be passed between processes is minimal.

3.3 Correctness guarantee evolutions
Unlike the other cases, there have been no major evo-
lutions in the view of transformation correctness. After
having created over 450 semantic patches that have led to
kernel patches, the Coccinelle developers have found that
the original hypothesis that giving the developer control
over the rules enables them to easily check the results is
mostly sufficient. The few errors, e.g., [53], have come
from misunderstanding of kernel invariants that would
require a prohibitively complex and time consuming se-
mantic analysis to infer and check. Kernel maintainers
have indeed concluded in some cases that it was the orig-
inal code that was written in an error prone way [38].

3.4 Dissemination strategy evolutions
Showing the value and capabilities of Coccinelle by the
example of submitted patches generated initial interest

in the tool. As the expressivity of Coccinelle evolved
to permit the specification of more complex changes, it
became apparent that it would also be beneficial to more
directly teach developers how to use Coccinelle, and to
enable Coccinelle users to interact with each other.

Four workshops were organized on the use of Coc-
cinelle and advertised on the Coccinelle mailing list, at-
tracting industry participants. The Coccinelle developers
also presented the tool and offered tutorials in a variety of
developer conferences, including those targeting open-
source enthusiasts (e.g., FOSDEM) and those specif-
ically targeting Linux kernel developers (e.g., Linux
Plumbers). These presentations focused on the user-
visible aspects of Coccinelle, such as how to write se-
mantic patches and what results could be achieved, rather
than the details of the internal design of the system,
which were presented in research venues [5].

The work on Coccinelle was also picked up by the
Linux Weekly News (LWN), which is the standard ref-
erence for issues around the development of the Linux
kernel and other open-source software. Tutorial articles
on Coccinelle appeared in 2009 [25] and 2010 [52], au-
thored not by the Coccinelle developers, but by well-
known kernel developers. LWN has also reported on var-
ious talks about Coccinelle [12, 16].

4 Performance Evaluation

Coccinelle is intended to be used by a kernel developer
as part of the normal development process, on a stan-
dard professional laptop. Accordingly, Coccinelle’s per-
formance should be acceptable in this setting. We illus-
trate the performance on a Lenovo Thinkpad T460s with
two hyperthreaded 2.30GHz cores (Intel(R) Core(TM)
i5-6200U CPU), a 3M cache, and 12G RAM. Our ex-
periments focus on the 59 semantic patches found in the
Linux 4.15 kernel, using the report mode, which is sup-
ported by all these semantic patches.2 Times are based
on a single run, with a timeout of 30 seconds per file. We
use id-utils indexing. Figure 4 presents the elapsed time
when running the semantic patches on the Thinkpad lap-
top, using both cores, with hyperthreading. The semantic
patches are sorted in order of increasing running time.

For the Linux kernel, there is a precise performance
point of reference that is familiar to the kernel developer;
the time to perform a complete compile of the Linux
kernel itself. The elapsed time for full kernel compila-
tion on the Thinkpad laptop with 4 threads (hyperthread-
ing) with make clean; make allyesconfig; make,
is 54 minutes. Based on the results shown in Figure 4,

2The semantic patches and Coccinelle version used contain some
performance improvements that will appear in Linux 4.18 and Coc-
cinelle 1.0.7, respectively.

606 2018 USENIX Annual Technical Conference USENIX Association

0

2,000

4,000

semantic patches

el
ap

se
d

tim
e

(s
ec

.)
2 cores (4 threads)

Figure 4: Elapsed time per semantic patch in the Linux
4.15 kernel on the Thinkpad laptop

0

20,000

40,000

semantic patches

nu
m

be
ro

ffi
le

s

files considered

Figure 5: Files considered per Linux semantic patch.

all but one of the semantic patches complete within this
time. The remaining semantic patch requires 75 minutes.

The timeout per file affects performance. In our exper-
iment, Coccinelle timed out on 52 files, of 705,179 files
considered, giving a timeout rate of 0.007%. Typically
files on which timeouts occur contain complex code such
as long sequences of loops and conditionals. These files
can be analyzed separately, when more time is available.

Figure 5 shows the impact of indexing using id-utils
on the number of files considered. The largest number
of files considered is 46,336, in 10 cases, where no key-
words are inferred from the semantic patch. These are as-
sociated with larger, but not the largest, execution times.
At the far right of the graph, between 5000 and 26,000
files are considered, but the cost of tracing through all
possible intraprocedural execution paths overwhelms the
savings obtained by processing fewer files.

