
An Approach to Improving the Structure of
Error-Handling Code in the Linux Kernel

Suman Saha
LIP6-Regal

Suman.Saha@lip6.fr

Julia Lawall
DIKU/INRIA/LIP6-Regal

julia@diku.dk

Gilles Muller
INRIA/LIP6-Regal

Gilles.Muller@lip6.fr

Abstract
The C language does not provide any abstractions for exception
handling or other forms of error handling, leaving programmers to
devise their own conventions for detecting and handling errors. The
Linux coding style guidelines suggest placing error handling code at
the end of each function, where it can be reached by gotos whenever
an error is detected. This coding style has the advantage of putting all
of the error-handling code in one place, which eases understanding
and maintenance, and reduces code duplication. Nevertheless, this
coding style is not always applied. In this paper, we propose an
automatic program transformation that transforms error-handling
code into this style. We have applied our transformation to the Linux
2.6.34 kernel source code, on which it reorganizes the error handling
code of over 1800 functions, in about 25 minutes.

Categories and Subject Descriptors D.4 [Operating Systems]:
Reliability

General Terms Reliability, Design

Keywords Linux, error handling, exception handling

1. Introduction
Reliability is essential in embedded systems. A key element of ensur-
ing reliability is proper handling of error conditions [14]. In general,
the role of error handling code is to return the system to a coherent
state, typically by undoing recent operations and releasing recently
allocated resources. If some of these state-restoring operations are
omitted, the result can be deadlocks and memory leaks. If state-
restoring operations are performed in the wrong order, the result
can be invalid data accesses, such as null-pointer dereferences and
double frees. These issues are especially critical in the case of oper-
ating systems, such as Linux, in the context of embedded systems,
as an operating system manages many resources over a long period
of time, increasing the amount of error conditions that can occur
and state-restoring operations that are needed, and heightening the
accumulated impact of any memory leaks.

Linux is implemented using the C programming language,
which does not provide any built-in error handling mechanisms.
In C, a typical strategy for implementing error handling code
is to follow each operation that may encounter an error by a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’11, April 11–14, 2011, Chicago, Illinois, USA.
Copyright c© 2011 ACM 978-1-4503-0555-6/11/04. . . $10.00

conditional that checks for an error result and, if one is found,
performs the appropriate cleanup operations before returning from
the function. We refer to this strategy as the basic strategy. The basic
strategy, however, is itself error-prone, as it is easy to overlook some
cleanup operations that are required, and to forget to update some
existing error handling code when the function is extended with new
operations that need to be undone in an error case. Furthermore,
there may be substantial code duplication, as the same error handling
code may be needed at many places within a function definition.

One style of programming that can somewhat alleviate these
difficulties is to move the state-restoring operations from the indi-
vidual error handling conditionals to a single labelled sequence of
state-restoring operations at the end of the function. We refer to
this style of programming as the goto-based strategy. In the goto-
based strategy, each error-handling conditional only performs the
operations that are specific to the identified error condition, such
as printing a log message or recording an error indicator in a local
variable. It then performs a goto that jumps to the correct position
within the state-restoring sequence. This approach localizes all of
the state-restoring operations into one easily identifiable place, at
the end of the function. If the function definition is extended in
a way that there are new possible error conditions, the associated
error handling code only needs to jump to the right place within
this sequence. If new state-changing operations are added within
the function definition, the corresponding state-restoring operations
only need to be added at one place within this sequence. And finally,
the duplication of code is mostly limited to the introduction of the
goto, regardless of the complexity of the error handling process.

Currently, many Linux functions use the goto-based strategy,
and this strategy is recommended by the Linux kernel documenta-
tion.1 Nevertheless, a large number of functions still use the basic
strategy, and a number of bugs have been found in such code. For
example, in the bug-fixing patches applied to Linux 2.6.20 after its
release, we have found that in around a third (12/32) of those whose
only effect is to add a call to kfree or to an unlocking function
such as spin unlock, the bug is in code that uses the basic strategy.
Most other such bugs were not in error-handling code. We found
similar results (6/20) in the set of patches contributing to Linux
2.6.34.2 Such bugs can persist undetected for a long time, when the
associated error condition only rarely occurs.

To improve the structure of error handling code in the Linux
kernel, we define an algorithm to transform error handling code
implemented according to the basic strategy so that it follows

1 Linux-2.6.34/Documentation/CodingStyle, Chapter 7.
2 Linux 2.6.20 patches obtained from git://git.kernel.org/pub/scm/linux/-
kernel/git/stable/linux-2.6.20.y.git using the command “git log -p
v2.6.20..”. Linux 2.6.34 patches obtained from git://git.kernel.org/pub/-
scm/linux/kernel/git/next/linux-next.git using the command “git log -p
v2.6.33..v2.6.34”.

the goto-based strategy. This algorithm merges the state-restoring
code found in each conditional into a sequence of state-restoring
operations at the end of the function. We have implemented this
algorithm as a tool that treats the full Linux source code, including
code specific to various embedded system architectures. This tool
successfully converts 29% of the conditionals containing state-
restoring error-handling code from the basic strategy to the goto-
based strategy. It furthermore informs the user of anomalies that
preclude this transformation, which may indicate bugs.

The rest of the paper is structured as follows. Section 2 presents
some motivating examples and a quantitative analysis of the error
handling strategies used in Linux kernel code. Section 3 defines our
transformation of error-handling code following the basic strategy
to error-handling code in the goto style. Section 4 evaluates our
approach on the Linux 2.6.34 kernel. Finally, Section 5 presents
related work and Section 6 concludes.

2. Background
In this section, we first illustrate the basic error handling strategy
and the goto-based error handling strategy, using examples from the
Linux 2.6.34 kernel source code. We then analyze the frequency of
these error-handling strategies in Linux 2.6.34 and earlier versions.

2.1 Examples
Figure 1 shows a typical example of error handling code following
the basic strategy. Three if statements are shown (lines 5, 12, and
21), each checking for a different condition. In each case, if the
condition is satisfied, there is a sequence of error handling operations.
In two cases (lines 12 and 21), these error handling operations begin
by printing a log message specific to the error. This is followed by
some new operations, which are then followed by the error handling
code from the previous if, if any. Each if concludes by returning
an error indicator that is specific to the error that has occurred (lines
8, 17, and 27). Overall, there is substantial duplication of code.
Indeed, the final call to DPRINT EXIT found in each if also appears
at the normal exit from the function. The error-handling operations
free data structures of various complexity, and omitting any of this
code when constructing any new error-handling code that becomes
needed as the function evolves will lead to memory leaks.

Figure 2 illustrates a possible reimplementation of this func-
tion, using the goto-based strategy. The largest sequence of error-
handling operations, from the third if, has been moved to the end
of the function. The if branches themselves have each been trans-
formed to perform the operations specific to the given error, namely
printing the log message and storing the error indicator in the vari-
able ret. Each if branch then ends in a goto that jumps to the
appropriate point in the sequence of error handling operations at
the end of the function. This sequence in turn uses goto to jump
to the original end of the function, to take advantage of the call
to DPRINT EXIT that is already available there. The error handling
code within the function body is now limited to what is specific to
each error case. The only non-local knowledge that is required to
construct such code is uniformly obtained by looking at the code
sequence at the end of the function.

