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Abstract

The OSGi framework is a Java-based, centralized, com-

ponent oriented platform. It is being widely adopted as an

execution environment for the development of extensible ap-

plications. However, current Java Virtual Machines are un-

able to isolate components from each other. For instance,

a malicious component can freeze the complete platform by

allocating too much memory or alter the behavior of other

components by modifying shared variables.

This paper presents I-JVM, a Java Virtual Machine that

provides a lightweight approach to isolation while preserv-

ing compatibility with legacy OSGi applications. Our eval-

uation of I-JVM shows that it solves the 8 known OSGi vul-

nerabilities that are due to the Java Virtual Machine and

that the overhead of I-JVM compared to the JVM on which

it is based is below 20%.

1. Introduction

The OSGi framework [26] is a Java-based component

platform that is being widely adopted as an execution en-

vironment for the development of extensible applications,

such as Eclipse [2] or Java Enterprise Servers [3]. Exten-

sibility in the OSGi platform is provided through a deploy-

ment unit called a bundle, which groups together a set of

components that are loaded through a specific Java class

loader. The OSGi platform is popular because it provides

modularity while still providing efficient communication

through direct method calls between components.

Initially, the OSGi platform was designed for environ-

ments where all bundles trust each other. Nowadays, it is

also being promoted for systems such as next generation

Internet home gateways where third party services can be

downloaded dynamically [31]. However, the OSGi plat-

form cannot protect a bundle against another malicious or

buggy bundle. First, java.lang.Class objects, strings

and static variables are shared in the Java Virtual Machine

(JVM). The corruption of any one of these entities by a ma-

licious or buggy bundle will impact all bundles. Second,

a thread can freeze the JVM and deny service by exhaust-

ing memory or monopolizing the CPU. Third, it may be

impossible to terminate a bundle that denies service, which

makes a shut down of the entire platform the only solution.

Not surprisingly, a recent work has identified 25 different

vulnerabilities in current implementations of the Java/OSGi

platform that may either lead to a violation of data integrity

or a freeze of the platform [29]. While 17 of these vul-

nerabilities are due to a weak implementation of the OSGi

framework itself and can be solved by adding suitable secu-

rity checks, the remaining 8 originate in isolation issues and

need to be solved at the JVM level.

Several approaches to providing isolation in a single

JVM, through Isolates (or Java processes) have been re-

cently introduced [5, 9, 17]. These solutions duplicate the

java.lang.Class objects, strings and static variables

between isolates. However, to ensure full isolation, they

confine a thread to a single isolate. As a consequence, a

communication between two isolates must be done using

an RPC-like mechanism, which involves parameter copying

and in some cases thread synchronization. Since the OSGi

platform uses communication between bundles heavily, us-

ing RPCs would induce a significant overhead. For exam-

ple, despite using a highly optimized virtual machine, the

developers of Singularity [12] report that a simple local re-

mote procedure call through a shared heap takes about 2500



cycles while a direct call takes only about 10 cycles. Addi-

tionally, copying parameters implies modifying legacy bun-

dles either at the source or bytecode level [34], that could

compromise compatibility with legacy bundles.

This paper presents I-JVM, a Java Virtual Machine with

lightweight isolates that is specifically designed to support

the needs of the OSGi platform by associating each bundle

with a separate isolate. The key contribution of I-JVM is

to permit thread migration between isolates in order to keep

the cost of an inter-isolate method call low. This enables

complete bytecode compatibility with legacy OSGi bundles

by avoiding the need to rewrite inter-bundle method calls.

The main features of I-JVM are:

• Memory isolation. As shown by the Multi-Tasking

Virtual Machine (MVM) [9], making java.lang.-

Class objects, strings and static variables private to

an isolate is sufficient to ensure memory isolation in

a single JVM. Therefore, an isolate cannot access an

object of another isolate unless a reference is given ex-

plicitly through method invocation.

• Resource accounting. I-JVM keeps track of the cur-

rent isolate in which a thread is running. This allows

recording the amount of memory and CPU time spent

within an isolate. These statistics provide sufficient in-

formation for an administrator or for resource policies

to detect denial of service attacks from malicious bun-

dles.

• Termination of isolates. When an isolate terminates,

its classes should not be invoked anymore. In case a

thread returns back to the terminating isolate, I-JVM

modifies the stack so that an exception is raised and

trapped at a lower stack level. All the objects refer-

enced by the terminating isolate are reclaimed by the

garbage collector, with the exception of objects shared

with other bundles.