In terms of header files, 43 of the semantic patches
specify that no include files should be considered. 11
specify to use the default (local and same-named files),
and 1 specifies that all explicitly included should be taken
into account. To assess the cost and benefit of including
header files, we take the 44 semantic patches from the
Linux kernel that complete in our test configuration in
under 10 minutes and test them with options forcing the
inclusion of no header files, the default, and all explicitly
included header files. As compared to inclusion of no
header files, the default increases the run time by up to
90% and the inclusion of all explicitly included header
files increases the run time by up to 10x. The number of
reports ranges from 1631 for no headers to 1691 for all
headers, with most of the few differences on .h files.

The performance studied here is only relevant when

scanning the entire kernel. When checking a single mod-
ified file, the time should rarely exceed a few seconds
per semantic patch. Indexing may identify some seman-
tic patches as irrelevant, reducing the execution time.

5 Expressivity Extension Evaluation

The position variable and scripting extensions increase
the expressivity of SmPL, but add concepts that are
not found in C code and thus are not already famil-
iar to Linux developers. We thus assess the degree to
which these features are used in practice. We note, how-
ever, that our only source of information about semantic
patches is from those found in the Linux kernel and from
those included in commit messages. This information
may be incomplete, because developers can omit or sim-
plify semantic patches in the commit message

All of the semantic patches found in the Linux kernel
use positions and scripts in order to generate output in
the report mode. 20 semantic patches were contributed
by developers from outside the Coccinelle team. 3325
commits up through Linux 4.15 contain semantic patches
in the commit message. Of these 586 (18%) contain po-
sition variables and 165 (5%) contain scripts. 43% of the
latter commits come from outside the Coccinelle team.

6 Impact on Linux

Over the past 10 years, Coccinelle has been increasingly
applied to the Linux kernel, by both Coccinelle develop-
ers and Linux kernel developers. As of Linux 4.15, over
6000 commits in the Linux kernel are based on the use
of Coccinelle. In this section, we give an overview of
the impact of Coccinelle on the Linux kernel. Graphs
by subsystem reflect commits up through the release of
Linux 4.15 (Jan. 2018). Graphs by year end with 2017.

6.1 Changed lines per subsystem
Figure 6 shows the number of lines removed and added
by commits using Coccinelle in various kernel subsys-
tems. The most affected is drivers, with 57,882 re-
moved lines and 77,306 added lines, followed by arch,
fs, net, sound, and include, all of which are affected
by thousands of removed or added lines. The predomi-
nance of drivers is not surprising, given that drivers
makes up 67% of the Linux 4.15 kernel source code.
drivers has also been a target for other bug finding and
code reliability tools [35, 37, 48, 51, 57].

Figure 7 compares the numbers of removed and added
lines to the number of code lines (non-blank, non-
comment, measured using SLOCCount [54]) found in
Linux 4.15. The rate of Coccinelle-motivated changed

USENIX Association 2018 USENIX Annual Technical Conference 607

ar
ch

bl
oc

k
cr

yp
to

dr
iv

er
s fs

in
cl

ud
e

in
it

ip
c

ke
rn

el lib m
m ne

t
sa

m
pl

es
se

cu
ri

ty
so

un
d

to
ol

s
vi

rt

101

103

105

lin
es

of
co

de
(l

og
sc

al
e) Removed lines Added lines

Figure 6: Number of lines removed and added by com-
mits using Coccinelle, by subsystem

ar
ch

bl
oc

k
cr

yp
to

dr
iv

er
s fs

in
cl

ud
e

in
it

ip
c

ke
rn

el lib m
m ne

t
sa

m
pl

es
se

cu
ri

ty
so

un
d

to
ol

s
vi

rt
0.0000
0.0020
0.0040
0.0060
0.0080

lin
e

ch
an

ge
pe

rL
O

C

Removed lines Added lines

Figure 7: Lines removed and added by commits using
Coccinelle per Linux 4.15 line of code, by subsystem

lines in drivers remains high, but the results show the
applicability of Coccinelle across the kernel.