To illustrate the full scope of the problem, we next consider
an example of error-handling code that is implemented using the
basic strategy and that contains a memory leak. In Figure 3, two
resources are allocated: path and inode (lines 3 and 5). Both of
these allocations can fail, as can the subsequent initialization of the
inode index (line 9). If the allocation of path fails, the system simply
crashes, via the operator BUG ON (line 4), and no error handling code
is required. On the other hand, if the allocation or initialization of
inode fails, then the function aborts, returning an error indicator in
both cases (lines 7 and 12) and additionally releasing inode in the
latter case (line 11). The memory allocated for path, however, is

1 static int storvsc probe(struct device *device) {
2 int ret;

3 . . .

4 host device ctx−>request pool = kmem cache create(. . .);

5 if (!host device ctx−>request pool) { /* 1 */
6 scsi host put(host);

7 DPRINT EXIT(STORVSC DRV);

8 return −ENOMEM;

9 }
10 device info.PortNumber = host−>host no;

11 ret = storvsc drv obj−>Base.OnDeviceAdd(. . .);

12 if (ret != 0) { /* 2 */
13 DPRINT ERR(STORVSC DRV, "unable to add scsi vsc device");

14 kmem cache destroy(host device ctx−>request pool);

15 scsi host put(host);

16 DPRINT EXIT(STORVSC DRV);

17 return −1;

18 }
19 . . .

20 ret = scsi add host(host, device);

21 if (ret != 0) { /* 3 */
22 DPRINT ERR(STORVSC DRV, "unable to add scsi host device");

23 storvsc drv obj−>Base.OnDeviceRemove(device obj);

24 kmem cache destroy(host device ctx−>request pool);

25 scsi host put(host);

26 DPRINT EXIT(STORVSC DRV);

27 return −1;

28 }
29 scsi scan host(host);

30 DPRINT EXIT(STORVSC DRV);

31 return ret;

32 }

Figure 1. Example of the basic error handling strategy (Linux-
2.6.34/drivers/staging/hv/storvsc drv.c)

1 static int storvsc probe(struct device *device) {
2 int ret;

3 . . .

4 host device ctx−>request pool = kmem cache create(. . .);

5 if (!host device ctx−>request pool) {
6 ret = −ENOMEM;

7 goto out3;

8 }
9 device info.PortNumber = host−>host no;

10 ret = storvsc drv obj−>Base.OnDeviceAdd(. . .);

11 if (ret != 0) {
12 DPRINT ERR(STORVSC DRV, "unable to add scsi vsc device");

13 ret = −1;

14 goto out2;

15 }
16 . . .

17 ret = scsi add host(host, device);

18 if (ret != 0) {
19 DPRINT ERR(STORVSC DRV, "unable to add scsi host device");

20 ret = −1;

21 goto out;

22 }
23 scsi scan host(host);

24 out1: DPRINT EXIT(STORVSC DRV);

25 return ret;

26 out: storvsc drv obj−>Base.OnDeviceRemove(device obj);

27 out2: kmem cache destroy(host device ctx−>request pool);

28 out3: scsi host put(host);

29 goto out1;

30 }

Figure 2. Improved version of Figure 1

not freed in either case. We consider how this code would be written
if it used the goto-based strategy.

1 static struct inode *btrfs new inode(. . .) {
2 . . .

3 path = btrfs alloc path();

4 BUG ON(!path);

5 inode = new inode(root−>fs info−>sb);

6 if (!inode)

7 return ERR PTR(−ENOMEM);

8 if (dir) {
9 ret = btrfs set inode index(dir, index);

10 if (ret) {
11 iput(inode);

12 return ERR PTR(ret);

13 }
14 }
15 . . .

16 fail: if (dir) BTRFS I(dir)−>index cnt−−;

17 btrfs free path(path);

18 iput(inode);

19 return ERR PTR(ret);

20 }

Figure 3. A bug in error handling code (Linux-2.6.34/fs/btrfs/-
inode.c)

In Figure 3, we may observe that there is already labelled error
handling code available at the end of the function that includes
freeing path (line 17), but the programmer has not taken advantage
of it. Indeed, it is not immediately exploitable, because when the
allocation of inode fails, only path should be freed, and when
the initialization of inode fails, only inode and path should be
freed, while code at the fail label may additionally call BTRFS I
(line 16). To apply the strategy illustrated in Figure 2, we should
ideally simply add gotos that jump to new labels within this error
handling code. However, it is also necessary to invert the freeing of
path and inode, so that we can create a label that only frees path
before exiting the function. Fortunately the two freeing operations
are disjoint, and so exchanging them is possible. The resulting
code, shown in Figure 4 has no memory leaks and is resilient to
further changes. Implementing new error handling code requires
simply writing a goto to the correct line in this sequence. Adding
a new resource allocation requires only adding the corresponding
deallocation operation at the correct position in this sequence. In
either case, the rest of the function remains correct automatically.

2.2 Analysis
To better understand the current state of error handling code in Linux
kernel code we have analyzed the Linux 2.6.34 source code as well
as several previous versions, going back to June 1996. Figure 5
shows that overall, the number of functions with error handling
code is increasing, especially in the drivers directory. In Linux 2.0
there were only around 200 such functions in the drivers directory,
in Linux 2.6.0 there were fewer than 4 000 such functions, and in
Linux 2.6.34 there were almost 15 000. This represents an increase
of almost 18 times from Linux 2.0 to Linux 2.6.0, during which
time the code size increased by only 7 times,3 and of over 4 times
from Linux 2.6.0 to Linux 2.6.34, during which time the code size
increased by only 2.5 times. Furthermore, in the case of fs, while
the number of error handling functions and the code size grew at
the same rate from Linux 2.0 to Linux 2.6.0, from Linux 2.6.0
to Linux 2.6.34, the number of error-handling functions grew by
more than 2.5 times, while the code size grew by only 1.8 times.
These figures suggest an overall increasing diligence in detecting

3 The code size was measured using SLOCCount [15].

1 static struct inode *btrfs new inode(. . .) {
2 {
3 . . .

4 path = btrfs alloc path();

5 BUG ON(!path);

6 inode = new inode(root−>fs info−>sb);

7 if (!inode) {
8 ret = −ENOMEM;

9 goto out2;

10 }
11 if (dir) {
12 ret = btrfs set inode index(dir, index);

13 if (ret)

14 goto out1;

15 }
16 . . .