I-JVM has been developed bymodifying the VMKit Java

Virtual Machine [15, 16], a JVM specifically designed for

easing experiments in Java. We have used I-JVM to run two

legacyOSGi platforms: Felix [1] of the Apache Community

and Equinox [2] of the Eclipse Project.

Overall the results of this study are:

• I-JVM solves the OSGi JVM-related weaknesses iden-

tified in [29]. We present 8 attacks that cover these

weaknesses.

• I-JVM has a 16% overhead on inter-bundle calls. This

is an order of magnitude better than the cost of an RPC

call between two processes. Overall, the I-JVM slow-

down is between 1% and 20% on a representative suite

of macrobenchmarks.

• I-JVM requires the addition of only 650 lines of code

to VMKit. Implementing I-JVM features in a legacy

JVM should not be much more complex.

The rest of the paper is structured as follows. Section 2

describes the vulnerabilities of the OSGi platform. Section

3 explains and discusses the design and implementation of

I-JVM. Section 4 provides performancemeasurements of I-

JVM, and evaluates its robustness against denial of service

attacks. Section 5 describes related work. Finally, Section

6 concludes the paper.

2. Vulnerabilities of OSGi

Vulnerabilities in OSGi have been identified at three

sources [29]: (i) at the underlying operating system level,

(ii) at the OSGi platform level and (iii) at the JVM level.

The first kind of vulnerability is due to the possibility of

running native code either inside the JVM process or as a

separate process. These vulnerabilities are enabled by JNI

or the Runtime.exec Java call. The second kind of vul-

nerability is related to weaknesses in the OSGi run-time and

can be solved by adding security checks in the OSGi imple-

mentation [29]. In this paper, we attempt to solve the third

kind of vulnerability which targets the JVM platform.

JVM vulnerabilities can themselves be subdivided into

three categories: (i) lack of isolation, (ii) lack of resource

accounting, (iii) failure to terminate a bundle. In the rest

of this section, we present a list of 8 attacks that cover the

previously reported JVM vulnerabilities in [28, 29]. Our

experiments in Section 4 show that all attacks may corrupt,

freeze or abort unprotected OSGi platforms.

Lack of isolation. As mentioned previously, java.lang.-

Class objects, strings and static variables are shared in the

JVM by all bundles. A malicious bundle can alter static

variables or lock shared objects, and therefore interfere with

the execution of other bundles. We consider two represen-

tative attacks:

• A1 - Modification of a static variable: All bundles

share static variables. Therefore a bundle can mod-

ify a public non-final static variable defined by either

other bundles, the OSGi platform or the core Java Sys-

tem Library. For example, a malicious bundle can set a

shared variable to null, thus preventing the correct ex-

ecution of other bundles. Bundles can discover static

variables from other bundles either at compilation, or

at runtime with the reflection API of Java.

• A2 - Synchronized method or synchronized call block:

a bundle can lock shared strings, java.lang.Class ob-

jects or static variables, which can eventually freeze

the system.



Lack of resource accounting. JVMs implement a bundle

by using a specific class loader. However, JVMs do not

perform resource accounting on a per class loader basis. In

case of the over-use of resources, it is impossible to identify

the faulty bundle and stop execution of its code. Resource

accounting would help detecting the following five denial

of service attacks:

• A3 - Memory exhaustion: a malicious bundle con-

sumes most of the memory by holding references to

many or large objects. This leads to an OutOfMemory-

Error for other bundles.

• A4 - Standalone infinite loop: a malicious bundle con-

sumes all CPU resources by entering an infinite loop.

• A5 - Excessive object creation: a malicious bundle

repetitively allocates objects without referencing them,

thus triggering garbage collection and object finaliza-

tion, which monopolize the CPU.

• A6 - Excessive thread creation: a malicious bun-

dle crashes the platform by exceeding the number of

threads supported.

• A7 - Hanging thread: a malicious bundle blocks when

being called, thus never returning to the caller.

Bundle termination. In some situations, the JVM is un-

able to unload a bundle and deallocate all its allocated ob-

jects. First, other bundles may continue to reference the

bundle, thus preventing the JVM from unloading the bun-

dle classes, because a call to methods defined by the classes

of the bundle can still occur. Second, if the OSGi runtime

recognizes a bundle as misbehaving and wants to stop its

execution, methods of the bundle may be executing or be in

the call stack of running threads.