6.2 Categories of users over time
A variety of kinds of developers contribute to the Linux
kernel, by submitting patches. Among those who men-
tion Coccinelle in their commit logs, we distinguish six
categories of Coccinelle users:

Coccinelle developers. These are members of the Coc-
cinelle development team, and persons employed by the
team to disseminate Coccinelle.
Outreachy interns. The Linux kernel participates in the
Outreachy internship program [41] and interns may use
Coccinelle in the application process or the internship.
Dedicated user. This is a single developer who uses
Coccinelle in the kernel for a small collection of widely
relevant simple changes.
0-day. This is an automated testing service at Intel that
builds and boots the Linux kernel for multiple kernel
configurations, on each commit to hundreds of git trees.
The service also runs a number of static analysis tools,
including Coccinelle, on the result of each commit.
Kernel maintainers. These are kernel developers who
receive and commit patches, and are generally respon-
sible for some subsystem’s continued well being. We
identify maintainers as developers who are named in the

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

200

400

#
of

co
m

m
its

Coccinelle developers Outreachy interns
Dedicated user 0-day

Kernel maintainers Others

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

10

20

30

#
of

us
er

s

Figure 8: Number of commits using Coccinelle from var-
ious categories of Coccinelle users (top) and number of
Coccinelle users in various categories having at least one
commit using Coccinelle (bottom)

Linux 4.15 MAINTAINERS file (1170 developers) or
who are the committer of some patch. Normally, kernel
patches are transmitted by email, and only maintainers or
developers the maintainers specifically designate commit
to git trees that are pulled into a mainline release. Thus,
being a committer is a sign of community respect.
Others. These are other Linux kernel contributors.
These contributors may be frequent or occasional.

The top of Figure 8 shows the number of commits
per year using Coccinelle from various kinds of Coc-
cinelle users, while the bottom shows the number of
Coccinelle users involved in each category. The first
commits (2007) were from the Coccinelle development
team. Use from maintainers and other kernel contrib-
utors started in the two years afterwards. The number
of commits from maintainers has grown steadily, except
for a major peak in 2015, when several maintainers un-
dertook cross-tree refactoring projects using Coccinelle.
The number of other kernel contributors has gone up and
down, but shows an upward trend. These numbers may
be underestimated, however, as some developers have re-
vealed when asked that they used Coccinelle for repeti-
tive changes, but did not mention it in the commit.3

The Linux developers who are most likely to have
need for Coccinelle are those who perform large scale
changes across the code base. To approximate this set of
developers, we consider those who have at least one com-
mit that touches at least 100 files, since Linux 3.0 (July
2011), i.e., the period in which Coccinelle was becom-
ing more established. There are 88 such developers, of
which 67 (76%) are maintainers. All but two of the oth-
ers are in the Other category. 39 (44%) of these develop-

3https://marc.info/?l=kernel-janitors&m=150403263119030&w=2

608 2018 USENIX Annual Technical Conference USENIX Association

ers overall and 31 (46%) of these maintainers have com-
mits using Coccinelle. Of the 88 developers, 27 (31%)
have 1-5 commits using Coccinelle, 9 (10%) have 6-100
such commits, and 3 (3%) have more than 100. Among
the 67 maintainers, 21 (31%) have 1-5 commits using
Coccinelle, 8 (12%) have 6-100 such commits, and 2
(3%) have more than 100. These numbers suggest that
Coccinelle is well known among the Linux kernel devel-
opers and maintainers who can benefit from it most.

Finally, we consider the most established kernel con-
tributors. We collect the set of maintainers from the
Linux 4.15 MAINTAINERS file and the set of devel-
opers who have committed at least one patch between
Linux 3.0 and Linux 4.15. 45 have at least 10 years of ex-
perience as committers and 117 have committed at least
1000 patches. 29% and 32% of these, respectively, have
created at least one patch that uses Coccinelle. These
numbers reflect the knowledge of Coccinelle at the core
of the Linux kernel developer community.

6.3 Changes performed using Coccinelle
Coccinelle facilitates performing changes across the ker-
nel, that may cover code managed by multiple maintain-
ers. Some examples are as follows:

TTY. Remove an unused function argument. One com-
mit (429b474990cb) in 2015, affecting 11 TTY driver
files. The author is not a maintainer, but has over 350
commits in the Linux kernel, since 2013.
IIO. Add missing devinit and devexit annota-
tions. One commit (8e8287526844) in 2012 affecting 28
new IIO driver files. The author is an IIO maintainer.
DRM. Eliminate a redundant field in a data structure.
One commit (438b74a5497c) in 2016 affecting 54 direct
rendering manager (DRM) files. The author is a main-
tainer, but not for the affected files.
Interrupts. Prepare to remove the irq argument from
interrupt handlers, and then remove that argument. 40
commits (e.g. f4acd122a738) in 2015, affecting 188 files
(mostly drivers, arch). The author is a core Linux
developer with over 3500 commits in the Linux kernel
since the start of the Linux kernel’s usage of git (2005).