17 fail: if (dir) BTRFS I(dir)−>index cnt−−;

18 out1: iput(inode);

19 out2: btrfs free path(path);

20 return ERR PTR(ret);

21 }

Figure 4. Improved version of Figure 3

0

2000

4000

6000

8000

10000

12000

14000

 N
u

m
b

e
r
 o

f
fu

n
c
ti

o
n

s drivers

fs

net

arch

sound

others

L
in

u
x
-2

.0

L
in

u
x
-2

.2
.0

L
in

u
x
-2

.4
.0

L
in

u
x
-2

.6
.0

L
in

u
x
-2

.6
.1

0

L
in

u
x
-2

.6
.1

5

L
in

u
x
-2

.6
.2

0

L
in

u
x
-2

.6
.2

5

L
in

u
x
-2

.6
.3

0

L
in

u
x
-2

.6
.3

4

Figure 5. Number of functions with error handling code in different
subdirectories of different Linux versions.

and handling error conditions, which has probably been facilitated
by the increasing use of defect-finding tools [13].

For the same Linux versions, Figure 6 shows the number of
functions that contain error handling code that use either the goto-
based strategy, the basic strategy, or a mixture of both. The number
of functions using the goto-based strategy is increasing more
rapidly than the number of functions using the basic strategy.
Nevertheless, the number of functions using the basic strategy or a
combination of strategies is also increasing, but more slowly. Our
main concern is those functions, to facilitate their conversion from
the basic strategy to the goto-based strategy.

Finally, Figure 7 breaks down the above results by subdirectory
for Linux-2.6.34. Most directories have more functions using the
goto-based strategy than the basic strategy, although for sound,
the numbers are essentially equal. Still, drivers has over 3 000
functions that use the basic strategy, while the other directories each
typically have around 400-500 functions in this category.

3. Transformation Algorithm
Our goal is to merge the sequence of statements in each error-
handling if branch into a shared sequence of statements at the end
of the function, and to replace each error-handling if branch by a
goto into this sequence. The algorithm considers one function at
a time. The main steps are 1) identify if branches that correspond
to the error handling code within a given function and collect some

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

 N
u

m
b

e
r
 o

f
fu

n
c
ti

o
n

s

only goto in if branches

only return in if branches

both goto and return in if branches

Lin
ux

-2
.0

Lin
ux

-2
.2

.0

Lin
ux

-2
.4

.0

Lin
ux

-2
.6

.0

Lin
ux

-2
.6

.1
0

Lin
ux

-2
.6

.1
5

Lin
ux

-2
.6

.2
0

Lin
ux

-2
.6

.2
5

Lin
ux

-2
.6

.3
0

Lin
ux

-2
.6

.3
4

Figure 6. Number of functions using only the goto-based strategy,
using the only the basic strategy, and using a mixture of both.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

 N
u

m
b

e
r
 o

f
fu

n
c
ti

o
n

s
 only goto in if branches

only return in if branches

both goto and return in if branches

drivers fs net arch sound others

Figure 7. Number of Linux 2.6.34 functions, by directory, using
only the goto-based strategy, using the only the basic strategy,
and using a mixture of both. “Others” refers to the other Linux
directories, which are much smaller than the ones listed.

other information that is useful in the transformation process, 2)
identify operations in this error handling code that can be shared in
a sequence at the end of the function, and 3) transform the function
definition to move error handling code to the end of the function and
insert appropriate gotos into each error handling if branch. These
steps are described below, both formally and in terms of examples.

We describe the analysis and transformation rules with respect to
a small language, defined according to the grammar shown below.

Statement t ::= exp = exp; | f(exp); | if (exp) [t] (else [t])?

Statements [t] ::= t . . . t (return exp;)?
Program P ::= [t] (l: [t])∗

The actual implementation, however, treats the full C language. A
program in this language is analogous to a function body in C code.
In the grammar, exp refers to an arbitrary expression, including
function calls, f refers to the name of a function, and l refers to a
label. To avoid clutter, we omit the braces around the branches of a
conditional. We distinguish two sets of expressions, String and Error.
String is the set of strings. Error is the set of expression that may
indicate an error, as determined by common Linux coding patterns.
Following Linux coding conventions, expressions in Error include

NULL, negated integers and macros, and expressions of the form
ERR PTR(exp) and PTR ERR(exp).4 Identifiers are also in Error, as
they may be initialized to one of these values. A few Linux services,
such as ACPI, define their own error conventions. The approach
could be extended to take these into account, although in the long
term it may be better to refactor that code to use a more standard
strategy.

Selecting If Branches (step 1a) The first step is to select the if
branches that should potentially be converted from the basic strategy
to the goto-based strategy. Such if branches must at a minimum
represent error-handling code. We identify error-handling code as
an if branch that ends by returning an expression in the set Error.
The if branch must also not contain other conditionals and must
contain at least one function call that is not debugging code, i.e., that
does not have a string as an argument. The latter constraint avoids
introducing a jump to a jump, and follows Linux coding style.

Figure 8 shows a function having multiple if branches. The
branches labeled 2, 3, 5, and 6 (lines 6, 11, 19, and 25) meet the
above conditions and are thus selected for further consideration.
On the other hand, the branch labeled 1 (line 4) is not selected
because it does not contain any function calls other than the Error
call, the branch labeled 4 (line 17) is not selected because it contains
another conditional, and the branch labeled 7 (line 31) is not selected
because it does not end with a return.

1 static int acct on(char *name) {
2 . . .

3 if (IS ERR(file)) /* 1, not selected */
4 return PTR ERR(file);

5
6 if (!S ISREG(file−>f path.dentry−>d inode−>i mode)) { /* 2 */
7 filp close(file, NULL);

8 return −EACCES;

9 }
10
11 if (!file−>f op−>write) { /* 3 */
12 filp close(file, NULL);

13 return −EIO;

14 }
15
16 . . .

17 if (ns−>bacct == NULL) { /* 4, not selected */
18 acct = kzalloc(sizeof(struct bsd acct struct), GFP KERNEL);

19 if (acct == NULL) { /* 5 */
20 filp close(file, NULL);

21 return −ENOMEM;

22 }
23 }
24 . . .

25 if (error) { /* 6 */
26 kfree(acct);

27 filp close(file, NULL);

28 return error;

29 }
30 . . .

31 if (ns−>bacct == NULL) { /* 7, not selected */
32 ns−>bacct = acct;

33 acct = NULL;

34 }
35 return 0;

36 }

Figure 8. Ifs that do and do not represent error-handling code
(Linux-2.6.34/kernel/acct.c)

4 ERR PTR(exp) and PTR ERR(exp) coerce an integer error indicator to and
from a pointer type, respectively.

The rule for selecting if branches from a program P is for-
malized as follows. The notation e1 ∈ e2, for any terms e1 and
e2, means that e1 is a subterm of e2. The notation “. . . ” means an
arbitrary sequence of statements. The result S of this rule is a set of
pairs of a line number and an if branch, where the line number is
that of the if containing the collected branch, obtained using the
operator startline. We refer to this set S as the branch list.