• A8 - Lack of termination support: a malicious bundle

continues execution even if the OSGi platform tries to

unload it.

Finally, misuse of the Java finalize method is a vul-

nerability, not reported in [28], that targets any platform

with dynamic class loading. A malicious code can run an

infinite loop in the method and therefore prevent any mem-

ory reclamation. We do not discuss this vulnerability in this

paper because we think the JVM should never allow an un-

trusted class to override the finalizemethod.

3. I-JVM Design and Implementation

The design goal of I-JVM is to provide bundle isolation

while preserving the communication model of the OSGi

platform, which relies on direct method calls. An OSGi

application is composed of a set of dynamically loaded bun-

dles and of the OSGi runtime itself. To implement isolation,

each bundle is executed within a separate isolate. Addition-

ally, the OSGi runtime runs in a specific isolate, Isolate0,

which has higher rights than standard bundles.

In this section, we present I-JVM in detail. We focus on

the main issues: isolation, resource accounting and termi-

nation of isolates. Then we report the implementation of

I-JVM in VMKit [15, 16], and finally we describe how to

run an OSGi platform using I-JVM.

3.1. Design

I-JVM permits explicit object sharing between isolates

by passing an object reference in an inter-isolate method

call. The key point of I-JVM is to provide thread migra-

tion between isolates in a single address space, which is a

prerequisite for object sharing. Different isolates execute

therefore on the same execution stack, which impacts isola-

tion, resource accounting and termination.

Isolation and Thread Migration

I-JVM runs isolates in the same address space. Isolates

provide a lightweight protection mechanism integrated in

the JVM, so that the classes running in one isolate cannot

crash classes running in another independent isolate. In I-

JVM, an isolate is built from a class loader, so its scope is

the classes loaded by the class loader. There is a specific iso-

late, Isolate0, which has higher rights on the platform than

standard isolates. These rights are the permissions to start

a new isolate, to terminate an isolate and to shut down the

entire Java platform. The first Java class loader created be-

comes Isolate0. The subsequent class loaders are standard

isolates.

An inter-isolate method call induces a thread migration.

Each thread possesses a reference to the isolate in which it is

currently running. This reference is updated on each cross-

isolate call. A method defined in the Java System Library is

not executed in a special isolate but in the isolate that called

it.

To implement isolates, the main change from the JVM

specification is to have a per-isolate private copy of static

variables, strings and java.lang.Class objects. This

is sufficient to ensure that an isolate does not have access to

the internal state of another isolate since: (i) an isolate can-

not construct a foreign reference thanks to the type safety of

the Java bytecode; (ii) an isolate cannot access an isolate-

private field or method thanks to the scope of fields and

methods in the Java bytecode.

Isolation of static variables is done by associating an ar-

ray of task class mirrors (defined by MVM in [9]) per class.

The task class mirror of a class contains the initialization



state of the class, the static variables and the associated

java.lang.Class object. Each isolate is assigned an index

into the array. I-JVM uses the current isolate reference of

the thread as an index into the array of task class mirrors of

a class. Accessing a static variable requires fetching the ex-

ecution environment, loading the isolate reference from the

execution environment, loading the task class mirror and fi-

nally loading the static variable. Compared to simply load-

ing a static variable, the task class mirror approach requires

two additional loads. An isolate also always has to check

the initialization state of a class before accessing one of its

static variable or before calling a static method. Similarly

to MVM, the just in time compiler cannot remove all of the

class initialization checks, because the code compiled must

be reentrant.

Resource Accounting

I-JVM monitors the execution of isolates. Resources

consumed in the code of an isolate are charged to the

isolate. Resources consumed in a method of the Java

System Library are charged to the caller of the method.

I-JVM counts the CPU time consumed, the memory used,

the number of threads created, the number of connections

used, the number of bytes read or written through I/O con-

nections, and the number of garbage collection activations.

Memory and connections: The problem of memory ac-

counting in OSGi is that multiple bundles share objects. I-

JVM follows the garbage collector memory accounting al-

gorithm of Price et al. [30], which specifically deals with

different protection domains sharing a same object. The

overall insight of their algorithm is that the garbage collec-

tor performs the memory accounting.