More generally, Figure 9 characterizes as cleanups or
bug fixes the complete set of patches that use Coccinelle
from maintainers. Typical cleanups address generic C is-
sues, such as useless double semicolons, as well as intro-
ductions of new APIs and refactorings in preparation for
the introduction of new APIs. Commonly identified bugs
include memory leaks, allocation of a memory region
of the size of a pointer rather than the size of the refer-
enced structure, and storing a potentially negative value
in a variable of type unsigned int and then checking
whether the value is less than zero.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

100

200

300

nu
m

be
r Cleanups

Bug fixes

Figure 9: Cleanup vs. bug fix changes among maintainer
patches using Coccinelle

As noted in Section 2.5, Coccinelle facilitates making
changes that affect the entire Linux kernel source tree,
and in particular subsystems managed by different main-
tainers. While the initial problem of knowing who main-
tains which part of the kernel was resolved in 2009 by the
introduction of the get maintainer.pl script, it is not
always clear who should actually commit the changes,
particularly when there are dependencies between the
resulting patches. The problem of managing cross-tree
changes was a proposed topic at the 2017 Linux Kernel
Maintainers Summit. Preliminary discussions included
proposing the use of Coccinelle for refreshing cross-tree
changes when patch sets are incompletely applied [3].

6.4 Semantic patches in the Linux kernel
Since 2010, the Linux kernel has hosted a set of semantic
patches in its scripts/coccinelle directory. Seman-
tic patches are categorized as being related to APIs (17),
resource release (7), iteration (5), locking (4), NULL val-
ues (4), test expressions (4) and others (18). The kernel
Makefile contains a coccicheck target that runs one or
all of these semantic patches on the entire kernel or some
portion thereof. Kernel developers may thus easily use
Coccinelle to check their work, without learning SmPL.
Such use, however, is not visible in the kernel history.

As of Linux v4.15, there are 59 semantic patches in
the Linux kernel. Figure 10 shows the number of com-
mits including new semantic patches per year, as con-
tributed by various categories of users. Semantic patches
were initially contributed by the Coccinelle developers.
Recently, 2-3 have been contributed each year, and a few
more requested, by the wider kernel community.

6.5 0-day build testing service
Intel’s 0-day testing service [26, 60] runs a number of
static analyses on commits to hundreds of Linux ker-
nel git trees, both public and private. Kernel developers
may check their changes themselves on only one config-
uration and then rely on the 0-day service for the rest.
Coccinelle-based reports generated by the 0-day build
testing service come in two forms. If the semantic patch
producing the report is able to propose a fix for the iden-
tified problem, then the report contains this patch. The

USENIX Association 2018 USENIX Annual Technical Conference 609

2010 2011 2012 2013 2014 2015 2016 2017
0

10

20
nu

m
be

r
Coccinelle developers

Outreachy interns
Maintainers/Others

Figure 10: Number of commits adding a semantic patch
to the Linux kernel source tree per year

2013 2014 2015 2016 2017
0

200

400

#
w

ith
pa

tc
he

s

api free iterators locks null tests misc

2013 2014 2015 2016 2017
0

100

200

#
w

ith
m

es
sa

ge
on

ly

Figure 11: 0-day reports mentioning Coccinelle per year

2013 2014 2015 2016 2017
0
1
2
3
4

%

With patch
With report

Figure 12: % of 0-day reports mentioning Coccinelle

remaining Coccinelle-based reports contain a textual er-
ror or warning message, accompanied by a code extract
highlighting the relevant lines, as indicated by the se-
mantic patch. Figure 11 shows the number of public re-
ports that mention Coccinelle in various categories, dis-
tinguishing between those that include a patch or only
a message. Figure 12 likewise shows the percentage of
all public reports mentioning Coccinelle. The most com-
mon type of report including a patch removes a field ini-
tialization in drivers that is redundant with respect to the
driver core (244 patches). The most common type of
report including only a message detects missing unlocks
(68 reports). The latter reports are manually checked by a
Coccinelle developer and have few false positives. Both
semantic patches involve kernel-specific features.

