Development of a Synchronous Subset of AADL *

M. Filali' and J. Lawall?

I IRIT-CNRS ; Université de Toulouse ; 118 route de Narbonne, F-31062 Toulouse, France
2 DIKU, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark

Abstract. We study the definition and the mapping of an AADL subset: the so
called synchronous subset. We show that the data port protocol used for delayed
and immediate connections between periodic threads can be interpreted in a syn-
chronous way. In this paper, we formalize this interpretation and study the devel-
opment of its mapping such that the original synchronous semantics is preserved.
For that purpose, we use refinements through the Event B method.

1 Introduction

Model-based design has emerged as one of the most important design paradigms in
recent years. High level models allow the developer to concentrate on the function-
ality to be offered rather than implementation details. The Architecture Analysis and
Design Language (AADL) [11] is by now considered as a mature alternative for mod-
eling embedded and real time systems. AADL has been standardized by the SAE [19],
and features of AADL have influenced the MARTE OMG standard [10]. As a succes-
sor of the MetaH language [16] developed by Honeywell Labs and used in numerous
experiments in avionics, flight control, and robotic applications, AADL capitalizes on
more than 10 years of experience. AADL also builds on the experience acquired during
the development of Architecture Description Languages (ADLs) such as ACME and
Wright [3].

In this paper, we study the AADL data port protocol, which defines the semantics
of delayed and immediate connections between periodic threads. This is a fundamental
protocol that lies at the heart of any embedded AADL-based platform. We show that
the data port protocol can be interpreted in a synchronous way [6]. Nevertheless, this
interpretation does not provide a satisfactory basis for implementation in embedded sys-
tems, as the stack depth entailed by recursive calls is only bounded by the least common
multiple of the periods of all of the threads, which can be very large. We thus present
the development of a mapping of the synchronous semantics of the AADL data port
protocol into an iterative implementation, such that the original synchronous semantics
is preserved. For this purpose, we use refinements through the Event B method [2].

After a brief overview of AADL and Event B in Sections 2 and 3, we motivate the
proposed development in Section 4. Section 5 presents the successive refinements of the
development. Section 6 outlines the validation of the development. Before concluding,
we review some related work in Section 7.

* This work was partly supported by the French AESE project Topcased and by the region Midi-
Pyrénées.

2 AADL

AADL includes all the standard concepts of any ADL, e.g., components, connectors to
describe the interface of components, and connections to link components. AADL dis-
tinguishes between three kinds of components: software components (process, thread,
thread group, subprogram, and data), hardware components (processor, bus, memory,
device), and system components.

2.1 AADL threads

In AADL, threads are the only components that have an execution semantics. AADL
supports the classic types of thread dispatch protocols: a thread can be declared to be
periodic, aperiodic, sporadic or background. All of the standard properties (worst case
execution time (WCET), deadline, etc.) used to describe a real-time system exist in
AADL. In the following, we consider periodic threads only. A periodic thread is dis-
patched within every period.> When a thread completes its execution, it goes to the
“awaiting_dispatch” state until its next period. The thread’s actual execution time is
bounded by its WCET and must end by its deadline.

2.2 AADL data port protocol

AADL defines three types of ports: data, event and event data ports. Data ports al-
low communication via a single word (a register). Event and event data ports represent
buffered communications. In this paper, we consider only data ports.

A data port connection can be declared as delayed or immediate. If the connection
is delayed, data is available at the deadline of the sending thread. If the connection is
immediate the receiving thread must wait for the sending thread to complete to start its
execution. Figure 1 illustrates the instants where execution and these communications
take place. One key aspect of the AADL data port protocol is that communications
between a thread and its environment occur at well defined instants:

— In general, a message is copied at the dispatch (data event in Fig. 1); in the case of
an immediate connection, a message is copied at the start of execution (immediate
data in Fig. 1).

— A message is actually sent at the completion, in the case of an immediate connec-
tion, or at the deadline, in the case of a delayed connection.

3 A Brief Overview of Event B

Event B stems from the B method [1]. One of the goals of Event B is to reason about
so called reactive systems [15]. Like B, Event B is based on set theory together with
first-order logic. It proposes refinements as the main software development concept.
However, instead of B operations, Event B proposes events, which are simpler.