S = {〈ln, [t]〉 |
if (exp) [t] ∈ P ∧
[t] ≡ . . . f(exp′) . . . return exp′′; ∧
exp′ 6∈ String ∧ exp′′ ∈ Error ∧
∀exp′′′, [t]1, [t]2 : if (exp′′′) [t]1 (else [t]2)? 6∈ [t] ∧
ln = startline(if (exp) [t])}

Storing the error number in a variable (step 1b) An if branch
implementing the basic strategy can return an error indicator directly
or it can store this value in some variable, either before or within
the if branch. In Linux 2.6.34 among error-handling if branches
following the basic strategy, the error indicator is returned directly
63% of the time. When different if branches return different
error indicators, this approach prevents merging the error-handling
code. To make this merging possible, our algorithm transforms if
branches that directly return an error indicator as follows: 1) a new
statement is added at the beginning of the if branch that stores
the current return value in a variable that is common to all selected
if branches, which we refer to as the return variable, and 2) the
return statement at the end of the if branch is transformed to
return the value of the return variable.

To carry out this transformation, the algorithm first searches for
a variable that is used to return a result somewhere in the function,
which can be used as the return variable. Using an existing return
variable enables merging return statements and improves readability.
If there is no such variable, the algorithm creates a fresh variable
for this purpose. If there is more than one such variable, then the
first one is chosen. For example, in Figure 8, the variable error is
already used to return the error indicator in the if labeled 6 (line
28). Our algorithm thus uses that variable as the return variable. On
the other hand, in Figure 9 there is no such variable, so the algorithm
creates a fresh one.

Formally, the choice of the return variable is determined by the
function rv, defined below. This function takes as arguments the
complete program P and the branch list S, defined previously. It
returns a pair of the return variable and a new version of the program,
which may be augmented with the declaration of the return variable
if no suitable existing variable can be found.5

rv(P,S) =
〈x, P 〉 if return x; ∈ P ∧

∀〈ln, [t]〉 ∈ S : return x; ∈ [t] ∨ x 6∈ [t]
〈x, int x;@P 〉 where x 6∈ P , otherwise

After choosing a return variable, the next step is to transform
each selected if branch that does not already use that variable in
its return statement. An assignment of the current return value to
the return variable is added at the beginning of each such branch,
and the return statement is modified to return the return variable at
the end. This transformation is safe because the return variable has
been chosen such that it is not already used anywhere in the branch.
The transformation is performed on elements of the branch list S,
producing an extended version of the branch list, Srv, as follows,
where 〈x, P ′〉 = rv(P,S):

Srv = {〈ln, [t]′〉 | 〈ln, ifcode@return e;〉 ∈ S ∧
[t]′ ≡ ifcode@return e; if e ≡ x ∧
[t]′ ≡ x = e;@ifcode@return x; otherwise}

5 @ is used to concatenate code fragments.

1 int dvb register device(struct dvb adapter *adap, . . .) {
2 . . .

3 if ((id = dvbdev get free id (adap, type)) < 0) {
4 mutex unlock(&dvbdev register lock);

5 *pdvbdev = NULL;

6 printk(KERN ERR "%s: couldn’t find free

7 device id\n",% func);

8 return −ENFILE;

9 }
10 . . .

11 if (!dvbdev) {
12 mutex unlock(&dvbdev register lock);

13 return −ENOMEM;

14 }
15 . . .

16 if (!dvbdevfops) {
17 kfree (dvbdev);

18 mutex unlock(&dvbdev register lock);

19 return −ENOMEM;

20 }
21 . . .

22 if (minor == MAX DVB MINORS) {
23 kfree(dvbdevfops);

24 kfree(dvbdev);

25 mutex unlock(&dvbdev register lock);

26 return −EINVAL;

27 }
28 . . .

29 if (IS ERR(clsdev)) {
30 printk(KERN ERR "%s: failed to create

31 device dvb%d.%s%d %(%ld)\n",

32 func , adap−>num, dnames[type], id,

33 PTR ERR(clsdev));

34 return PTR ERR(clsdev);

35 }
36 . . .

37 return 0;

38 }

Figure 9. A function that does not have any variable for storing the
error indicator. (Linux-2.6.34/drivers/media/dvb/dvb-core/dvbdev.c)

Creating the label environment (step 1c) The algorithm next
creates a label environment that maps each label to all of the
code that can be executed when jumping to that label. This label
environment is used subsequently to determine whether the state-
restoring code of a given if branch matches the code following any
existing label. Two kinds of judgements are used. For a program
P , the judgement, ` P → lblenv indicates that the final label
environment is lblenv. For a sequence of labeled statements (l′ :
[t])∗, a judgement of the form ` (l′ : [t])∗ → 〈[t]′, lblenv〉,
indicates that [t]′ is the sequence of statements at the beginning
of (l′ : [t])∗ that preceding code may fall through to, and lblenv is
the label environment derived from (l′ : [t])∗. In this definition, for
conciseness, we follow the convention that the first rule that matches
is the one that applies. ε is an empty sequence of statements.

` (l : [t]′)∗ → 〈[t]′′, lblenv〉
` [t](l : [t]′)∗ → lblenv ` ε→ 〈ε, ∅〉

` (l′ : [t]′)∗ → 〈[t]′′, lblenv〉 ∧ [t]′′′ = [t] return e;
` l : [t] return e; (l′ : [t]′)∗ → 〈[t]′′′, {〈l, [t]′′′〉} ∪ lblenv〉

` (l′ : [t]′)∗ → 〈[t]′′, lblenv〉 ∧ [t]′′′ = [t]@[t]′′

` l : [t] (l′ : [t]′)∗ → 〈[t]′′′, {〈l, [t]′′′〉} ∪ lblenv〉

Partition (step 2a) The next step is to partition each branch in the
branch list to separate the code that is specific to the given error
condition, which we refer to as if code, from the potentially sharable
state-restoring code, which we refer to as label code. In particular,
return statements are label code, as is any non-debugging function

call, i.e., a function call that does not have a string argument. For
example, in the first branch of Figure 9, the call to printk and the
assignment statement are considered to be specific to the given error
condition, and are thus if code.

The transformation performed in step 3 will leave the if code in
the if branch and move the label code to the end of the function. If
label code were to appear before if code, then the transformation
process would change the order of the operations. To prevent this,
the label code is defined to be the largest suffix of an if branch that
satisfies the above properties. Given the Srv computed above, the
result of the partitioning process is a refined branch list:

Spart =
{〈ln, ifcode, lblcode〉 | 〈ln, [t]〉 ∈ Srv∧ ` [t]→ 〈ifcode, lblcode〉}

where the judgement ` [t] → 〈ifcode, lblcode〉 is defined below. We
again follow the convention that the first rule that matches is the one
that applies. There is no need for a rule for an if statement because
an element of the branch list contains no nested conditionals.

