
BenchKit, a Tool for Massive Concurrent Benchmarking

Fabrice Kordon
Sorbonne Universités, UPMC Univ. Paris 06,

CNRS, UMR 7606, LIP6, F-75005, Paris, France
Fabrice.Kordon@lip6.fr

Francis Hulin-Hubard
LSV, CNRS UMR 8643

CNRS & ENS Cachan, France
francis.hulin-hubard@lsv.ens-cachan.fr

Abstract—Benchmarking numerous programs in a reason-
able time requires the use of several (potentially multicore)
computers. We experimented such a situation in the context
of the MCC (Model Checking Contest @ Petri net) where we
had to operate more than 52000 runs for the 2013 edition.

This paper presents BenchKit, a tool to operate programs on
sets of potentially parallel machines and to gather monitoring
information like CPU or memory usage. It also samples such
data over the execution time. BenchKit has been elaborated in
the context of the MCC and will be used for the 2014 edition.

Keywords-Distributed Computing, Virtual machines, Evalu-
ation of programs

I. INTRODUCTION

Context. These past years, the decreasing cost of computa-
tion strength eases intensive software testing or evaluation.
More particularly, multi-core machines and/or sets of ma-
chines can be solicited for such tasks. The increasing number
of concurrent computers systems (multicore, multiprocessor
or multi-machines) eases intensive testing or benchmarking.

As a result, several communities have elaborated software
competitions aiming at comparing progress of the field. Let
us cite first the Hardware Model Checking Contest that
started in 2007 and now yearly opposes the best hardware
verification tools. Other events such as the Timing Analysis
Contest, the Verified Software Competition, the Satisfiability
Modulo Theories Competition and the SAT Competitions
have emerged with similar purpose.

In 2011, we started the Model Checkin Contest @ Petri
net (MCC, http://mcc.lip6.fr) and experimented the difficulty
to fairly and appropriately evaluate model checkers from
various origins and software architectures.
Problem. In that context, benchmarking many programs
in a reasonable time requires the use of several (potentially
multicore) computers. The execution of processes must be
monitored over these machines and centralized for analysis.

Environment such as OAR [1] or Slurm [2] that are now
widely used for grid-computing cannot really help for two
reasons: (i) they are RJMS (Resource and Job Management
System) which goal is to handle reservation, access granting
in order to use resources, and (ii) they require root permis-
sion and administration skills to be deployed and operated.

Another tool, memtime [3] allows to measure the CPU and
memory used by a process but it is restricted to one process

and thus cannot report execution when several processes are
involved during the execution. This last point is a problem
for reproducibility of results by non administrator people [4].

Contribution. BenchKit has been elaborated to solve
these problems for the MCC. It allows the deployment of
numerous software executions on a set of mono/multicore
machines and to consistently report resource use (memory,
CPU, I/O, etc.). It is based on virtualization to support
the potentially changing execution environments required to
operate the programs to be benchmarked. BenchKit can be
operated easily and safely: it does not require root per-
missions to be operated once the virtualization environment
installed. It also has a low intrusive footprint and overhead.

So BenchKit is a flexible solution that proved its efficiency
for the MCC and could be operated for tasks requiring the
invocation of numerous programs with predefined data for
evaluation purpose. It produces CSV files to be exploited
using tools such as R [5] or gnuplot [6]. We do not make any
assumption on the way programs are used except that they
run under Unix-like environments (this includes Cygwin-
based execution for Windows).

Content. Section II first presents the main issues and
constraints raised by monitoring. Section III details the
principles of our solution. Section IV presents our exper-
imentation during the model checking contest as well as a
discussion on the precision of BenchKit measures.

II. MAIN ISSUES

Let us first investigate all the issues raised when bench-
marking numerous programs like in the MCC.

A. Benchmark Needs

We consider a benchmark to be a fair way to evaluate a
software. We do not consider traditional testing where only
outputs are compared against a reference but, more precisely,
the measure of resource use during the execution. This is
why neutrality is important: measure interferences must be
as low as possible.

Since establishing a test-bench is a complex task, it is
important to provide a configurable environment where the
following tasks are facilitated : (i) selection of the machine
to be used for the benchmark, (ii) configuration of these

machines for execution, (iii) monitoring of the execution,
and (iv) the retrieving of monitoring data.

Finally, it is important to enable confinement of the exe-
cution (memory, CPU, etc.) for situation where a maximum
time/memory is allowed to compute a result.