7 The Coccinelle Community

A measure of the long term potential impact of a project
is the willingness and ability of external developers to

contribute to the project’s development and maintenance.
Today Coccinelle amounts to over 84,000 lines of OCaml
code. 25 developers have contributed to Coccinelle, with
over 3000 commits over 12 years for one developer, al-
most 1000 in the first few years for another developer,
and 200-300 commits in the last few years for several
others. All of the contributors with more than 5 com-
mits have been somehow affiliated with the core devel-
opment team, as either an employee or a guest. These
numbers are likely related to the fact that the imple-
mentation language of Coccinelle, OCaml, is not widely
used in the target developer community, and to the in-
terdisciplinary nature of Coccinelle, which builds on
programming-language concepts but targets the systems
developer community. The small number of contribu-
tions by external developers may be a source of long term
fragility. Nevertheless, the fact that several developers
have joined the project in recent years and each made
around 200 or more commits suggests that the code is
accessible to developers who did not initiate the project.

Coccinelle is packaged with a number of Linux distri-
butions, such as Ubuntu [62], Debian [15], Fedora [18],
Gentoo [23], and Archlinux [1]. It is also available for
FreeBSD [21] and NetBSD [40]. The full commit his-
tory is available at Github [8]. Although Coccinelle is
developed using OCaml, there has been an effort to limit
the amount of dependence on the traditional OCaml cul-
ture and infrastructure. Some needed OCaml libraries
are bundled with the Coccinelle distribution, in case they
are not available on the local machine. Once Coccinelle
is installed, it is fully usable, via the C-like SmPL lan-
guage and Python scripting, without knowing OCaml.

Although Coccinelle is mainly used on the Linux ker-
nel, it is also used on other software projects. RIOT [49],
qemu [47] and systemd [58] include semantic patches
in their source code distributions. Patches mentioning
Coccinelle are also found in the commit histories of sys-
tems software projects such as cpython (d1302c01544
and 228b12edcce) [13], wine (f6ced24999f etc.) [64],
and even one in Firefox (ab4e3a0d4213) [19]. The latter
used Coccinelle’s rudimentary support for C++.

8 Related Work

Academic software development tools. Other aca-
demic software development tools that have had an im-
pact on industry practice include CIL [39], LLVM [29],
and Metal [17]. CIL provides basic parsing and visi-
tor infrastructure for processing C code, and is used for
rapid prototyping as well as being at the base of mature
tools such as Frama-C [20]. LLVM is a compiler infras-
tructure that originally targeted providing good support
for static, link-time, and run-time optimization, and has
evolved into a common alternative to gcc, due to its cus-

610 2018 USENIX Annual Technical Conference USENIX Association

tomizability, speed and space efficiency, and permissive
license [7]. Neither has specifically targeted the Linux
kernel and its particular coding style. Indeed, LLVM still
does not fully support Linux kernel code, despite a long
refactoring effort [33]. Both tools have furthermore fo-
cused on building a user community rather than taking
on the challenge of integrating into an existing one.

Metal is an automata-based tool for scanning large
systems source code bases for faults such as use after
free and inconsistent locking. It was never made publicly
available. Instead, it was the foundation of the highly
successful static analysis tool Coverity [2]. Coverity
has been used on the Linux kernel more or less over
the years, depending on the degree to which its results
have been made freely available. Nevertheless, the freely
available results address generic C issues, rather than
Linux specific properties.

Development tool impact analysis. Koyuncu et al.
[28] compare properties of Linux kernel patches that are
entirely manually generated, manually generated in re-
sponse to a tool report, and tool generated according
to a manually written transformation rule. The patches
in the third category are primarily generated by Coc-
cinelle. They find that manually generated patches are
accepted more quickly than tool-supported patches, but
that the acceptance rate of the latter is increasing. In con-
trast, we study what kinds of Linux kernel developers use
Coccinelle, for what purpose, and what features of Coc-
cinelle have led to its acceptance.

Other tools used on the Linux kernel. Checkpatch is
a regular-expression based style checker, whose use is
required by the Linux kernel patch submission checklist
[32]. It does not have a global view of the code, so it
cannot detect inconsistencies that involve multiple code
fragments, such as a variable declaration and its use.

