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Abstract

Modern operating systems such as Linux are large,
complex pieces of software that are difficult to evolve,
even when the modifications appear to be system-
atic. In this paper, we consider the problem of evolv-
ing Linux to support the Bossa framework for sched-
uler development. In this framework, a new scheduler
connects to the kernel using events that are gener-
ated at specific scheduling points, which are scattered
throughout the kernel. To automate the evolution of
Linux to support Bossa, we use an aspect that de-
scribes how to instrument the kernel with event gen-
eration. This aspect uses rules that rely on tempo-
ral logic to identify the control-flow contexts in which
the aspect should apply. In this paper, we present
examples of rules that highlight the features of our
approach.

1 Introduction

Bossa is a framework aimed at simplifying the design
of kernel-level schedulers so that an application pro-
grammer can develop specific scheduling policies with-
out expert-level operating system (OS) knowledge [1].
A Bossa scheduling policy is written in a Domain Spe-
cific Language that permits high-level safety proper-
ties to be statically verified [12]. The policy is com-
piled into a C file that is either linked statically with
the kernel or installed dynamically as a kernel mod-
ule. To achieve scheduler modularity, the policy is
connected to the kernel using events (e.g., process cre-
ation, termination and un/blocking) that are gener-
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ated at specific locations, scheduling points, in nearly
all kernel services and drivers. These events are trans-
mitted to the scheduling policy by the Bossa runtime
system.

Bossa has been developed with the goal of indepen-
dence from the kernel, and has been implemented in
versions 2.2 and 2.4 of Linux. Currently, an OS ker-
nel is prepared for use with Bossa by manually track-
ing down scheduling points according to informally-
specified conventions and instrumenting these schedul-
ing points with calls to macros that generate Bossa
events. Even though this re-engineering needs to be
done only once for a given kernel, performing this
task manually is tedious and error-prone. The source
code of the Linux 2.4 kernel exceeds 100MB. The cur-
rent integration of Bossa into this version of Linux
includes over 300 event generations and supports 25%
of the available system services and 15% of the avail-
able drivers.

The wide distribution of scheduling points across
the kernel indicates that scheduling as a concern cross-
cuts OS kernel code and that Aspect-Oriented Pro-
gramming (AOP) should be useful to automate the
integration of Bossa into an existing kernel. Never-
theless, common AOP techniques [2, 9], based on in-
strumenting function call and return points, are not
sufficient for instrumenting kernel code with Bossa
event notifications. Kernel coding conventions specify
a precise sequence of instructions to carry out schedul-
ing actions, and Bossa event notifications must be
inserted at the level of these instructions. Further-
more, the choice of events is often determined by the
structure of an entire such sequence of instructions
rather than by a single operation. This advocates for
an application-specific transformation system that ad-
dresses the structure of kernel code.

In this paper, we present preliminary work on an as-



1 set_current_state(TASK_INTERRUPTIBLE);
a BOSSA_BLOCK(MEM_DMAREAD,current);
2 add_wait_queue(&md->lynx->mem dma_intr_wait, &wait);
3 run_sub_pcl(md->lynx, md->lynx->dmem_pcl, 2, CHANNEL_LOCALBUS);
b BOSSA_CHECK_PENDING_SIGNAL(MEM_DMAREAD,current);
4 schedule();
5 while (reg_read(md->lynx, DMA_CHAN_CTRL(CHANNEL_LOCALBUS))
6 & DMA_CHAN_CTRL_BUSY) {
7 if (signal_pending(current)) {
8 retval = -EINTR;
9 break;
10 }
c BOSSA_YIELD_SYSTEM_IMMEDIATE(MEM_DMAREAD,current);
11 schedule();
12 }
13 regwrite(md->lynx, DMA_CHAN_CTRL(CHANNEL_LOCALBUS), 0);
14  remove_wait_queue(&md->lynx->mem dma_intr_wait, &wait);

Figure 1: Excerpt of the PCILynx driver after Bossa instrumentation inserted

pect system that allows advice to be woven at the level
of granularity required for the integration of Bossa in
an OS kernel. Our approach is in the spirit of Event-
based AOP [4], in which crosscuts are defined in terms
of both arbitrary events that occur during program
execution and the relations between such events, thus
generalizing AspectJ’s pointcuts. Our main contribu-
tion consists of an aspect for kernel instrumentation
expressed as a set of transformation rules that use
formulas of temporal logic to precisely describe the se-
quences of source code instructions to which the rules
apply.