B. Typical Execution Support

Today, computers may hold several cores. So a benchmark
should target all types of machines and take advantage
of available resources. For example, a 4-cores machine
could simultaneously host 3 executions if the total available
memory allows it in a neutral-way (i.e. swapping or memory
controller do not interfere with the execution). It is up to the
benchmark designer to configure the resources according to
his needs, and the system must enable this.

A crucial point is to preserve consistency of benchmarks.
As an example, for the MCC, we can decide to use several
machines to execute tools on a given benchmark. However,
since our goal is to compare tool’s execution data, we must
ensure that a given input applied on several tools is executed
in the same conditions (memory, CPU, etc.). This also
stands when using benchmarks in the context of continuous
integration: two executions of the same tests for several
builds must be operated in similar conditions to emphasize
the evolution of performances.

C. Usability and Security Constraints

Ideally, the system should have the least constraints to
be operated by anyone. In terms of operating system, if the
environment may be set up with root privileges, it should be
operated without such privileges.

As presented in the next section, our solution relies on
virtualization. This raises some security issues: the machine
supporting the execution should not be exposed to vulner-
ability. Thus, we must preserve that any execution remains
confined in the VM container. A solution suitable for the
MCC is to isolate machines, but this may not be a solution
for any situation.

D. Resources Management

This section elaborates our solution to meet the require-
ments of section II-A in a way that preserves constraints
introduced in sections II-B and II-C.

To deal with deployment and execution problems for a
standard user, it is necessary to rely on standard solution
such as the TORQUE resource manager [7] associated with
the MOAD workload manager [8]. These could be used to
ensure an exclusive access to the required resources for the
benchmark, thus avoiding perturbation in the measures.

Another solution is to rely on the now standardized
virtualization mechanisms such as Qemu/KVM that are now
integrated in the Linux kernel since February 2007 (2.6.20).
Similarly, the cgroups system is also a good alternative
avoiding an heavy use of virtual machines; this is also
standard in the Linux kernel since October 2007 (2.6.24).

Among these solutions, we decided to use virtualization.
The main reason is to externalize the installation of the pro-
grams to be benchmarked by their developers, thus avoiding
to handle at the benchmark level, the dependencies problems
for any software to be evaluated. Furthermore, this solution
allows the tool developers to be as independent as possible
from the constraints of the execution machines.

To facilitate the construction of the disk image for the
VM environment, one could use existing facilities such as
genvm [9] or Packer [10]. Such solutions for deployment
could be integrated in BenchKit (this is not the case yet).

To cope with security issues when executing a potentially
malicious VM, it is easy to disable any access to the network
by establishing a dedicated virtual network connected to
a dummy interface on the execution computer were only
one VM can be executed. For the MCC, BenchKit needs
to log in while there is a priori no need for the bench-
marked programs to communicate in the other direction. If
benchmarked program requires access to the network, other
solutions based on forwarding and masquerading could be
elaborated. In other situations, one can imagine that code
inspection of the tool to be analyzed is performed prior to
the benchmark.

III. BENCHK IT

This section details BenchKit, our generic benchmarking
environment that is a response to the needs of section II.

A. Basic Vocabulary

Let us first introduce the vocabulary used in our frame-
work; it denotes core notions that are related to the execution
environment and benchmarking.
About the execution environment. We consider four basic
notions dealing with the execution environment:
• A virtual node (noted V n) represents a processor core,

some memory and disk to run a virtual machine.
• A physical node (noted P n) is a computer hosting one

or more V n (there can be less V n than the actual
number of cores in the physical node).

• A federation of nodes (noted F) is a set of P n, that
one may associate to a benchmark.

• A class of nodes (noted C) denotes a set of physical
nodes linked by common characteristics. For example, a
class “x86 64” could gather all 64-bit X86 processors;
similarly, “16GB+” could represent the subset C ⊆ F
where all P n with at least 16 GB of memory.

To summarize, P n ∈ C ⊆ F . There are two hierarchical
levels since V n are hosted by P n (there can be several V n
for a given P n).

Thus, the virtual node is the elementary resource that
executes programs. BenchKit has to dispatch the benchmark
execution over V n of a federation F . Classes are useful
to preserve benchmark consistency when deploying the
executions.

About benchmarking. Four useful notions help to describe
the benchmark itself:
• P, is a program to be benchmarked,
• I , is an input set of data to be processed,
• E , is an examination to be passed by a program, it

usually corresponds to a function operated by P,
• R = 〈P, E , I 〉, is a run corresponding to the execution

of a P for an E with a given I . To ensure traceability,
runs are associated to a unique identifier rid.