Sparse [4] was an effort by Linus Torvalds to develop
an open source static checker for the Linux kernel, in re-
sponse to Metal. Sparse processes developer-provided
annotations, enabling it to, e.g., detect endianness issues.
Smatch [55] grew out of sparse as a more flexible bug
finding tool. Like Coccinelle, Smatch is scriptable, but
rules are expressed at the abstract-syntax tree level rather
than at the source code level. Thus, the user needs to
know about internal representations. Smatch also does
only bug finding, not transformation. On the other hand,
Smatch tracks variable values, while Coccinelle reasons
only in terms of code structure. Thus, smatch can find
bugs such as off-by-one errors that are difficult to find
using Coccinelle. Thousands of commits in the Linux
kernel are derived from the use of smatch, but the cre-
ation of new rules is mostly limited to the tool author.

Another academic effort on improving Linux kernel
code is the Linux Driver Verification project [27]. It

centers around developing infrastructure and rule sets
making it possible to apply verification tools such as
CPAchecker and BLAST to the Linux kernel. A few hun-
dred commits in the Linux kernel are based on its results.
The Undertaker project [6, 59], in contrast to the other
tools, finds bug in the use of configuration variables.

9 Lessons Learned

In this paper, we have reviewed the evolution of the pro-
gram transformation tool Coccinelle and its impact on
the Linux kernel. The experience of Coccinelle can help
guide other projects that want to have an impact on an
open source systems developer community.

First, visibility is necessary. The Coccinelle develop-
ers taught by example, by using Coccinelle to make a
sustained contribution to the Linux kernel. At the same
time, they organized workshops on the use of Coccinelle
and presented Coccinelle in a variety of developer con-
ferences, both focusing on the user-visible aspects of
Coccinelle, to make the tool accessible to developers.

Second, the tool must be easy to install and freely
available. Coccinelle is implemented in OCaml, but tar-
gets C developers. There has been a concerted effort to
minimize reliance on OCaml infrastructure. The cost is
a complex build system, but it reduces the chance that
users will immediately abandon Coccinelle because it is
difficult to install. Likewise, Coccinelle is freely avail-
able (GPLv2), with no registration requirement.

Third, the tool must be easy to use and robust, with
support to quickly address problems encountered by
users. While many research prototypes are only robust
enough to complete an evaluation for a paper submis-
sion, users will try it on all kinds of code, and use it in
unanticipated ways. A strength of Coccinelle is its lax
C parser, motivated by the need to parse code without
reliance on header files. This has the side effect of allow-
ing it to adapt to C variants used by different projects. On
the other hand, many users have mentioned that the doc-
umentation, consisting mainly of a BNF, some examples
and some tutorial presentations, is hard to understand.
Nevertheless, Coccinelle has an active mailing list [9] on
which user problems are quickly addressed. Fixes are
made available quickly via Github [8].

Finally, in a research setting, there is a constant temp-
tation to make a tool do more, until the resulting com-
plexity causes the tool to collapse under its own weight.
While new features have been added to Coccinelle, the
tool has remained within the scope of pattern matching-
based transformation of C code. This focus has allowed
it to grow and achieve practical success in this area.

Availability. http://coccinelle.lip6.fr. This
work was supported in part by ANR-NRF ITrans.

USENIX Association 2018 USENIX Annual Technical Conference 611

References
[1] Archlinux.

https://aur.archlinux.org/packages/coccinelle.

[2] BESSEY, A., BLOCK, K., CHELF, B., CHOU, A., FULTON, B.,
HALLEM, S., GROS, C.-H., KAMSKY, A., MCPEAK, S., AND
ENGLER, D. R. A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53, 2
(2010), 66–75.

[3] BOTTOMLEY, J. Maintainer’s summit agenda planning. https:
//lists.linuxfoundation.org/pipermail/ksummit-

discuss/2017-October/004803.html.

[4] BROWN, N. Sparse: a look under the hood, June 2016. https:
//lwn.net/Articles/689907.

[5] BRUNEL, J., DOLIGEZ, D., HANSEN, R. R., LAWALL, J. L.,
AND MULLER, G. A foundation for flow-based program match-
ing: using temporal logic and model checking. In POPL (Savan-
nah, GA, USA, 2009), pp. 114–126.

[6] Checkkconfigsymbols. https://github.com/torvalds/

linux/blob/master/scripts/checkkconfigsymbols.py.

[7] Clang vs other open source compilers.
http://clang.llvm.org/comparison.html.

[8] Coccinelle github repository.
https://github.com/coccinelle/coccinelle.