The rest of this paper is structured as follows: Sec-
tion 2 gives background information on scheduling
in Linux and corresponding Bossa events. Section 3
shows how Bossa kernel instrumentation can be de-
fined using rewrite rules based on temporal logic. Sec-
tion 4 presents related work and Section 5 concludes.

2 Linux Scheduling Points

The heart of scheduling in Linux is the function
schedule (), which preempts the running process and
elects a new process from among those that are cur-
rently ready. In this paper, we focus on this preemp-
tion of the running process, although our approach
is applicable to other scheduling actions. The ef-
fect of preemption depends on the current state of
the preempted process. Three states are commonly
used. TASK RUNNING indicates that the process re-
mains ready. TASK_INTERRUPTIBLE and TASK_UNIN-
TERRUPTIBLE indicate that the process blocks until
explicitly awakened. A process in the state TASK_IN-
TERRUPTIBLE can also be awakened by a timer or a
signal. In particular, if a signal is pending for the
process at the time of the call to schedule(), a pro-

cess in the state TASK_INTERRUPTIBLE does not block
at all; it remains ready as for a process in the state
TASK_RUNNING. Because state change operations and
calls to schedule () both influence how a new process
is elected, we consider both kinds of operations to be
scheduling points.

2.1 Bossa events in Linux

To illustrate the process of integrating Bossa into ex-
isting kernel code, we use an extract of the Texas In-
struments IEEE1394 PCILynx driver for Linux 2.4.18,
as shown in Figure 1 (code added for Bossa is shown
in italics). Lines 1-4 cause the running process to
block until the resource associated with the wait
queue md->lynx->mem dma_intr_wait becomes avail-
able. The loop between lines 5 and 12 causes the run-
ning process to repeatedly pause until it receives a
signal or the condition of the while loop is no longer
satisfied. This code contains three scheduling points:
the setting of the state of the running process to TASK-
_INTERRUPTIBLEin line 1, and the calls to schedule ()
in lines 4 and 11.

In Linux, the setting of the state of a process
to TASK_INTERRUPTIBLE amounts to a declaration
that the process should block at the next call to
schedule(), unless there is a pending signal. To in-
form the Bossa policy that the process should block,
we insert a use of the BOSSA_BLOCK macro at this point
(Figure 1, line a).

The treatment of a call to schedule() depends on
the current state of the running process. At the call
to schedule() in line 4, the state is known to be
TASK_INTERRUPTIBLE. In this case, we insert a use
of the BOSSA_CHECK_PENDING_SIGNAL macro (Figure 1,
line b). This macro checks whether there is a signal



pending for the running process; if one is detected
the policy is informed that the process should remain
ready at the next call to schedule(). At the call to
schedule() in line 11, the state of the running pro-
cess is TASK_RUNNING; this is the state of a process on
return from a call to schedule() (i.e., in line 4 or line
11) and there is no intervening process state change.
In this case, we insert a use of the BOSSA_YIELD_SYS-
TEM_IMMEDIATE macro (Figure 1, line c), which in-
forms the policy to prepare to preempt the running
process such that the process remains ready.

The Bossa events do not affect the algorithm ex-
pressed by the PCILynx driver code. Instead, they
inform the Bossa scheduling policy of the state of the
running process, so that the policy can use this infor-
mation when it next elects a new process.

2.2 Automating Linux instrumenta-

tion

We now consider some issues that arise in automat-
ing the instrumentation process. Our analysis of the
Linux kernel code suggests that an intraprocedural
analysis is sufficient to detect patterns of scheduling
points. Furthermore, in each case where a change to
a process state follows such patterns, the affected pro-
cess is the running process. Thus, we do not need to
detect aliases between process references. The pro-
gram patterns we consider always appear in one of
only a few fixed forms. For example, the setting of
the process state is expressed by either the direct
assignment of a constant state value to the state
field of the process, or by use of a macro, such as
set_current_state, that has the same effect.! Thus,
a dataflow analysis is not needed. Overall, these prop-
erties imply that automatic instrumentation need not
be prohibitively expensive.