` [t]→ 〈ifcode, lblcode〉
` [t] return e;→ 〈ifcode, lblcode@return e;〉

` [t]→ 〈ifcode, lblcode〉
` exp1 = exp2;[t]→ 〈exp1 = exp2;@ifcode, lblcode〉
` [t]→ 〈ifcode, lblcode〉 ∧ (exp ∈ String ∨ ifcode 6= ε)

` f(exp);[t]→ 〈f(exp);@ifcode, lblcode〉
` [t]→ 〈ε, lblcode〉

` f(exp);[t]→ 〈ε, f(exp);@lblcode〉 ` ε→ 〈ε, ε〉

Filtering (step 2b) Moving label code to the end of the function
can only reduce the code size if part of the label code, including
at least one state-restoring operation, is shared with the label code
of some other if branch or some other existing code at the end of
the function. If there is no such shared code, then we consider that
the benefit of transforming the code does not outweigh the cost of
introducing a goto and remove the entry from the branch list Spart.
This filtering process is defined as follows, using the program P and
the lblenv computed above, to produce a filtered branch list Sfilter:

Sfilter =
{〈l, ifcode, lblcode〉 |
〈l, ifcode, lblcode〉 ∈ Spart ∧
lblcode ≡ ... f(exp1); return (exp2); ∧
(∃〈l′, ifcode′, ... f(exp1); return (exp2);〉 ∈ Spart : l 6= l′ ∨
∃〈l′, ... f(exp1); return (exp2);〉 ∈ lblenv ∨
P ≡ ... f(exp1); return (exp2);)}

Figure 10 shows the number of functions that use the basic
strategy or a mixture of the goto-based strategy and the basic
strategy (red/leftmost bars), the number of these functions that
survive the filtering process (green/middle bars), implying that there
is some shared state-restoring code, and the number of functions
that are not considered for transformation (blue/rightmost bars),
indicating that there is no shared state-restoring code. The figure
showing that the filtering eliminates two thirds of the selected
functions in most directories. However, almost half of the selected
functions in the sound directory are transformed.

Classification and transformation (step 3) This step classifies
the remaining elements of the branch list, Sfilter, according to
how difficult they are to transform. On the basis of difficulty, the
algorithm chooses the appropriate transformation. We classify the
if branches into four categories: Simple, Hard, Harder and Hardest.
The classification and transformation process iterates over the
elements of Sfilter starting with the one with the largest line number.
This element typically contains the longest sequence of state-
restoring code (cf Figure 1), undoing all of the operations that have
been performed in the function, and thus offers the most opportunity
for sharing. We explain the classification and transformation process

0

500

1000

1500

2000

2500

3000

3500

 N
u

m
b

e
r
 o

f
fu

n
c
ti

o
n

s

functions using the basic strategy

transformed functions

functions that are not transformed

drivers fs net arch sound others

Figure 10. The red/leftmost bars show the number of functions
collected in the if selection step. The green/middle bars show
the number that the filtering step keeps for transformation. The
blue/rightmost bars show the number that the filtering step discards.

in terms of an artificial example that illustrates all of the possible
cases. This example is more complex than typical functions.

For a given if branch, if the label code is the same as the code
already associated with some label in the label environment, then
the if branch is classified as Simple, because no code has to be
moved. Instead, it is sufficient to remove the label code from the
branch and replace it with a goto statement with that label name.
An example is the branch labeled 5 in Figure 11a (line 20). In this
case, the label code is exactly same as the code at the label out.

1 if(x) { /* 1, Hardest */
2 kl();

3 gh();

4 return ret;

5 }
6 if(y) { /* 2, Hardest */
7 ij();

8 cd();

9 return ret;

10 }
11 if(z) { /* 3, Harder */
12 ef();

13 gh();

14 return ret;

15 }
16 if(k) { /* 4, Hard */
17 cd();

18 return ret;

19 }
20 if(l) { /* 5, Simple */
21 ab();

22 cd();

23 return ret;

24 }
25 . . .

26 out: ab();

27 cd();

28 return ret;

1 if(x)

2 goto out4;

3 if(y)

4 goto out3;

5 if(z)

6 goto out2;

7 if(k)

8 goto out1;

9 if(l)

10 goto out;

11 . . .

12 out: ab();

13 out1: cd();

14 return ret;

15 out2: ef();

16 out5: gh();

17 return ret;

18 out3: ij();

19 goto out1;

20 out4: kl();

21 goto out5;

a) Original code b) Transformed code

Figure 11. Simple, Hard, Harder, Hardest branches

On the other hand, if the label code is not exactly same as the
code at any label, but is the same as a suffix of some existing label’s
code or is the same as a suffix of the entire function, then the if
branch is classified as Hard. In this case it is also not necessary to
move any code, but the algorithm has to identify a position for a new
label. The label code of branch 4 in Figure 11a (line 16) matches
a suffix of the code at the label out. The algorithm thus creates a

new label just before the call to cd at the end of the function, and
replaces branch 4 by a goto to the new label (line 8, Figure 11b).

In the third case, an if branch’s label code does not match a
suffix of any existing label’s code or the code at the original end
of the function. Such a branch is classified as Harder. For such a
branch, the algorithm creates a new label and places it at the end
of the function, along with the branch’s label code. In the case of
a void function (outside the scope of our small language), there
may be no return at the end of the original function. In this case,
the algorithm additionally adds return; before the new label. For
example, after transforming branches 5 and 4 in Figure 11a, the
code in branch 3 is not a suffix of any existing label’s code. So,
the algorithm inserts a new label with this code after the return
statement of the out label.

The final category is Hardest. In this category, the complete label
code is not a suffix of any existing label’s code, however a suffix
of the label code is the same as a suffix of some existing label’s
code. This results in two parts of the label code; one that does not
match any existing label’s code and the other that is a suffix of
some existing label’s code. The unmatched part can be treated as
Harder and the matched part can be treated as though it is Simple
or Hard. Branches 2 and 1 of Figure 11a (lines 6 and 1) are in
the Hardest category. In each case, the first statement of the label
code, ij() or kl(), respectively, is not found in any branch. So
these statements are treated as Harder. In each case, the code in the
remainder of the branch is identical to or a proper suffix of the code
at an existing label. For branch 2 (line 6), the call to cd and the
return are identical to the code at the label introduced for treating
branch 4, so this code is treated as Simple. For branch 1 (line 1),
the call to gh and the return match a suffix of the code at the label
introduced when treating branch 3, so this code is treated as Hard.

The complete transformation process selects the element of Sfilter
with the largest line number, classifies it according to the rules below,
transforms it according to the result of the classification, and then
repeats on the next element of Sfilter, until all elements have been
considered. The label environment lblenv is recomputed after each
transformation step, according to the rules described in step 1c.

The rules for classifying branches as Simple, Hard, Harder, and
Hardest are formalized as shown below for an element of Sfilter,
〈ln, ifcode, lblcode〉. In these rules, createlbl() creates a new label
and suffix(a, b) is satisfied if a is a suffix of b. A judgement has the
form `c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode, status〉 where status is
defined as follows:

status = Simple(label)
| Hard(label, fresh label, lblcode)
| Harder(fresh label, lblcode)
| Hardest(fresh label, lblcode, status)

The classification rules are as follows. In each case, the first rule
that matches is the one that is applied.