To summarize, a benchmark is a set of runs, each one
characterizing a situation where the program to be bench-
marked has to be confronted.

B. The Benchmark and its execution

Based on these definitions, a complete benchmark opera-
tion is composed of three steps:

1) preparation, where the list of runs to be executed is
constructed

2) execution, that corresponds to the deployment and
execution of these runs on the selected machines,

3) post-processing, where monitoring information col-
lected during the previous step is analyzed.

BenchKit is intended for the execution step only, that
creates a relation between the execution environment and
the elements constituting the benchmark. However, the other
steps are also facilitated by BenchKit.

The preparation step is easy : a directory with data must
be associated for each input I . Then, E is translated as a
way to invoke P with the appropriate link to this directory.

The post-processing phase is also facilitated: produced
outputs are standardized in CSV files, their analysis for a
given purpose can be extended or easily adapted. Default
displays are provided (CPU, memory, I/O) as a facility that
can be adapted by users according to their needs.

C. Functional Architecture

To perform the execution step, we need three types of
operations in BenchKit (see Fig. 1).

Configuration. Configuration operations first allow one to
set-up the list of machines to be used for the benchmark.
It supports exploration functions and automatic detection
of the main characteristics of each machine that has been
selected. Then, by means of dedicated commands, this
configuration can be adapted, for example to use only a
subset of the available cores in this machine, or to set-
up formulas that, based on the main characteristics of the

Configuration Deployment Monitoring

Kernel

Figure 1. The BenchKit functional architecture

machines, will dynamically define classes of machines for
consistent executions.

Deployment. These operations allow one to install
BenchKit in the selected P n (physical nodes) as well as
to prepare data to be used on the P n when the benchmark
is running (e.g. sending the required disk images, setting up
directories to store data, etc.).

Monitoring. These operations allow to launch the bench-
mark on the selected physical machines. This module also
offers ways to follow the execution (e.g. how many are
already processed) and perform emergency operations such
as pausing/resuming/halting the execution if needed.

These three modules rely on a Kernel that operates the
executions on all target P n.

D. Preparation of an Execution Virtual Machine

As explained in section II-D, we decided to rely on virtu-
alization technology. We do not target a given virtualization
technology; so far, BenchKit runs on top of Qemu/KVM. A
preliminary version also works on top of VirtualBox.

Thus, for a given P to benchmark, one has to prepare a
disk image to be run in a virtual environment. This disk
image contains: the (minimal) OS required to execute P,
directories with data associated to each input I , the program
P, a BenchKit head.

The BenchKit head serves as an interface between
BenchKit and P. It contains user-defined elements. Its struc-
ture is detailed in the next section.

E. The BenchKit Kernel

This central part of BenchKit is executed on the P n and
handles the execution of the programs to be benchmarked
in the enclosed V n. There is one instance of this kernel
on each P n in the federation. This kernel locally stores in
a FIFO the runs to be executed in the V n. The kernel is
composed of two parts:
• the executor, located in a P n, that handles executions

of runs within a VM with the selected confinement,

Algorithm 1 The BenchKit executor in the kernel
Require: v, the number of available V n
Require: f , the FIFO containing the runs to be processed

nbrun← 0
repeat

while (f is not empty) ∧ (nbrun ≤ v) do
r← getEntry(f)
nbrun← nbrun +1
Start a VM containing r.P in background
Start monitoring function in this VM
Launch r.P with option r.E and input r.I in the VM

end while
Wait for the end of a run rid (normal or on confinement)
Retrieve data from rid’ VM into the database
Stop the VM associated to rid
nbrun← nbrun−1

until (f is not empty) ∨ (nbrun > v)

Algorithm 2 Structure of the BenchKit program head
Require: r.P,r.E ,r.I
Ensure: production of outputs from the invocation of r.P

Set up the environment execution (r.P,r.E ,r.I , rid)
Redirect standard outputs and errors into log files
Go to the directory containing data for r.I
Set up a time stamp associated to the program’s start
User-defined code to launch r.P with r.E options
Setting up a time stamp associated to the program’s end

• the BenchKit head, located in a VM, that launches the
executable file in the appropriate directory containing
all the data required for the selected run.

The Executor. It is basically structured in two loops
(see Algorithm 1). The outer one ensures an appropriate
termination of all the runs that have been launched. The
inner loop handles the runs that remain in the FIFO f
associated to the current physical node. We assume that
getEntry extracts the first entry (〈P,E ,I 〉) from the FIFO.