Every occurrence of TASK_INTERRUPTIBLE should to
be instrumented with BOSSA_BLOCK. Thus, a transfor-
mation rule that only examines individual instructions
is sufficient in this case. The instrumentation of a
call to schedule (), however, depends on the state of
the running process, which in turn depends on the
set of updates to this state that can reach the call to
schedule(). A static analysis to determine the set of
such updates must potentially take many instructions
into account, and these instructions can appear both
before and after the given call to schedule(). For
example, treatment of the call to schedule() in line
11 of Figure 1 requires considering both considering
the code preceding the while loop and the entire loop

Mn this paper, we assume that set_current_state is always
used.

set_current_state (TASK_INTERRUPTIBLE) ; ‘

run_sub_pcl();

schedule () ; true

retval=-EINTR;

reg_write();

remove_wait_queue () ;

Figure 2: CFG for excerpt of PCILynx driver

body. We thus argue for a flow-sensitive method to
express Crosscuts.

3 Describing Crosscuts using
Temporal Logic

Temporal logic is a logic that is commonly used to ex-
press properties of sequences of events. This logic is
often used to define properties verifiable using model
checking [8], and has been found to be useful for de-
scribing paths in control-flow graphs in order to guide
compiler optimizations [10]. Following the latter work,
we implement an aspect for Bossa integration as a
collection of rewrite rules that use temporal logic to
describe conditions under which Bossa event notifica-
tions should be inserted in kernel code.

3.1 Rewrite rules

We propose to define rewrite rules based on control-
flow graphs (CFGs), i.e., graphs in which nodes rep-
resent statements and decision points of the program
and edges connect nodes that can be executed in se-
quence. Figure 2 shows the CFG for the code excerpt
of Figure 1.

We use rewrite rules of the form:

LHS = RHS If condition



where LHS is a pattern to match against CFG nodes,
RHS describes the code that should replace the code
represented by the given node when this match suc-
ceeds, and condition describes the conditions under
which this transformation should take place.

An example of such a rule is:

n : (set_current_state (TASK_INTERRUPTIBLE);) =
{n; BOSSA_BLOCK(fn_name,current);}

The left-hand side of this rule matches a node repre-
senting the statement set_current_state(TASK_IN-
TERRUPTIBLE) and labels this node n. The right-hand
side of the rule indicates that the matched statement
should be replaced by a sequence consisting of the orig-
inal statement and generation of a BOSSA_BLOCK event.
As explained in Section 2.2, this rule applies whenever
the state of the running process is set to TASK_INTER-
RUPTIBLE, and thus no condition is needed.

3.2 Predicates

To simplify the presentation of the rewrite rules, we
define some predicates that describe relevant con-
structs in the source program.

The predicate stmt(s) holds of any node repre-
senting a statement of the form s. The predicate
If-t(e) (or If-f(e)) holds of any node representing the
test portion of a conditional statement, where the
test is the expression e and the current control-flow
path includes the true (or false) branch of the test.
Typical examples are stmt(schedule()), which holds
at any node representing a call to schedule(), and
If-f(signal pending(current)), which describes the
failure of a test for a pending signal for the current
process. The predicate Entry() holds of the node rep-
resenting the entry point of the current function.

To refer to instructions that set the process
state to a specific value, we use the predicate
set_state(t) where ¢ is the name of a Linux process
state. For example, set_state(TASK_INTERRUPTIBLE)
matches set_current_state(TASK_INTERRUPTIBLE).
Other predicates match more general sets of state
changing operations. The predicate change_to_block-
ing() holds of a node representing a statement that
sets the state of the running process to indicate
that the process should block. Examples include
set_current_state (TASK_INTERRUPTIBLE) and set-
_current_state (TASK UNINTERRUPTIBLE). Similarly,
change_to_running() holds of a node representing a
statement that sets the state of the running process to
indicate that the process should remain ready. Exam-
ples include set_current_state(TASK_RUNNING) and
schedule(). Finally, we define change_of_state() to be
change_to_blocking() V change_to_running().