3 We consider here AADL V1 which does not take into account the phase of a periodic thead.

immediate

data immediate d
. elayed data
event data data y
dispatch start of complete deadline

execution

Fig. 1. Communication through data ports in AADL.

3.1 Basic principles

The basic structuring concepts of Event B are the confext and the machine. A context
contains sets, constants and their properties (axioms and theorems). A machine contains
a system specification. A system specification sees contexts and defines a static and a
dynamic part. The static part defines a state space through variables. These variables
are “typed” and more generally specified by invariants. The dynamic part defines a be-
havior through an initialization event and a set of events. Each event can be considered
as a non deterministic guarded command [9]. The guard is specified by a conjunction
of predicates and the command is specified as a set of substitutions.

3.2 Notation

For the most part, Event B uses standard set notation. Some notation that is specific to
Event B is as follows:

— pair construction: Pairs are constructed using the maplet operator —. A pair is
thus denoted (a — b) instead of (a,b).

— restriction to the domain: F <R={x—y|(x—y) ERAXEF}

— overwrite: Q < R = ((dom(Q)\dom(R)) <1Q) UR

4 Motivation of the Development

In this section, we motivate our development by presenting the specification view of the
data port protocol and some features of the operational view. The specification view is
intended to be used when reasoning over the protocol. The operational view is intended
to be used for an actual implementation. For instance, the operational view takes into
account the times where:

— the computations take place: at the period;
— the outputs are made avaliable: at the completion or at the deadline.

The goal of the development is to establish that the operational view refines the
specification view.

First, we illustrate the two views through a toy AADL architecture, shown in Fig-
ure 2. In this architecture, we have three periodic threads: t1, t2 and t3. The period
and deadline of t1 are both 10. That of t2 are 10 and 5, respectively. That of t3 are 15
and 5, respectively. Thread t1 has two output ports o1, 02 and two input ports 14 and
i5. Thread t2 has one output port 05 and two input ports i1 and 13. Thread t 3 has two
output ports 03 and o4 and one input port 12. In each case, output port oi is connected
to input port ii, via either a delayed (d) or an immediate (1) connection. We further-
more adopt the convention that inside a thread, input and output ports are linked through
implicit immediate connections (an output can be linked to any subset of inputs).

L) d
i5 ol il 2
o5

period: 10 period: 10
i4 deadline: 10 02 i3 deadline: 5

. 3: 03
i2 period: 15

deadline: 5 o4 j
d

Fig. 2. A toy AADL architecture.

4.1 The specification view

In the specification view, computations are assumed to occur at precise time instants.
In this study, we assume that computations occur at the beginning of their period, and
do not take time. Still, their results are available only at the deadline. This ensures
conformity with an effective implementation in which computations do take time but
respect the deadlines. Computations can depend on each other in:

— either a delayed way: at time t, the computation for port p depends on the compu-
tation that occured for port p’ at its most recent deadline.

— Or in an immediate way: at time t, the computation for port p depends on the
computation that occured for port p’ at the same time t, if any. The result of this
computation is then buffered in p for use in subsequent computations until a new
result is available from p’.

These two causality relations are given through the following relations:

Pred_D € P(Port x Port) // delayed port predecessor relation
Pred_I € P(Port x Port) // immediate port predecessor relation

The Pred_D and Pred_I port predecessor relations for the example shown in Figure 2
are the following:

Delayed port predecessor relation || Immediate port predecessor relation
{(i1— o0l),(i4 — 04),(i5 — 05)} {(i2+— 02),(i3 — 03)}

Remark. The “hidden” immediate relations between each input port and each output
port of a thread are not shown.

The constants C_D (resp. C_I) are used to define the computation tasks for each
delayed (resp. immediate port). A computation task is parameterized by

— the identity of the port at the end of a connection,
— the values of the ports at the beginning of a connection, at preceding times for
delayed ports or at the current time for immediate ports.