On a garbage collector activation, the collector scans the

memory used by threads and charges an object to a task the

first time the object is traversed. On subsequent execution

of the collector, the shared object may be charged to another

task. Although imprecise, this algorithm still offers a range

of memory usages for a task, from maximum (all memory

reachable from the task) to minimum (memory reachable

only from the task). The author acknowledges that the ap-

proach opens a door to a resource Trojan horse problem [20]

where a task allocates a large object that becomes shared,

but the collector charges the object to another task. We dis-

cuss this issue in Section 6.

Threads: I-JVM counts the number of threads an isolate

creates. I-JVM charges threads to their creator, even if they

execute code from a random isolate via inter-bundle calls.

I/O reads and writes: Any read or write to a connection

is instrumented in order to charge the isolate performing the

operation. The approach is similar to accounting of network

resources in JRes [10]: there are few classes that perform

reads and writes on connections, and instrumenting them is

straightforward.

CPU time: For CPU accounting, we have studied two

solutions. The first one is to insert per-isolate time updates

during an inter-isolate call. This induces a significant per-

formance penalty because it requires: (i) two system calls

to fetch the current time, one when entering and one when

leaving the isolate and (ii) a lock acquisition to update the

CPU time when leaving the call. Therefore, we chose a sec-

ond solution in which I-JVM counts the CPU time spent in

isolates by regularly sampling the value of the isolate refer-

ence of a running thread.

Garbage collection: I-JVM uses a single GC for all iso-

lates. To detect attacks on garbage collection activations,

I-JVM counts the number of times an isolate triggers the

GC.

Isolate Termination

There are two main problems when terminating an iso-

late. First, threads migrate between isolates; therefore I-

JVM cannot just kill the threads created by the isolate. Also,

a thread created by another isolate may be executing code

from the terminating isolate. Second, shared objects refer-

enced by other isolates cannot be released.

When terminating an isolate, I-JVM stops the execution

of all threads by sending them a signal. The handler of the

signal is defined at startup and cannot be modified by iso-

lates, thanks to the Java language. Upon receiving the sig-

nal, a thread inspects and modifies its stack as follows. For

each frame, if it is called from a frame that belongs to the

terminating isolate, the thread changes the return pointer to

throw a StoppedIsolateException exception. The

exception manager makes sure that all synchronized objects

on the stack are released. Also, the terminating isolate can-

not catch this exception: even if the isolate tries to catch it

in the Java code, I-JVM will ignore it. Finally, I-JVM takes

a special action for the last frame:

• If it belongs to the Java System Library, I-JVM sets the

interrupted flag of the thread so that I/O or sleep calls

are interrupted. This approach is similar to protection

domain termination in Spring [18].

• If it belongs to the terminating isolate, the thread

throws the StoppedIsolateException.

Moreover, code from the terminating isolate should not

be called anymore. I-JVM prevents execution of the iso-

late by (i) not JIT compiling the methods not JITed yet and

(ii) inserting at the beginning of all methods defined by the

isolate an unconditional branch that jumps to a function that

throws the StoppedIsolateException.

An isolate is only removed from memory when there is

no remaining object whose class is defined by the isolate.



This approach is similar to the now deprecated

Thread.stopmechanism. The Thread.stopmethod was dep-

recated because it may lead to objects with inconsistent

states. Since only objects from the terminating isolate and

shared objects used by the isolate may become inconsistent,

we think the benefits of being able to terminate a bundle

outweigh the inconsistency problems.

3.2. I-JVM Implementation

We have implemented I-JVM in the VMKit virtual ma-

chine [15, 16] which is specification compliant with the

JVM. Overall, I-JVM required the addition of 650 lines of

code to VMKit which are distributed as follows:

• Static variables, strings and java.lang.Class objects:

200 lines of code for implementing the task class mir-

ror in each class. The changes are done at two levels:

(i) in the Java class representation, which contains the

task class mirror, (ii) in the bytecode translator to mod-

ify the accesses to static variables and java.lang.Class

objects to reference the task class mirror.

• Method call: 150 lines of code for the update of the

isolate reference in each isolate method compiled by

VMKit.

• Resource accounting: 100 lines of code for account-

ing, for CPU, memory, I/O and threads.

• Isolate per bundle: 50 lines of code to create and attach

a new isolate to a class loader when the latter first loads

a class.

• Isolate termination: 150 lines of code for the termina-

tion of isolates.