3.3 Describing CFG nodes and paths

The conditions in our rewrite rules describe properties
of the nodes along a collection of paths in a CFG. For
this purpose, we use judgments of the form: n F ¢
where n is a node of the CFG and ¢ is a formula of
temporal logic (specifically, a variant of CTL [10]).
Formulas in this logic are as follows:

| = | o1 A2 | b1V ¢o

A(p1 U ¢2) | E(¢1 U ¢2)

AA(p1 U ¢2) | EA(¢1 U 2)

| AX(¢) | EX(¢) | AXA(9) | EXA(9)

¢:::;|p
|

The formula p is any proposition. The operators —,
A, and V are defined as in propositional logic. The
remaining formulas describe universally and existen-
tially quantified collections of paths. We illustrate the
semantics of these formulas by examples.

A judgment of the form n F A(¢1 U ¢2) is satis-
fied if for each path beginning at n, every node along
the path satisfies ¢, until a node n' satisfying ¢ is
reached, or the path loops infinitely and every node
in the path satisfies ¢1.2 The node n' need not satisfy
¢1. For Bossa, we are primarily interested in analyzing
nodes whose execution precedes a call to schedule(),
and thus we consider paths that end, rather than be-
gin, at the given node n. Such a backwards search is
expressed by the operator A; thus, we typically use
judgments of the form n F AA(¢1 U ¢) rather than

Our analysis of the instrumentation of Linux for
Bossa (Section 2.1) suggests that we would like to de-
fine a specific treatment of schedule() that should
apply when the state of the running process is known
to be, e.g., TASK RUNNING. A necessary condition is
that every control-flow path ending in the node n
representing the given call to schedule() changes
the state of the running process to TASK_RUNNING or
reaches the entry point of the function. We express
this condition as follows:

n F AA(True U (change_to_running() V Entry()))

The proposition True holds at any node. The propo-
sition change_to_running() V Entry() holds at any node
setting the state of the running process to TASK_RUN-
NING as well as at the entry point of the function. The
complete formula thus checks that an assignment of
the state to TASK_RUNNING occurred at some previous
node n', but puts no conditions on the nodes between
n and n'.

The formulas E(¢1 U ¢2) and EA(¢p U ¢2) are
analogous to A(¢; U ¢2) and AA(¢1 U ¢2) but only

2Technically, we use the “weak” form of A(¢1 U ¢2).




require the existence of a path whose nodes satisfy the
subformulas. Here, however, looping is not allowed;
the path must contain a node that satisfies ¢. As an
example, to express that there ezists a backward path
from node n, that eventually reaches a node satisfying
change_to_running() V Entry(), we use the judgment:

n = EA(True U (change_to_running() V Entry()))

In some rules, the analysis should start at all of the
nodes preceding the given node n. This is expressed
by the formula AX A(¢), which specifies that all direct
predecessors of the current node must satisfy ¢. The
following judgment states that all backwards paths
starting from each of the nodes preceding n eventually
reach a node satisfying change_to_running() Vv Entry():

nk AXA(AA(True U (change_to_running() V Entry())))

The dashed arrows in Figure 2 represent the paths
whose nodes are tested in checking this judgment
with respect to the node representing the call to
schedule() within the while loop. EXA(¢), AX(¢),
and EX (¢) are defined analogously.

3.4 Instrumenting calls to schedule()

As a first example of a rule using these temporal op-
erators, we consider the instrumentation of a call to
schedule() when the state of the running process is
known to be TASK_RUNNING. In this case, a use of BOS-
SA_YIELD_SYSTEM_IMMEDIATE should be inserted be-
fore the call to schedule (). The transformation itself
is expressed as follows:

n: (schedule();) =
{BOSSA_YIELD_SYSTEM_IMMEDIATE (fn_name,current) ;n}

To complete the rule, we must express the condi-
tions under which this transformation applies:

e Starting from the predecessors of n every back-
wards path should lead either to a node that sets
the process state to TASK_RUNNING, (i.e., where
change_to_running() is true) or to the first instruc-
tion of the current function.

e On these paths there should not be any interme-
diate change of the process state (i.e., change_of-
_state() should be false at each node before the
end of such a path).