As delayed connections only appear between threads, C_D only transfers values from
a single output port to a single input port. C_I does the same for connections between
threads, and carries out the thread’s computation for the “hidden” connections within
threads. Then, the recursive Compute function is defined for delayed and immediate
ports as follows:*

Compute(t)(p)
delayed(p) .
A t%period(p) = 0 C_D(p)({gq — Compute(Deadline(t — q))(q) | g — p € Pred_D})
immediate(p)

A t%period(p) =0
A Vg € Pred_T7!(p).
t%period(q) =0

C_I(p)({g — Compute(t)(q) | g — p € Pred_I})

else Compute(r — 1)(p)

where ¢ is not equal to 0.

Remark: In the preceding table, we have adopted the usual mathematical notation {exp |
boolean_exp} for set comprehensions. In event B, the quantified variables would be
made explicit and the order of the terms changed as follows: {vars.boolean_exp | exp}.

The expression Compute(?)(p) deserves some explanation. For a delayed port it
is computed over the predecessor ports g (according to the Pred_D relation) at their
respective deadlines: Compute(Deadline(t — g))(g). For an immediate port, it is com-
puted over the predecessor ports g (according to the Pred_I relation) at the current
time 7: i.e., Compute(?)(g). In general, the value of a port p is computed at its pe-
riod: period(p); for an immediate port, it is actually computed if its period aligns with
those of its predecessors; otherwise it remains unchanged.

Discussion. This initial specification is functional. It follows that, assuming the ter-
mination of the Compute function, the specification can be considered as executable.
However, we remark that such code cannot be considered as executable in the context
of an embedded system. In particular, the memory resources needed for executing such
a code are not a priori bounded, i.e., the code does not have the constant space property.
Indeed, the depth of the required stack to handle recursive calls depends on the least

4 9 denotes the infix modulo function.

common multiple of the periods of the various threads. Then, from a technical point of
view, the goal of the refinements that will be introduced in Sections 5.3 and 5.4 can be
seen as the implementation of this recursivity through bounded memory independently
of parameter values.

4.2 The operational view

The operational view introduces a scheduler that manages the data port architecture.
The information needed by this scheduler is given by the RealTime context. Id1le and
Deadline are the basic structures used by such a scheduler.

Idle € N—P(Port) : for a time ¢, the list of idle ports.
Deadline € Port x N— N : for a delayed port p and a time ¢, the (time) value of the
most recent deadline

We illustrate these static structures by instantiating them according to the architec-
ture shown in Figure 2.

Data structures of the architecture example

— Idle returns the list of idle ports at time 7.

Idle| 1—-9 Port

Idle| 10 {i2,03,04}
Idle|11 — 14 Port

Idle| 15 |{il,i3,i4,i5,01,02,05}
Idle{16 — 19 Port

Idle| 20 {i2,03,04}
Idle|21 — 29 Port

— Deadline is a function which gives for a delayed port p and a time 7, the (time)
value of the most recent deadline.

Deadline(o1,0—9) |0 |[Deadline(04,0—4) |0 ||Deadline(05,0—4) |0
Deadline(o1,10 — 19)| 9 ||Deadline(04,5 — 19) | 4 ||Deadline(05,5— 14) |4
Deadline(o1,20 — 29)|19||Deadline (04,20 — 29) 19| |Deadline(05, 15 — 24)| 14

Deadline(05,25 — 29) (24

Algorithm of the scheduler. B does not offer mechanisms for real-time programming,
such as dedicated primitives for awaiting clock interrupts. In the proposed Event B
machines, guards model the real-time clock triggers. Once an event is triggered, all
the enabled events at that time are executed until none of them is still enabled. Then,
the processor idles until the next clock tick. In this paper, we consider that the time
between two clock ticks is sufficient to handle all the enabled events. In that way, we
do not lose any clock tick and all the events take place in zero time according to the
synchronous abstraction. The main loop consists of time-triggered iterations. For our
toy example, iterations are triggered at 0, 10, 15,20, 30, etc., which correspond to the

periods of the threads of our example. Each iteration first handles the ports that should
run at that time and then prepares the next iteration. Handling ports is done through
the ComputeDelayed and ComputeImmediate events. Preparing the next iteration is
done through the Tick event. In the last refinement, these events are exclusive and
deterministic.

Synthesis. The operational view of the considered AADL subset is a mix between a
time-triggered machine and a data-flow machine. Ports are updated according to their
period. Immediate connections enforce a send-receive synchronization.