[9] Coccinelle mailing list.
https://systeme.lip6.fr/pipermail/cocci.

[10] Coccinelle website.
http://coccinelle.lip6.fr/.

[11] Coccinellery.
https://github.com/coccinelle/coccinellery.

[12] CORBET, J. KS2010: Lightning talks, Nov. 2010.
https://lwn.net/Articles/412750.

[13] CPython. https://github.com/python/cpython.git.

[14] DANELUTTO, M., AND COSMO, R. D. A “minimal disrup-
tion” skeleton experiment: seamless map & reduce embedding in
OCaml. In International Conference on Computational Science
(Omaha, NE, USA, June 2012), pp. 1837–1846.

[15] Debian. https://packages.debian.org/search?

keywords=coccinelle.

[16] EDGE, J. Inside the mind of a Coccinelle programmer, Aug.
2016. https://lwn.net/Articles/698724.

[17] ENGLER, D. R., CHELF, B., CHOU, A., AND HALLEM,
S. Checking system rules using system-specific, programmer-
written compiler extensions. In OSDI (2000), pp. 1–16.

[18] Fedora.
https://apps.fedoraproject.org/packages/

coccinelle.

[19] Firefox. https://github.com/mozilla/gecko-dev.git.

[20] Frama-C. https://frama-c.com.

[21] FreeBSD.
http://www.freshports.org/devel/coccinelle.

[22] Gartner says worldwide sales of smartphones grew 9 percent in
first quarter of 2017. https://www.gartner.com/newsroom/
id/3725117.

[23] Gentoo. https://packages.gentoo.org/packages/dev-

util/coccinelle.

[24] Glimpse. http://webglimpse.net.

[25] HENSON, V. Semantic patching with Coccinelle, Jan. 2009.
https://lwn.net/Articles/315686.

[26] KERRISK, M. Ks2012: Kernel build/boot testing, Sept. 2012.
https://lwn.net/Articles/514278.

[27] KHOROSHILOV, A., MANDRYKIN, M., MUTILIN, V.,
NOVIKOV, E., PETRENKO, A., AND ZAKHAROV, I. Config-
urable toolset for static verification of operating systems kernel
modules. Programming and Computer Software 41, 1 (2015),
49–64.

[28] KOYUNCU, A., BISSYANDÉ, T. F., KIM, D., KLEIN, J., MON-
PERRUS, M., AND TRAON, Y. L. Impact of tool support in patch
construction. In ISSTA (2017).

[29] LATTNER, C., AND ADVE, V. S. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In CGO
(2004), pp. 75–88.

[30] LAWALL, J., PALINSKI, D., GNIRKE, L., AND MULLER, G.
Fast and precise retrieval of forward and back porting informa-
tion for Linux device drivers. In USENIX Annual Technical Con-
ference (2017), pp. 15–26.

[31] LAWALL, J. L., BRUNEL, J., PALIX, N., HANSEN, R. R., STU-
ART, H., AND MULLER, G. WYSIWIB: exploiting fine-grained
program structure in a scriptable API-usage protocol-finding pro-
cess. Softw., Pract. Exper. 1, 43 (2013), 67–92.

[32] Linux kernel patch submission checklist.
https://www.kernel.org/doc/html/v4.15/process/

submit-checklist.html.

[33] LLVM. http://llvm.linuxfoundation.org/index.php/

Main_Page.

[34] LOZI, J.-P., DAVID, F., THOMAS, G., LAWALL, J. L., AND
MULLER, G. Fast and portable locking for multicore architec-
tures. ACM Trans. Comput. Syst. 4, 33 (2016), 13:1–13:62.

[35] MACHIRY, A., SPENSKY, C., CORINA, J., STEPHENS, N.,
KRUEGEL, C., AND VIGNA, G. DR. CHECKER: A soundy
analysis for Linux kernel drivers. In USENIX Security (Vancou-
ver, BC, Canada, 2017).

[36] MACKENZIE, D., EGGERT, P., AND STALLMAN, R.
Comparing and Merging Files With Gnu Diff and Patch.
Network Theory Ltd, Jan. 2003. Unified Format sec-
tion, http://www.gnu.org/software/diffutils/manual/
html_node/Unified-Format.html.

[37] MÉRILLON, F., RÉVEILLÈRE, L., CONSEL, C., MARLET, R.,
AND MULLER, G. Devil: An IDL for hardware programming.
In OSDI (San Diego, CA, USA, 2000), USENIX Association.