These numbers are quite low and suggest that imple-

menting I-JVM within a legacy JVM should be relatively

easy.

3.3. Running OSGi on I-JVM

An OSGi application is made of a set of dynamically

loaded bundles and the OSGi runtime itself. To implement

protection, each bundle is executed within a separate iso-

late; the OSGi runtime runs in the Isolate0.

Isolate0 is associated with the applicative class loader

that loads the main function of the OSGi framework. When

OSGi loads a new bundle, it allocates a new class loader,

and I-JVM associates a standard isolate to this class loader.

This makes it possible to run a legacy OSGi runtime on I-

JVM without any modification. The start method of a bun-

dle receives an object that represents OSGi. This object is

the first shared object between bundles. It is used in OSGi

to register object references in a name service and to find

foreign references. Hence, at startup, a bundle can only ac-

cess foreign objects in this name service.

We additionally define a few rules that an OSGi runtime

should follow:

1. It should create a new thread when calling the start

and stop methods of a bundle, in order to prevent a mali-

cious bundle from freezing the OSGi runtime.

2. It should use Java permissions to deny access of priv-

ileged resources to bundles. For example, the JVM already

verifies that a class has the correct permissions to run non-

Java code through the use of the JNI interface or the Run-

time.exec call, or to call the System.exitmethod which shuts

down the JVM.

3. It should send a StoppedBundleEvent to all

bundles when a bundle is being killed. A bundle can then

take any action it desires: it can ignore the event or may

release the references it had on the terminating bundle

objects. If the bundle does not release the references,

I-JVM may charge the objects to the bundle. The key

point is that resources from the terminating bundle will not

be released until all bundles release their references to them.

We also define one rule for writing bundles. A bundle

should be prepared to catch any kind of exception when

calling a method from another bundle, to ensure that it will

continue its execution even in the presence of faulty bun-

dles. Like any regular JVM, I-JVM uses exceptions to sig-

nal an error during the execution of an isolate. Such errors

include regular errors such as erroneous class files or null

pointer exceptions, but also I-JVM specific errors when the

isolate is being killed.

4. Evaluation

In this section, we first motivate the need for fast inter-

bundle calls in OSGi by benchmarking a simple OSGi ap-

plication. Then, we evaluate I-JVM, in terms of perfor-

mance and memory overhead, and in terms of robustness

against attacks.

4.1. Inter-bundle Calls

To motivate the approach of OSGi and the need for fast

inter-bundle calls, we evaluated the application demo pro-

vided by Felix [1]. The application is a paint program ar-

chitectured with bundles. The drawing area, as well as the

shapes that can be drawn are implemented as bundles. The

user can add shapes dynamically or remove them through

the OSGi bundle manager.

We measured the number of inter-bundle calls when I-

JVM executes the application. Each time a shape is dragged

onto the drawing area, an inter-bundle call happens between



Local call Local RMI Incommunicado I-JVM

20µs 90ms 9ms 24µs

Table 1. Cost of 200 inter-bundle calls, de-

pending on the communication model. The
benchmarks were measured on a Pentium D

3.0GHz with 3GB of memory.

the drawing area and the shape. Dragging and moving the

shape from upper-left to the bottom-right makes roughly

two hundred inter-bundle calls. Table 1 shows the time for

performing two hundred inter-bundle calls depending on the

communication implementation. We evaluate four kinds of

implementations: (i) local call, (ii) RMI call, which is the

standard inter-application communication in Java, (iii) In-

communicado [27], the communication model of Isolates,

and (iv) I-JVM. Since we do not have access to an Incom-

municado implementation, we rely on the number they re-

port, which is ten times faster than RMI [27]. I-JVM is an

order of magnitude faster than other approaches for inter-

isolate communication.

4.2. Performance Overhead of I-JVM

Since VMKit has been implemented from scratch for

easing experimentation with virtual machines, it does not

compete with industrial JVMs. We thus report our experi-

ments in terms of relative performance and memory over-

heads of I-JVM compared to VMKit.

All experiments were done on a Pentium D 3.0GHz with

3GB of memory running Mandriva Linux 2.6.23.

To evaluate the overhead of isolation and resource ac-

counting in I-JVM, we have run the following set of micro-

benchmarks: intra-isolate and inter-isolate calls, object al-

location and access to static variables. We measured the

overhead by performing the same operation a million times.