5 Abstracting and Refining the AADL Data Port Protocol

In this section, we formalize the fact that if we restrict AADL to connections with the
data port protocol, we have a synchronous computation model. For that purpose, we
first exhibit a model of the protocol from which we derive another model, based on
histories, close to the description given in the previous section. A third model is derived
for considering implementation related issues with respect to the boundedness of the
used memory and the time for evaluating new port values. To summarize, we consider
the following refinement-based development, where C is B notation for “refined by”:

MACHINE |Spec |C|I_Spec|C|P_Spec |C|M_Spec C|Scheduler
CONTEXT |Ports| [I_Ports| |M_Ports| |S_Compute

— Spec is the initial specification representing the abstraction of the AADL protocol.

— I_Spec is the refinement where Idle ports are introduced.

— P_Spec is the refinement where a Partition of ports is introduced. Immediate ports
are computed.

— M_Spec is the refinement where port buffering through a memory is introduced.
Delayed ports are computed.

— Scheduler is the final refinement where port updates are scheduled according to a
total order.

5.1 The specification

This is the initial specification for the AADL data port protocol as the time parame-
terized function Compute. The variable ports records the value of this function at each
point in time through the Initialisation and Tick events. This recording is done
atomically so that no value returned by Compute is lost: between two events, Compute
stutters.

The static description. We have three variables:

— t is the current time,
— ports maps ports to their current value,

— b is a previous time, such that ports has not changed since b until ¢ (excluded).
inv5 states that we have not missed any value in the interval b..# — 1: the range of
the Compute function over this interval is a singleton.

MACHINE Spec
SEES Ports

VARIABLES t ports b

INVARIANTS
invli: teNAO<?t
inv2: ports € Port— Val
invd: be NAD <t
inv3: ports = Compute(b)
inv6: Compute[b..t— 1] = {Compute(b)}

The dynamic description. The basic idea is that, in order to preserve our basic invariant
inv5 , the time ¢ is advanced to a new value ¢’ such that ports remain constant from 7 to
' —1.

Initialisation
begin
actl: t:| ¥ e NAO < A Compute[0..(f —1)] = {Compute(0)}
act2: ports := Compute(0)
act3: b:=0
end

Event Tick =
begin
actl: t:|f € NAt < AComputelt..(f' — 1)] = {Compute(t)}
act2: ports := Compute(t)
act3: b=t
end

5.2 Introducing idle ports and atomicity breaking through silent steps

In this refinement, we introduce Idle ports: a port is Idle at time ¢ if it has the same
value as at time ¢ — 1 (see the definition of the Compute function in Section 4.1). In-
tuitively, a port is idle when the thread to which it belongs is not active, i.e., after the
deadline. Moreover, non idle ports are now not updated atomically: we introduce a silent
Step event for updating them incrementally through the variable compute.

Basic sets. We introduce the constant time parameterized function Idle:

CONTEXT I_Ports
EXTENDS Ports
CONSTANTS 1Idle
AXIOMS
axml : Idle € N—P(Port)
axm3: Vt-(t e N=(Vp-p € Port=(p € Idle(t+ 1) = Compute(t+1)(p) = Compute(t)(p))))
END

The static description. We introduce the variable compute to incrementally record port
updates: recorded ports define the domain of the compute function (array). The invariant
inv2 states the correctness of this recording; any recorded slice is equal to the range of
the Compute function over the same slice. The invariant inv4 states that idle ports are
implicitly recorded.

VARIABLES t ports compute b

INVARIANTS
invl: compute € Port -+ Val
inv2: Vd-(d C dom(compute) = d <t compute = d <| Compute(t))
inv4 : Idle(t) C dom(compute)

The dynamic description.