[38] MOLNAR, I. Revert “make ’bt sfi data’ const”. https://lkml.
org/lkml/2017/12/28/137.

[39] NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND WEIMER,
W. CIL: Intermediate language and tools for analysis and trans-
formation of C programs. In Compiler Construction, 11th Inter-
national Conference (Grenoble, France, Apr. 2002), LNCS 2304,
pp. 213–228.

[40] NetBSD. ftp://ftp.netbsd.org/pub/pkgsrc/current/

pkgsrc/devel/coccinelle/README.html.

[41] Outreachy. https://www.outreachy.org.

[42] PADIOLEAU, Y. Parsing C/C++ code without pre-processing. In
CC (York, UK, Mar. 2009), pp. 109–125.

[43] PADIOLEAU, Y., LAWALL, J., HANSEN, R. R., AND MULLER,
G. Semantic patches for collateral evolutions in device drivers.
In Linux Symposium (Ottawa, Canada, June 2007).

[44] PADIOLEAU, Y., LAWALL, J. L., HANSEN, R. R., AND
MULLER, G. Documenting and automating collateral evolutions
in Linux device drivers. In EuroSys (2008), pp. 247–260.

612 2018 USENIX Annual Technical Conference USENIX Association

[45] PADIOLEAU, Y., LAWALL, J. L., AND MULLER, G. Under-
standing collateral evolution in Linux device drivers. In EuroSys
(2006), pp. 59–71.

[46] PALIX, N., THOMAS, G., SAHA, S., CALVÈS, C., MULLER,
G., AND LAWALL, J. Faults in Linux 2.6. ACM Trans. Comput.
Syst. 32, 2 (2014), 4:1–4:40.

[47] Qemu. https://github.com/qemu/qemu.git.

[48] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. Sym-
drive: Testing drivers without devices. In OSDI (Hollywood, CA,
2012), USENIX, pp. 279–292.

[49] Riot. https://github.com/RIOT-OS/RIOT.git.

[50] RODRIGUEZ, L. R., AND LAWALL, J. Increasing automation
in the backporting of Linux drivers using Coccinelle. In EDCC
(2015), pp. 132–143.

[51] RYZHYK, L., KEYS, J., MIRLA, B., RAGHUNATH, A., VIJ,
M., AND HEISER, G. Improved device driver reliability through
hardware verification reuse. In ASPLOS (2011), pp. 133–144.

[52] SANG, W. Evolutionary development of a semantic patch us-
ing Coccinelle, Mar. 2010. https://lwn.net/Articles/

380835.

[53] SHEVCHENKO, A. Revert “make ’bt sfi data’ const”. https:

//lkml.org/lkml/2017/12/28/85.

[54] SLOCCount. https://www.dwheeler.com/sloccount.

[55] Smatch. https://blogs.oracle.com/linuxkernel/

smatch-static-analysis-tool-overview,-by-dan-

carpenter.

[56] STUART, H., HANSEN, R. R., LAWALL, J. L., ANDERSEN, J.,
PADIOLEAU, Y., AND MULLER, G. Towards easing the diag-
nosis of bugs in OS code. In 4th Workshop on Programming
Languages and Operating Systems (Stevenson, Washington, Oct.
2007).

[57] SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N., AND
LEVY, H. M. Recovering device drivers. ACM Trans. Comput.
Syst. 24, 4 (Nov. 2006), 333–360.

[58] Systemd. https://github.com/systemd/systemd.

[59] TARTLER, R., SINCERO, J., DIETRICH, C., SCHRÖDER-
PREIKSCHAT, W., AND LOHMANN, D. Revealing and repair-
ing configuration inconsistencies in large-scale system software.
International Journal on Software Tools for Technology Transfer
14, 5 (2012), 531–551.

[60] The kbuild-all archives.
https://lists.01.org/pipermail/kbuild-all.

[61] TORVALDS, L. Linux kernel source tree.
https://git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git/.

[62] Ubuntu.
https://packages.ubuntu.com/zesty/coccinelle.

[63] VAUGHAN-NICHOLS, S. J. Linux totally dominates supercom-
puters. http://www.zdnet.com/article/linux-totally-
dominates-supercomputers.

[64] Wine. https://github.com/wine-mirror/wine.git.

USENIX Association 2018 USENIX Annual Technical Conference 613