∃l : 〈l, lblcode〉 ∈ lblenv
`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto l;, Simple(l)〉
∃〈l, [t]〉 ∈ lblenv : suffix(lblcode, [t]) ∧ nl = createlbl()

`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto nl;, Hard(l, nl, lblcode)〉
lblcode ≡ . . . f(exp); return e; ∧ nl = createlbl() ∧
(∀〈l, [t]〉 ∈ lblenv ∧ not(suffix(f(exp); return e;, [t]))

`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto nl;, Harder(nl, lblcode)〉

(∃[t]1, [t]2 : lblcode ≡ [t]1@[t]2 ∧
(∀〈l, [t]〉 ∈ lblenv : ∀[t]′1 6= ε :

suffix([t]′1, [t]1)⇒ not(suffix([t]′1@[t]2, [t]))) ∧
nl = createlbl() ∧
`c 〈−1, [t]1, [t]2〉 → 〈−1, [t]′′1 , status〉

`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto nl;, Hardest(nl, [t]1, status)〉
The transformation is then in two parts, considering first the label

code and then the if code. Given a classified triple 〈ln, ifcode, status〉,

we first transform the program P to reposition the label code as
indicated by status. This part of the transformation uses judgements
of the form status `lbl P → P ′, producing a new program P ′.

Simple(l) `lbl P → P

Hard(l, nl, lblcode) `lbl . . . l : [t] @ lblcode . . .→
. . . l : [t] @ nl : lblcode . . .

Harder(nl, lblcode) `lbl . . . return e;→ . . . return e; nl : lblcode

Hardest(nl, [t]1, Simple(l)) `lbl . . . return e; l : [t]2 . . .→
. . . return e; nl : [t]1 @ l : [t]2 . . .

Hardest(nl, [t], Simple(l)) `lbl . . . return e;→
. . . return e; nl : [t] @ goto l

Hardest(nl, [t]1, Hard(l, nl′, [t]2)) `lbl . . . l : [t]@[t]2 . . . return e;→
. . . l : [t]@nl′ : [t]2 . . . return e; nl : [t]1 @ goto l

Finally, given a classified triple 〈ln, ifcode, status〉 and the pro-
gram P ′ produced by the above rules, we adjust the corresponding
if statement in the program to use the new if code. This part of
the transformation uses judgements of the form status `if P → P ′,
producing a new program P ′. This new program P ′ is then used on
the next iteration, to treat the next element of Sfilter.

startline(if (exp) [t]) = ln
〈ln, ifcode, status〉 `if . . . if (exp) [t] . . . →

. . . if (exp) ifcode . . .

4. Evaluation
The algorithm, excluding the parser, has been implemented as 1300
lines of OCaml code. For the parser, we have reused the parser de-
veloped for the program transformation system Coccinelle [11, 12].
This parser does not require first executing the C preprocessor, and
thus all Linux code, for all possible architectures and configurations,
can be treated. In this section, we present the results of applying
our tool to the source code of the Linux 2.6.34 kernel, which was
released in May 2010. Linux 2.6.34 contains over 8 million lines of
C code, as calculated using SLOCCount [15], and processing this
code using our tool takes approximately 25 minutes on one core of
an 8-code 3GHz machine with 16GB memory.

An example from the Linux kernel Figure 12 shows an extract
of code from Linux 2.6.34 using the basic strategy, and Figure 13
shows the result of the transformation. The transformation starts
with the branch labelled 4 (line 34). This branch has no code in
common with the only label that is available, and so it is classified
as Harder. Its code is moved to the end of the function, with the label
out (Figure 13, line 37). Next, the branch labelled 3 (line 26) is
considered. This branch contains a superset of the operations at the
label out, and so it is classified as Hardest. Because the label out
is at this point immediately preceded by return 0 and the code at
the label out is a suffix of the code in branch 3, the new label out1
can be placed just before out. Next, we consider the branch labelled
2 (line 18). This branch has the same state-restoring operations as
the branch labelled 3, and thus the branch labelled 2 is considered
to Simple and reuses the label out1. Finally, the branch labelled 1
(line 10) contains a suffix of this code, implying that it is classified
as Hard. The label out2 is introduced in transforming this branch.
Overall, all of the ifs of the function are transformed, and most are
reduced to a goto and possibly a debugging statement.

The impact of filtering As was shown in Figure 10, for many func-
tions that use the basic strategy, all of the branches are filtered, and
thus the function is not transformed by our algorithm. Furthermore,
due to the filtering, only a subset of the error handling code within a
function may be transformed. Table 1 shows the number of functions

Functions that are not transformed Functions that are transformed
Directory Return Strict Single if Unordered No sharing Full processing Partial processing Total
drivers 3617 376(10%) 2043(56%) 102(3%) 14(0.5%) 999(28%) 83(2%) 1082(30%)
fs 863 81(9%) 514(60%) 24(3%) 8(1%) 213(25%) 23(3%) 236(27.5%)
net 493 21(4%) 337(68%) 23(5%) 0(0%) 100(20%) 12(2%) 112(22.5%)
arch 449 26(6%) 326(73%) 1(0.5%) 18(4%) 72(16%) 6(1%) 78(17%)
sound 632 27(4%) 337(53%) 16(3%) 4(1%) 225(36%) 23(4%) 248(39.5%)
others 277 13(5%) 202(73%) 6(2%) 5(2%) 48(17%) 3(1%) 51(18%)
total 6331 544(9%) 3759(59%) 172(3%) 49(1%) 1657(27%) 150(2%) 1807(29%)

Table 1. Number of functions of Linux-2.6.34 that cannot and can be transformed.

1 static int download fw(struct edgeport serial *serial) {
2 . . .

3 if (serial−>product info.TiMode == TI MODE DOWNLOAD) {
4 . . .

5 }
6 else if ((start address = get descriptor addr(serial,

7 I2C DESC TYPE FIRMWARE BLANK, rom desc)) != 0) {
8 . . .

9 if (!vheader) { /* 1 */
10 dev err(dev, "%s - out of memory.\n", func);

11 kfree(header);

12 kfree(rom desc);

13 kfree(ti manuf desc);

14 return −ENOMEM;

15 }
16 . . .

17 if (status) { /* 2 */
18 kfree(vheader);

19 kfree(header);

20 kfree(rom desc);

21 kfree(ti manuf desc);

22 return status;

23 }
24 . . .

25 if (status) { /* 3 */
26 dbg("%s - can’t read header back", func);

27 kfree(vheader);

28 kfree(header);

29 kfree(rom desc);

30 kfree(ti manuf desc);

31 return status;

32 }
33 . . .

34 if (status) { /* 4 */
35 dev err(dev,"%s - UMPC_COPY_DNLD_TO_I2C failed\n",. . .);

36 kfree(rom desc);

37 kfree(ti manuf desc);

38 return status;

39 }
40 }
41 . . .

42 stayinbootmode:

43 dbg("%s - STAYING IN BOOT MODE", func);

44 serial−>product info.TiMode = TI MODE BOOT;

45 return 0;

46 }

Figure 12. Example for transformation. (Linux-2.6.34/drivers/usb/-
serial/io ti.c)

using the basic strategy, quantifies the reasons why functions are not
transformed, and indicates the number of functions that are partially
affected and unaffected by the filtering process. Overall 29% of the
functions are fully or partially transformed.