Initialisation
begin
act3: t,compute:|i' ENANO <V
At # 1= 1dle[l .. (! —1)] = {Port})
A compute’ = Idle(t") <t Compute(0)
actl: ports := Compute(0)
actd: b:=0
end

A silent step can occur if there exists some port not yet recorded:

Event Step =

any p
where

grdl: p € Port

grd2: p ¢ dom(compute)
then

actl: compute(p) := Compute(t)(p)
end

A tick can occur if all the ports have been recorded:

Event Tick = refines Tick
when grdl: dom(compute) = Port
then
actl: t,compute:|t e NAt<?
NE #t+1=1dle[(t+1)..(f —1)] = {Port})
A compute’ = Idle(1') <t compute
act2: ports := compute
act3: b:=t
end

5.3 Partitioning the ports

In this refinement, we partition ports into delayed and immediate ports. We also intro-
duce the computation pattern for immediate ports. At time ¢, the computation function
for an immediate port takes into account the values of other ports at the same time ¢. It
follows that the value of such predecessor ports should have been computed before and
more generally that the predecessor relation should be acyclic.

Basic sets.

CONTEXT P_Ports
EXTENDS I_Ports
CONSTANTS Delayed Immediate
AXIOMS

axml : Delayed C Port

axm?2 : Immediate C Port

axm3: partition(Port, Delayed,Immediate)
END

The static description.

VARIABLES t ports compute b

The dynamic description.

Event Computelmmediate = refines Step

any p
where

grdl: p € Immediate

grd2: p ¢ dom(compute)

grd3: Pred_I'[{p}] C dom(compute)
then

actl: compute(p) = C_I(p)(Pred_I~'[{p}] < compute)
end

5.4 Introducing port buffering

In this refinement, we make precise the computation pattern for delayed ports. At time 7,
the computation function for a delayed port takes into account the values of other ports
at their last deadline. In order to give access to such past values, we use a buffering
mechanism. The boundedness of such a buffering is ensured thanks to the properties of
the Deadline function (see properties (1) of Section 6.2).

Event ComputeDelayed = refines ComputeDelayed
any p where
grdl: p € Delayed
grd2: p ¢ dom(compute)
then
actl: compute(p) := C_D(p)(Pred_D~![{p}] <mem)
end

5.5 Port update scheduling

This is our last refinement step. As already discussed in Section 4, the events of this
refinement are deterministic and the choice between them is exclusive. Although, un-
like classic B, an implementation refinement is not supported by Event B, we believe
that this refinement is significant with respect to a true implementation of an AADL
data port scheduler. In fact, the only data structure that remains as non implementable
with respect to classic B, is the compute partial function. The implementation of partial
functions can be considered now as part of the folklore and could be done by automatic
refinements as proposed by [18].

10

6 Development Validation

In this section, we relate some facts about the proposed development. The first one
concerns the development proofs and the second one concerns a technical aspect about
the resources needed to handle recursive calls.

6.1 Proof obligations

Most of the development has been done with the Rodin platform. There remain, how-
ever, some proofs that cannot be done with Rodin mainly related to the last refinement.
This refinement relies on lists (B sequences) which are not yet supported by Rodin. It
was thus easier for us to translate (manually) the development to Isabelle [17] and carry
out all of the proofs within its proof environment. In fact, thanks to the locale mecha-
nism of Isabelle it is easy to simulate Event B context extensions and machine refine-
ments. However, since Isabelle is a general purpose theorem prover and not a method
dedicated prover like Rodin, proof obligations related to invariant preservation, refine-
ment and event feasibility had to be generated by hand. Fortunately, Isabelle decision
procedures are very powerful and most of the proofs were straightforward.

6.2 Recursive function patterns

In this section, we present the basic ideas underlying the proposed implementation of
recursive calls with bounded memory. In our representation of the AADL data port
protocol, we have essentially two patterns:

— well-founded recursion: this pattern was used for the computation of immediate
ports (see Section 4.1). Let us recall that the values of these ports depend on other
immediate port values.

Compute(r) (p) = C_I(p)({g — Compute(t)(q) | g — p € Pred_I})

Such a computation is possible because we assume that that Pred_I is an acyclic
relation. Thus, the computation proceeds according to a total order compatible with
that acyclic relation. It follows that when an element is processed, all the lower el-
ements have been processed already. Thus, the computation uses a finite number of
finite resources: the number of port buffers. We note that each element is processed
once. Such a property is not provided by a basic implementation of recursivity.
Memoization could have been used; but, since all the elements are, a priori, known
and have to be processed, the proposed order-based evaluation strategy is more
efficient since it avoids testing if an element has already been processed.
— past recursion: this pattern was used for the computation of delayed ports:

Compute(t)(p) = C_D(p)({g+— Compute(Deadline(r — ¢))(q) | g+— p € Pred_D})
where Deadline has the following properties:

Deadline(0) = 0 A Deadline(z + 1) # Deadline(z) = Deadline(s + 1) =¢ (1)

11

In fact, thanks to these properties of the Deadline function, such a pattern can be
implemented through the following primitive recursive pattern:

fO)=cnfln+1)=g(f(n),n+1)

Actually, for such a pattern, the value of f(n) can be computed with one register
and one counter: initializing the register with ¢ and the counter with 0, we compute
the successive values of f(i) until the counter values reaches n. Correctness is en-
sured by the invariant counter < n A register = f(counter) and termination by the
variant n — counter.

The underlying idea of the preceding proposed implementation (Section 5.4) can
be summarized as follows: in order to compute f(Deadline(¢)) without recursion,
we define an auxiliary primitive recursive function a such that:

a(0) =Deadline(0) Aa(n+ 1) =if Deadline(n+ 1) = Deadline(n) then a(n) else f(n)

We show by induction on n that Vn. a(n) = f(Deadline(n)). Then, since a is primi-
tive recursive, f(Deadline(n)) can be computed in an iterative way with finite mem-
ory resources. It follows that the computation of f;(n) which requires the knowl-
edge of fiecr(Deadline(n)) also requires finite memory resources since the set I is
a priori known.

Remarks.

— We have given here one underlying idea of the proposed implementation. It can
be reused as a pattern for implementing a recursive function with an unknown re-
cursion depth with bounded memory resources. In a similar way, the other idea
concerns the implementation of well-founded recursion.

— The proposed implementation (Section 5.4), does not recompute the result of itera-
tions from one call to another.

7 Related Work

It is becoming acknowledged that one way to make things abstract is to consider them
at a level where we have a coarse grain of atomicity. Implementation details are then
introduced progressively while maintaining the properties of the coarse grain events.
For instance, along these ideas, bus protocols have been developed starting from a syn-
chronous view [12]. In these protocols, the concern is to ensure the correct behavior
of the devices with respect the bus lines while establishing basic properties like mutual
exclusion between the connected devices. We have been concerned by another safety
property: the preservation of a precedence relation given by a functional specification.
With respect to the specific domain we have been concerned with: computation
scheduling, we can cite the work of Stoddard et al. [20] about interrupt scheduling. We
note that they are especially concerned by interrupt handling and not by communication
aspects. Their work is also concerned by making proofs for an unknown number of
tasks. Scheduling aspects have also been dealt with in [13]. Here, the main concern was

12

to provide a constructive specification of the problem such that certified code could be
extracted by the Coq system [5].

The work of [14] has also a semantic concern with respect to AADL. Its aim is
to provide a synchronous execution platform for AADL. A Lustre [8] translation se-
mantics of the basic mechanisms is proposed. Thanks to this approach, a model of the
whole system is obtained. This model is executable and its properties can be expressed
by means of synchronous observers; also, it can be validated or simulated thanks to the
specification of the environment and the automatic generation of input sequences. As
we have said, this is a translation semantics approach, whereas our work is concerned
by the validation of an operational semantics with respect to a denotational semantics.

8 Conclusions

In this paper, we have been concerned by the formalization of an existing protocol
offered by the AADL architecture description language. Although the protocol descrip-
tion was precise, we believe that the proposed abstraction through a functional specifi-
cation is interesting since it is compact and allows to reason about the protocol without
going to the intricacies of the implementation. Moreover, although, an implementation
can be obtained directly from such a functional description, our proposed implemen-
tation relies on, a priori known, finite resources, as is mandatory for an embedded
environment. Technically, we have shown that, in some cases, the memory resources
needed to handle recursive calls can be, a priori, bounded even if the recursion depth
depends on the parameters. It would be worth studying how to facilitate the reuse of
such techniques through specification patterns as proposed by [4] and [7].