We express these conditions as follows:

n F AXA(AA(—change_of state() U
(change_to_running() V Entry())))

We next consider instrumentation of a call to sche-
dule() when the state of the running process is
known to be TASK_INTERRUPTIBLE. If it is possible
that a signal is pending for the running process,
BOSSA_CHECK PENDING_SIGNAL should be inserted be-
fore the call to schedule(). The transformation itself
is expressed as follows:

n: (schedule();) =
{BOSSA_CHECK_PENDING_SIGNAL (fn_name, current) ;n}

To verify that the state of the running process is
TASK_INTERRUPTIBLE, we use the following condition:

n - AXA(AA(—change_of_state() U
set_state(TASK_INTERRUPTIBLE)))

To verify that a pending signal is possible, we also
check that there is some control-flow path to the call
to schedule() on which a test for a pending signal
has not already been performed:

n+ EXA(EA(-If-f(signal_pending(current)) U
(stmt(schedule() ;) V Entry())))

It is straightforward to see that this rule applies to
the call to schedule () before the while loop in Figure
2. More interestingly, we observe that the rule does
not apply to the call to schedule() in the body of
the while loop. Specifically, the first condition fails.
Every backwards path from this call to schedule()
either loops or eventually leads to the setting of the
state of the running process to TASK_INTERRUPTIBLE,
but each non-looping path contains the first call to
schedule (), which performs a change of state. This
example thus illustrates the usefulness of temporal
logic in this setting.

4 Related Work

AspectC is an aspect system targeted towards C code
and has been used to implement various OS concerns
[2, 3]. In this work, the cflow construct of AspectJ
has been found useful to describe the set of functions
that should appear on the call stack if an aspect is to
apply. Walker and Murphy have further proposed to
consider ordered sequences rather than simply sets of
pending calls [14]. While the order of operations is
essential to our rules, our rules depend on sequencing
of individual instructions rather than nested function
calls. Furthermore, cflow describes dynamic control
flow, whereas a specific Bossa event notification can in
almost all cases be chosen statically, leading to more
efficient code than a dynamic solution.



There have been several uses of logic in specifying
non-local properties in program transformation rules.
Lacey and de Moor proposed to use temporal logic
to describe conditions on rewrite rules [10]. We fol-
low their approach here. Subsequent work by Lacey
et al. showed how to prove the correctness of standard
compiler optimizations based on this approach [11].
Drape et al. have developed a variant of logic pro-
gramming that permits to conveniently express rules
of the form we have used here [5]. Nevertheless, their
target is .NET rather than kernel C code.

Metal is a language for writing static checkers, that
are then executed using the xgcc static analysis en-
gine [7]. Metal checkers have been used to find many
bugs in Linux and OpenBSD [6]. Although the goal of
Metal and xgcc is to check properties, xgce provides
some functions for modifying the abstract syntax tree
that could possibly be used for program transforma-
tion. The main difference between Metal and our ap-
proach is in the underlying logic that is used. Metal
is essentially a language for describing state machines.
While arbitrary C code can be invoked, thus extend-
ing the expressiveness of the language, this code must
be manually verified to satisfy the independence and
determinacy conditions imposed by xgcc. Indeed, our
rules rely on existential and universal quantification
over paths, and cannot be expressed in Metal without
resorting to the use of C code. By expressing our rules
completely within a single logic, we are assured that
the rules are well-defined. Furthermore, we can profit
from a large body of research on understanding and
implementing temporal logic, and our rules serve as
an unambiguous form of documentation.

5 Conclusion

In this paper, we have presented an AOP-based trans-
formation system for re-engineering an existing OS
kernel to support the Bossa framework. The aspect
defines rules that use the temporal logic CTL to de-
fine conditions for instrumenting the original kernel.

At the current state of our work, we have defined
a set of 15 rules that are sufficient to carry out the
instrumentation of the Linux 2.4 kernel that we pre-
viously performed by hand. Preliminary inspection of
the remaining Linux code does not reveal any issues
that these rules do not address. We are currently im-
plementing our approach using the CIL infrastructure,
developed by Necula et al. [13]. This implementation
will both transform code that satisfies the rules and
warn the user about unanticipated patterns of schedul-
ing points.

In the longer term, we plan to port Bossa to other

OSes, such as BSD and Windows, and to apply the
Bossa approach to other system services. We antic-
ipate that aspects should be useful to integrate the
framework with the OS in these settings as well.

The Bossa prototype is available at
http://www.emn.fr/x-info/bossa.
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