Filtering discards an if branch either 1) because its label code
contains only a return statement or 2) because its label code ends

1 static int download fw(struct edgeport serial *serial) {
2 . . .

3 if (serial−>product info.TiMode == TI MODE DOWNLOAD) {
4 . . .

5 }
6 else if ((start address = get descriptor addr(serial,

7 I2C DESC TYPE FIRMWARE BLANK, rom desc)) != 0) {
8 . . .

9 if (!vheader) {
10 status = −ENOMEM;

11 dev err(dev, "%s - out of memory.\n", func);

12 goto out2;

13 }
14 . . .

15 if (status)

16 goto out1;

17 . . .

18 if (status) {
19 dbg("%s - can’t read header back", func);

20 goto out1;

21 }
22 . . .

23 if (status) {
24 dev err(dev,"%s - UMPC_COPY_DNLD_TO_I2C failed\n",. . .);

25 goto out;

26 }
27 }
28 . . .

29 stayinbootmode:

30 dbg("%s - STAYING IN BOOT MODE", func);

31 serial−>product info.TiMode = TI MODE BOOT;

32 return 0;

33 out1:

34 kfree(vheader);

35 out2:

36 kfree(header);

37 out:

38 kfree(rom desc);

39 kfree(ti manuf desc);

40 return status;

41 }

Figure 13. Transformed version of Figure 12.

with state restoring code that is not shared with that of any other label
code. Columns 3 to 6 of Table 1 show the number of functions for
which all of the if branches are filtered due to these reasons. Label
code may contain only a return statement due to the requirement in
the partitioning process that state-restoring code only be added to the
label code when there are no subsequent assignments or debugging
statements. If an assignments or debugging code occurs just before
the return, then the label code will not contain any state-restoring
operations. The number of functions discarded for this reason is
shown in the column “Strict”. The lack of shared state-restoring
code may occur because a function has only one error-handling if

(“Single if”), because there are shared state-restoring operations but
they appear in the wrong order (“Unordered”), or because there are
multiple if branches with state-restoring operations but none are
shared (“No sharing”). The latter two cases may indicate bugs, and
are thus reported to the user for further inspection.

All of the error-handling code in a function may be transformed,
or some of the if branches may be filtered and thus only a portion
of the error-handling code is transformed. Table 1 shows that,
depending on the directory, between 16 and 36% of the functions
are fully transformed and 1 to 4% more are partially transformed.
Overall, 29% of the functions that contain some error-handling code
structured according to the basic strategy are transformed.

Branch classification Transforming a Simple branch replaces the
branch’s label code by a single goto, which is a best case in terms
of the reduction in code size. Transforming a Hard branch achieves
similar improvement, as it requires only adding a new label. Both
the Simple and Hard cases may also introduce an assignment for the
return variable. Transforming a Harder if branch in itself increases
code size, because the label code is copied to the end of the function
as is, and a goto, a label and possibly an assignment must be
introduced. Nevertheless, the filtering process guarantees that at
least part of the copied code for a Harder branch is shared with
another branch. Finally, transformation of a Hardest branch copies
some code and introduces an extra goto, but part of its code is again
shared with some other branch.

Table 2 shows the number of if branches in each category in
the various directories, as well as the percentage in each category
as compared to the total number of transformed if branches in the
given directory. In many of the directories, the percentages in all
of the categories are roughly similar. Exceptions are drivers and
sound, which have a higher proportion of Simple branches. arch
has a relatively low proportion of Hardest branches, while sound
has a very low proportion of Hard branches. sound is a collection
of sound-card drivers that were split off from the drivers directory
early in the Linux 2.5 series, and it may be that they have followed
a different development pattern than the rest of the code. Finally,
the smaller directories (“others”) have a relatively low proportion
of Simple branches and a higher proportion of Hard and Hardest
branches than the other directories.

Simple Hard Harder Hardest Hardest Total
Simple Hard

drivers number 867 630 895 62 29 2483
% 35 25 36 3 1 100

fs number 105 111 201 13 9 439
% 24 25 46 3 2 100

net number 51 64 83 7 4 209
% 24 31 40 3 2 100

arch number 42 43 75 1 4 165
% 25.5 26 45 1 2 100

sound number 339 63 335 36 3 776
% 44 8 43 5 0.5 100

others number 19 23 46 3 1 92
% 21 25 50 3 1 100

total number 1423 934 1635 122 50 4164
% 34 22 39.5 3 1 100

Table 2. Number and % of Simple, Hard, Harder and Hardest
branches of transformed branches in Linux-2.6.34. Hardest branches
have a suffix of their state-restoring code that is Simple or Hard.

Branch transformation Table 3 shows the number of branches
(cf column “Total” in Table 2) and the number of labels, gotos,
and return variable initialization statements (“assignment” column)
introduced by the transformation. The transformation of a given

branch introduces at most two labels and two gotos (Hardest case),
and at most one assignment. A Simple branch, however, introduces
no labels, and a Hard or Harder branch introduces only one. The
information in this table thus presents another perspective on the
number of branches in the various categories (Table 2).

Table 3 shows that the number of labels introduced is always
significantly lower than the number of branches, reflecting a good
number of Simple branches. The sound directory has a particularly
high ratio of branches to labels created, reflecting the high rate
of Simple branches in this case. The number of gotos introduced
is overall slightly higher than the number of branches, because
each branch introduces at least one goto and Hardest branches
may introduce two. The number of branches requiring two gotos
is however small (cf, Hardest-Hard case in Table 2). Finally, the
number of return variable initializations is also much lower than
the number of branches, and for many directories it is lower than
the number of labels, indicating that the need to introduce a return
variable to abstract over error indicators is not a major burden.

Branches Label Goto Assignment

drivers number 2483 1645 2512 1879
avg per function 1.52 2.32 1.74

fs number 439 343 448 307
avg per function 1.45 1.90 1.3

net number 209 162 213 167
avg per function 1.45 1.90 1.49

arch number 165 127 169 120
avg per function 1.63 2.16 1.54

sound number 776 440 779 366
avg per function 1.77 3.14 1.48

others number 92 74 93 66
avg per function 1.45 1.82 1.29

total number 4164 2791 4214 1905
avg per function 1.54 2.33 1.61

Table 3. Total number and average number of label, goto, assign-
ment created in the transformed Linux-2.6.34 functions.

Code sharing The goal of the approach is to cause state-restoring
code to be shared, to improve robustness in the face of maintenance
and to reduce code size. Thus, we should ideally not just have many
Simple and Hard branches, but these branches should also contain a
good number of state-restoring operations that can then be shared.
On the other hand, Harder branches, and to some extent Hardest
branches, simply move existing code. Table 4 shows the number of
merged and moved lines of code. In most directories, at least 45%
more code is merged than moved.