Concerning future work, we envision to introduce quantitative timing aspects. In
this paper, we have made the assumption that computations take zero time, or more
concretely, that all the required computations take place between two ticks and respect
the real time specification deadlines. More generally, we are interested in providing
patterns for implementing abstract functional synchronous languages [6] or subsets of
AADL [11] on top of concrete asynchronous architectures.

References

1. J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press,
1996.

2. J.-R. Abrial, D. Cansell, and D. Méry. Refinement and reachability in eventy,. In H. Treharne,
S. King, M. C. Henson, and S. A. Schneider, editors, ZB, volume 3455 of Lecture Notes in
Computer Science, pages 222-241. Springer, 2005.

3. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology, July 1997.

4. E. Ball and M. Butler. Event-B patterns for specifying fault-tolerance in multi-agent inter-
action. In M. Butler, C. B. Jones, A. Romanovsky, and E. Troubitsyna, editors, Methods,
Models and Tools for Fault Tolerance, volume 5454 of Lecture Notes in Computer Science,
pages 104-129. Springer-Verlag, 2009.

13

10.

13.

14.

15.

16.
17.

18.

19.

20.

B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Giménez, H. Herbelin, G. Huet,
C. Munoz, C. Murthy, C. Parent, C. Paulin, A. Saibi, and B. Werner. The Coq Proof As-
sistant Reference Manual — Version V6.1. Technical Report 0203, INRIA, August 1997.
http://coq.inria.fr.

. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Simone. The

synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64-83, 2003.

. S. Blazy, F. Gervais, and R. Laleau. Reuse of specification patterns with the B method. In

ZB 2003: Formal Specification and Development in Z and B, Third International Conference
of B and Z Users, Turku, Finland, volume 2651 of Lecture Notes in Computer Science, pages
40-57. Springer-Verlag, June 2003.

. P. Caspi, N. Halbwachs, and P. Pilaud. Lustre: a declarative language for programming

synchronous systems. In Proceedings of the 14th annual symposium on principles of pro-
gramming languages, pages 178—188, january 1987.

. E. Dijkstra. A Discipline of Programming. Englewood Cliffs New Jersey: Prentice Hall,

1976.
M. Faugere, T. Bourbeau, R. de Simone, and S. Gérard. MARTE: Also an UML profile for
modeling AADL applications. In ICECCS, pages 359-364. IEEE Computer Society, 2007.

. P. H. Feiler, B. Lewis, and S. Vestal. The SAE architecture analysis & design language

(AADL) standard: A basis for model-based architecture-driven embedded systems engineer-
ing. In RTAS Workshop 2003, pages 1-10, May 2003.

. R. B. Franca, L. Buss Becker, J.-P. Bodeveix, J.-M. Farines, and M. Filali. Towards safe

design of synchronous bus protocols in Event-B. In Brazilian Symposium on Formal Meth-
ods, Gramado Brazil, 19/08/2009-21/08/2009, volume 5902 of Lecture Notes in Computer
Science. Springer-Verlag, August 2009.

N. Izerrouken, M. Pantel, and X. Thirioux. Machine checked sequencer for critical embedded
code generator. In International Conference on Formal Engineering Methods (ICFEM), Rio
de Janeiro, Brazil, 09/12/2009-12/12/2009. Springer-Verlag, December 2009.

E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens. Virtual execution of
AADL models via a translation into synchronous programs. In Proceedings of the 7th ACM
& IEEE international conference on Embedded software EMSOFT 2007, pages 134 — 143,
Salzburg, Austria, 2007. ASSERT.

Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: specifica-
tion. Springer, 1991.

MetaH. http://www.htc.honeywell.com/metah/. 1997.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for Higher-Order
Logic. Number 2283 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

A. Requet. Bart: A tool for automatic refinement. In ABZ *08: Proceedings of the 1st interna-
tional conference on Abstract State Machines, B and Z, pages 345-345, Berlin, Heidelberg,
2008. Springer-Verlag.

SAE. Aerospace information report. avionics architecture description language. Technical
Report AS5506, SAE, march 2002.

B. Stoddart, D. Cansell, and F. Zeyda. Modelling and proof analysis of interrupt driven
scheduling. In J. Julliand and O. Kouchnarenko, editors, B, volume 4355 of Lecture Notes in
Computer Science, pages 155—170. Springer-Verlag, 2007.

14