We also ran the SPEC JVM98 benchmark in an isolate to

measure the overall runtime cost of I-JVM. Finally, we eval-

uated the memory overhead induced by running two legacy

implementations of OSGi, Felix [1] and Equinox [2] on top

of I-JVM.

Figure 1 shows the relative performance of I-JVM com-

pared to VMKit for the micro-benchmarks. I-JVM adds

two test instructions when executing an intra-isolate method

call. For an inter-isolate call, it also updates the current iso-

late of the thread, thus adding four store operations. Over-

all, an intra-bundle call induces a 14% overhead and an

inter-bundle call induces a 16% overhead.

We also benchmarked the performance of object alloca-

tion by repetitively allocating a java.lang.Object object. In

VMKit and I-JVM, the size of such an object is 28 bytes.

Figure 1. Performance of I-JVM for the micro-

benchmarks, relative to VMKit.

Figure 2. Overhead of I-JVM for the Spec

JVM98 benchmarks, relative to VMKit.

The results show that there is an 18% overhead compared

to VMKit, due to resource accounting, testing the mem-

ory limit when an isolate allocates an object and the intra-

bundle cost of calling the java.lang.Object constructor. Fi-

nally, we measured static variable access. We removed all

compilation optimizations in I-JVM to exhibit the cost of

one access to the static variable. The benchmark shows that

accessing a static variable gives a 46% overhead penalty on

I-JVM. This is due to the task class mirror requiring two

loads more than a simple load of a static variable plus an

initialization check to verify that the static variable has been

allocated. When I-JVM runs with all compilation optimiza-

tions, the overhead of accessing a static variable a million

times is below 1% because the extra instructions execute

only once.

We measured the execution time of SPEC JVM98 bench-

marks [4] runningwithin Isolate0, so as to evaluate the over-



Figure 3. Memory consumption of I-JVM and

VMKit on OSGi implementations.

head of I-JVM for standard Java programs. Figure 2 shows

that the overhead of I-JVM is below 20% for all bench-

marks. By comparison with MVM that reports a maximum

overhead of 10% [9], I-JVM is less efficient. The main rea-

son is that I-JVM induces an overhead for resource account-

ing and the test during intra-isolate calls. However, the cost

of inter-isolate communication in MVM is an order of mag-

nitude higher than a simple method call [27].

Finally, we measured the memory overhead induced by

I-JVM when running an OSGi implementation. There are

two places where I-JVM requires more memory than a stan-

dard JVM: (i) the array of task class mirrors for each class

and (ii) a per-isolate set of strings and statistics informa-

tion. Figure 3 shows the memory used when running the

base configurations of Felix and Equinox. Felix runs the

OSGi runtime and three management bundles (administra-

tion, shell, repository). Equinox runs the OSGi runtime

and twenty-two management bundles. Overall, the memory

overhead for both OSGi implementations is below 16%.

4.3. Robustness Evaluation

In Section 2, we presented a set of attacks to measure

the robustness of JVM implementations running an OSGi

platform. In this section, we compare the result of executing

these attacks on I-JVM and on the Sun JVM, OpenJDK 6.

I-JVM prevents the eight kinds of attacks by relying on an

administrator. With the Sun JVM, the administrator loses

control of the platform and has no possibility of stopping

the execution of bundles, even if he detects the offending

bundles. Thus, with the Sun JVM, the platform freezes or

aborts under denial of service attacks.

A1 - Modification of a static variable. Bundle A defines

an array as a static variable and works on the elements of the

array. Bundle B finds the static variable either at compile-

time, or at runtime through the Java reflection API. B sets

the contents of the array to null.

Result with Sun JVM: Bundle A throws a Null-

PointerException.

Result with I-JVM: I-JVM isolates bundles so that

they cannot access another bundle’s static variables. The ar-

ray is duplicated, therefore the modifications made by bun-

dle B are local to bundle B. Bundle A continues to work on

the array.

A2 - Synchronized method or synchronized call block.

Bundle A calls a static synchronize method defined in a

class that belongs to the bundle. Bundle A therefore syn-

chronizes on the java.lang.Class object of the class. An-

other bundle B explicitly synchronizes on the object, hold-

ing the object forever.

Result with Sun JVM: Bundle A is blocked.

Result with I-JVM: I-JVM disallows the sharing of

strings, java.lang.Class objects and static variables, there-

fore there is no interference between bundles that do not

communicate with each other. Therefore, bundle A contin-

ues to run.