Another perspective on the same information is to consider how
many functions have only Simple and Hard branches, implying
that the state-restoring operations are already available at the end
of the function, how many have one Harder branch and then only
Simple and Hard branches, implying that all of the state-restoring
code is being shared, and how many have multiple Harder branches
or have Hardest branches, implying the need for extra blocks of
state-restoring code at the end of the function. As shown in Table 5,
across all directories, most functions have only one Harder branch,
and then the rest of the branches are Simple or Hard. A large number
of functions also have only Simple and Hard branches, providing
the best case for reduction in code size. Finally, only a few functions
have multiple Harder branches or have Hardest branches. These
results show that overall the Linux code is well suited to the use of
the goto-based strategy.

5. Related Work
A number of studies have classified the kinds of exceptions that can
occur, the kind of exception handling that is required, and the kinds

Merged/ Total
Merged Moved Moved Transformed

drivers number 3581 2074 1.73 5655
avg per function 3.31 1.91 5.22

fs number 608 420 1.45 1028
avg per function 2.58 1.78 4.36

net number 281 179 1.57 460
avg per function 2.51 1.60 4.11

arch number 219 150 1.46 469
avg per function 2.81 1.92 4.73

sound number 1017 633 1.61 1650
avg per function 4.1 2.55 6.65

others number 113 90 1.26 203
avg per function 2.21 1.76 3.98

total number 5819 3546 1.64 9365
avg per function 3.22 1.96 5.18

Table 4. Total number and average number of lines that are merged,
moved, and transformed in the transformed functions.

Harder Hardest drivers fs net arch sound others total
0 0 303 59 35 24 26 12 459
1 0 657 146 61 42 183 33 1122

> 1 0 64 13 6 8 8 3 102
≥ 0 ≥ 1 58 18 10 4 31 3 124

Table 5. The number of functions with various numbers of Harder
and Hardest branches.

of exception handling abstractions that are provided by current pro-
gramming languages, as well as proposing new exception handling
abstractions [3, 7, 8]. We consider exceptions that simply abort the
subcomputation, and our proposed improvement to exception han-
dling stays within the constructs available in C. Our work addresses
the issues of readability and uniformity, which these studies have
identified as critical.

Bruntink et al. study properties of exception handling in a large
industrial C code base [2]. They focus on the detection and logging
of exceptional conditions, while we focus on the associated cleanup
code. Filho et al. present a technique to transform the exception
handling code of a Java program into an aspect [5], providing
modularity and reuse. Mortensen and Ghosh apply aspects to convert
code that uses return codes, as done in Linux, to use C++ exception
handling abstractions, to ensure that all exceptions are handled [10].
Bruntink performs a similar study on C code, using hypothetical try
and catch constructs [1]. C does not provide any such abstractions.
Our work is concerned with improving the structure of the error
handling code that is present, potentially helping the user find
problems in the usage of the state-restoring operations, rather than
ensuring that all error conditions are checked for.

Weimer and Necula present a static data flow analysis on ex-
ception handling code for finding bugs [14]. Their flow-sensitive
analysis found over 1300 defects in over 5 million lines of Java code.
Their results suggest that improper management of error handling
code introduces bugs in a system. They propose a programming
language feature to help programmers avoid such mistakes. We do
not propose new programming language features, but instead show
how to restructure error-handling code to make it less error-prone.

Our transformation can be considered to be a form of refactoring,
since it changes the structure, but not the semantics of the code [6].
Few tools support refactoring C code. Eclipse provides the CDT
development environment for C and C++ code, but the support for
refactoring seems to be incomplete [4]. McCloskey and Brewer
propose Asfact for refactoring C code, but have only considered
refactorings that involve changes of function names [9].

6. Conclusion
This paper has focused on the structuring of error handling code in
the Linux kernel. The Linux kernel coding style guidelines advocate
organizing such code using labels and gotos, but a substantial part
of the Linux kernel source code still does not follow this strategy.
We have proposed an automatic transformation that converts error-
handling code that is dispersed and duplicated throughout the body
of a function such that it uses the goto-based strategy. We have
found that our transformation applies to many functions across the
Linux kernel, and that it identifies many opportunities for code
sharing. This includes code in the drivers and arch directories,
which may be of particular interest to embedded systems.

Our algorithm only restructures the error-handling code that is
provided; it does not fix defects such as missing or misplaced state-
restoring operations. Such defects, however, can cause bugs such as
deadlocks and memory leaks, when resources are not deallocated
correctly. In future work, we will consider these issues. We will also
consider the applicability of our approach to other software.

References
[1] M. Bruntink. Reengineering idiomatic exception handling in legacy

C code. In 12th European Conference on Software Maintenance and
Reengineering (CSMR), pages 133–142, Athens, Greece, Apr. 2008.

[2] M. Bruntink, A. van Deursen, and T. Tourwé. Discovering faults in
idiom-based exception handling. In 28th International Conference on
Software Engineering (ICSE), pages 242–251, Shanghai, China, May
2006.

[3] P. A. Buhr and W. Y. R. Mok. Advanced exception handling mecha-
nisms. IEEE Trans. Software Eng., 26(9):820–836, 2000.

[4] CDT. CDT/User/FAQ – Eclipsepedia, 2010.
http://wiki.eclipse.org/CDT/User/FAQ.

[5] F. C. Filho, C. M. F. Rubira, R. de A. Maranhão Ferreira, and A. Garcia.
Aspectizing exception handling: A quantitative study. In Advanced
Topics in Exception Handling Techniques, volume 4119 of Lecture
Notes in Computer Science, pages 255–274. Springer, 2006.

[6] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[7] A. F. Garcia, C. M. F. Rubira, A. B. Romanovsky, and J. Xu. A
comparative study of exception handling mechanisms for building
dependable object-oriented software. Journal of Systems and Software,
59(2):197–222, 2001.

[8] J. B. Goodenough. Exception handling: Issues and a proposed notation.
Commun. ACM, 18(12):683–696, 1975.

[9] B. McCloskey and E. Brewer. ASTEC: a new approach to refactoring
C. In ESEC/FSE-13, pages 21–30, Lisbon, Portugal, 2005.

[10] M. Mortensen and S. Ghosh. Refactoring idiomatic exception handling
in C++: Throwing and catching exceptions with aspects. In Industry
Track of the International Conference on Aspect-Oriented Software
Development (AOSD), Vancouver, Canada, Mar. 2007.

[11] Y. Padioleau. Parsing C/C++ code without pre-processing. In Compiler
Construction (CC’09), pages 109–125, York, UK, Mar. 2009.

[12] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and
automating collateral evolutions in Linux device drivers. In EuroSys
2008, pages 247–260, Glasgow, Scotland, Mar. 2008.

[13] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller.
Faults in Linux: Ten years later. In Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Newport Beach, CA, USA, Mar. 2011.

[14] W. Weimer and G. C. Necula. Exceptional situations and program
reliability. ACM Transactions on Programming Languages and Systems,
30(2), 2008.

[15] D. A. Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount/.