A3 - Memory exhaustion. A set of bundles are running

on the platform. The OSGi runtime dynamically installs a

new one that allocates many objects and stores them in an

array, thus preventing the GC from deallocating the objects.

Result with Sun JVM: All bundles get a Out-

OfMemoryError when allocating a new object.

Result with I-JVM: I-JVM counts the memory used

by each bundle. Based on this information, the administra-

tor kills the offending bundle and all other bundles continue

to run.

A4 - Standalone infinite loop. A set of bundles are run-

ning on the platform. The OSGi runtime dynamically in-

stalls a new one that runs an infinite loop.

Result with Sun JVM: The non-malicious bundles

make progress slowly.

Result with I-JVM: I-JVM counts the CPU usage of

each bundle. Based on this information, the administrator

kills the offending bundle and all other bundles continue to

run.

A5 - Excessive object creation. A set of bundles are run-

ning on the platform. The OSGi runtime dynamically in-

stalls a new one that allocates many objects but does not

keep a reference to them, thus triggering the GC many

times.

Result with Sun JVM: The JVM spends its time

garbage collecting. The non-offending bundles make pro-

gess slowly.



Result with I-JVM: I-JVM counts the number of

times a bundle runs a GC. Based on this information, the

administrator kills the offending bundle and all other bun-

dles continue to run.

A5 - Excessive thread creation. A set of bundles are run-

ning on the platform. The OSGi runtime dynamically in-

stalls a new one that endlessly creates threads.

Result with Sun JVM: All bundles get a Out-

OfMemoryError when allocating a new object or a new

thread.

Result with I-JVM: I-JVM counts the number of

threads a bundle creates. Based on this information, the ad-

ministrator kills the offending bundle and all other bundles

continue to run.

A7 - Hanging thread. Bundle A calls a method of bundle

B and bundle B calls Thread.sleep(0).

Result with Sun JVM: Execution never returns to

bundle A.

Result with I-JVM: I-JVM inspects the current bun-

dle of each thread and counts the number of sleeping threads

in a bundle. Based on this information, the administrator

kills the bundle that called Thread.sleep. If bundle A was

prepared to catch the StoppedIsolateException, execution

returns to A. Otherwise, the exception is caught at a lower

stack level.

A8 - Lack of termination support. Bundle A calls bun-

dle B and is waiting for an object value. Bundle B returns

an object that points to the internal representation of bun-

dle B in the OSGi platform. Bundle A stores the reference

in one of its variable, thus the garbage collection can not

delete bundle B until the reference is released. Bundle B

then makes a denial of service attack. Therefore, the ad-

ministrator tries to unload bundle B.

Result with Sun JVM: The OSGi platform is unable

to unload the bundle, and the attack continues to run.

Result with I-JVM: All threads that execute code

from bundle B throw an exception and execution never re-

turns to bundle B.

These results show that I-JVM offers better isolation and

resource control than a standard JVM. By isolating bundles

and charging resource, I-JVM enables an administrator to

find, locate and stop misbehaving bundles. While isolation

and termination do not need any administration assistance,

locating misbehaving bundles is still in the hands of the ad-

ministrator. We plan as future work to write per bundle or

per bundle group resource policies to automate denial of

service detections.

5. Related Work

Our approach combines ideas from different research ar-

eas. In this section, we report how our work relates to

(i) operating system structures for resource management

and communications and (ii) resource accounting and isola-

tion in JVMs.

5.1. Operating Systems

The OSGi architecture resembles that of a micro-kernel

operating systems, where multiple modules run in their own

protection domains and communicate by means of Inter-

Process Communications (IPC) primitives. However, pro-

tection domains in micro-kernels are implemented as sep-

arate virtual address spaces, and must therefore cope with

data copying during IPCs. While a number of projects

achieve good performance in their IPCs implementation

[7, 11, 13, 25], communications are still an order of mag-

nitude less efficient than simple procedure calls.

Micro-kernels such as JX [17] or Singularity [21] use

safe languages to run modules in a single address space.

These systems enforce isolation by implementing com-

munications through capability-like objects [23] or shared

heaps [12]. Both cases break compatibility with existing

OSGi applications.

The Scout operating system [33], Rialto [22], and re-

source containers [6] introduce new approaches for resource

accounting in operating systems. Threads in these systems

are not bound to a protection domain but migrate between

protection domains while charging resources to a single

resource management entity. These systems differentiate

users and protection domains. In OSGi a protection domain

(i.e. a bundle) is a user.

5.2. Isolation in Java Virtual Machines

The standard isolation mechanism in current JVMs is

based on class loaders [24]. Class loaders provide name

space isolation, i.e. there is no collision between classes

with the same name but loaded by two different class

loaders. Class loaders have weak isolation guarantees,

as they still share static variables, interned strings and

java.lang.Class objects. OSGi uses class loaders as well

as Java permissions to enhance security and limit the rights

of a bundle. A method that performs a privileged operation

such as System.exit asks the JVM the protection level

of its caller. The JVM inspects the stack trace to find which

class loader loaded the class of the caller. A class loader

can be given a security policy, which indicates what kind of

privileged operations the classes loaded by this class loader

can perform. Inspection of a stack is an expensive opera-

tion, which would dramatically reduce the performance of



our approach if it were performed on each access to a static

variable, string or java.lang.Class.

There are many projects that attempt to add software-

based processes to the JVM [5, 9, 10, 19]. While these sys-

tems provide isolation, termination and resource manage-

ment, they change the programmingmodel for communica-

tions and therefore break compatibility with existing OSGi

applications.

The Secure JVM [35] is closer to our work. It is an im-

plementation of a JVM on top of an extensible operating

system. Modules run in their own address space. Program-

mers write inter-module communications like simple pro-

cedure calls. However, the operating system performs page

remapping and object relocation during an inter-module

call, which incurs performance penalties as compared to a

simple procedure call. Moreover, the Secure JVM can not

run on commodity systems.

Rudys et al. define soft termination for language-based

systems [32]. Each Java class is annotated with a boolean

value, indicating whether the class has to be stopped. The

value is polled regularly by methods defined in the class.

Because the polling code is inserted on backwards branches

and after method calls, termination is sure to happen in a

finite amount of time. They have implemented soft termina-

tion with bytecode rewriting. I-JVM implements hard ter-

mination in the core JVM: instead of inserting polling code,

the compiler unwinder and machine code rewriting ensures

that the code of the class will never be executed anymore

and stops instantaneously. Overall, I-JVM is a refinement

of three research projects: isolates in Java [9], soft termina-

tion [32] and garbage collector memory accounting [30] in

language based systems.

Finally, in the context of OSGi, Service Coroner [14]

is an administration tool to find stalled bundles. A stalled

bundle is a terminating bundle that can not be unloaded be-

cause other bundles maintain unused references to it. Ser-

vice Coroner does not modify the JVM or OSGi, but uses

aspect oriented programming to instrument the creation of

bundles. While adressing two different problems, both Ser-

vice Coroner and our work attempt to give an administrator

better control of the OSGi platform.

6. Conclusion and Future Work

We have described the design and implementation of I-

JVM, a Java Virtual Machine extended with component iso-

lation and termination in OSGi. I-JVM enables lightweight

isolation of OSGi bundles while still providing fast commu-

nication through thread migration across bundles and direct

sharing of objects. The isolate architecture of I-JVM allows

a per-bundle resource accounting that an administrator can

use to terminate a misbehaving bundle. Even though iso-

lation and resource accounting has a small overhead com-

pared to a regular JVM, our evaluation shows that I-JVM is

able to inform an administrator of denial of service attacks.

In this paper, we considered resource accounting as an

assistance for an administrator to locate possible resource

problems and kill the bundles he thinks are malicious. How-

ever the administrator must be aware of what I-JVM mea-

sures: as Price et al. explain in [30], the memory usage

statistics for a module are between a maximum (i.e. all

shared objects used by the module are charged to the mod-

ule) and a minimum (i.e. none of the shared objects are

charged to the module). Also, bundles still have the possi-

bility to create a resource Trojan horse problem [20]. Re-

source policies and bundlesmust be written with these prob-

lems in mind. Similarly, our CPU accounting mechanism is

not as precise as a system where threads do not migrate.

Precise techniques such as the one described in [8] incur a

significant time overhead, reported to be between 67% and

279%, that we can not afford.

We plan as future work to implement a policy engine that

will be able to handle such problems. Combined with the

isolation and termination features presented in this paper,

this will make I-JVM a more robust system to run OSGi

applications.

Availability

I-JVM is publicly available via an open-source license

at the URL:

http://vmkit.llvm.org
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