The BenchKit head. This is the interface between BenchKit
and the program to be executed. The advantage is to let our
environment being independent from the benchmark itself.
Thus, the execution of r.P in Algorithm 1 is performed
thanks to the BenchKit head.

Algorithm 2 presents the main principles of the BenchKit
head. Basically, it prepares the execution. The user may
exploit environment variables to invoke his tool: the exam-
ination, the tool name (so that several tools or versions can
be located in the same virtual machine, thus simplifying
deployment preparation, e.g. by participants of the MCC).

F. Facts About the current Implementation

The solution presented in this section could be imple-
mented in various environment, even if we had in mind
Unix/virtualization mechanisms for the P n.

If one uses appropriate monitoring solutions, it is easy
to monitor any program under any operating system with
the appropriate technology embedded on the VM to which
BenchKit may connect to gather its data.

In our experimentation within the model checking contest,
we opted for an open source solution based on Linux. So
far, the requirements for the P n are: hardware visualization
activate VT (Intel) or SVM (AMD), kernel ≥ 2.6.20, KVM
activated in kernel and required module: kvm-intel or kvm-
amd, Qemu/KVM and the benchmark designer must be in
the kvm group, Bash ≥ 3.0, OpenSSH.

It is recommended to use the local hard drive instead of
using a networked file system to avoid latencies.

On the VM executed by the V n in the P n, we experi-
mented the following setup in 2014: filesystem ext4, Debian
wheezy (minbase variant) + network packets, OpenSSH, and
SysStat [11] for the monitoring.

A disk image was provided for tool submission (in vmdk
for compatibility with other virtualization mechanisms).

IV. EXPERIMENTATION

We report here our experience in using BenchKit for the
MCC’2013 and how we intend to use it for the MCC’2014.
We also present some evaluation of the low overhead and
deviations one can expect in using our environment.

A. Using BenchKit for the Model Checking Contest

In the 2013 edition of the MCC, we used three machines
that correspond to the variety of those one can find in an
organization as mentioned in section II-B:
• cluster1: a cluster of 23 × Intel Xeon 2.4 GHz, 6-cores

each with 8 Gbytes of memory. Since we had a memory
confinement of 4 Gbytes, we could only exploit one
core on the 18 nodes we were allowed to use.

• quahexa-2: a machine with 4 × Intel Xeon 2.66 GHz,
6-cores each. Since this machine was equipped with
128 Gbytes of memory, we could use 23 cores (the last
one being preserved for the operating system).

• ebro: a machine with 4 × AMD Opteron 2.7 GHz, 16-
cores each. Since this machine was equipped with 512
Gbytes of memory, we could use 63 cores (the last one
being preserved for the operating system).

Let us now summarize how we operated BenchKit1.

The preparation phase. Since we had three computers
with different characteristics, we maintained the benchmark
consistency by operating all examinations for a given model
(I) and any submitted tools on the same machine to ensure
that comparisons were correct.

In that context, we were confronted to the following
amount of elements to elaborate our benchmark:
• P : there was 9 tools submission, and, for one of these,

4 variants, thus leading to 12 programs to evaluate.
• I : there was 255 models, coming with sets of formulas

to be processed.
• E : there was 17 examinations for each input (state

space generation, 5 variants of LTL and CTL formula,
and finally, 6 variants of reachability formulas).

First, a shell script generated R , the list of runs, associ-
ating a unique identifier rid to each one. There was a total
52020 runs to be executed within a confinement of 4 Gbytes
of memory and 45 minutes of CPU.

Then, we had to split this list into consistent sets to be
operated in several machines. In our case, there were three
classes in the federation: C 1 = the 18 reserved P n of cluster1
(only 1 V n per node), C 2 = the quadhexa P n (embedding
23 V n), and C 3 = the ebro P n (embedding 63 V n).

The execution phase. BenchKit completely handled this
phase. Our main problem was to detect bad runs due to
crashes of the virtualization environment. There was about
4.8% of such runs that had to be reprocessed. A post-mortem

1This was an earlier version but main principles remain the same, only
some technical/implementation aspects have changed.

 1

 60

 600
 1200
 2700

 2 5 10 20 50 100 200

se
co

nd
s

FMS (P/T) for StateSpace : CPU

Figure 2. Comparison chart generated from BenchKit data

analysis revealed that these errors came from some time-out
effects when halting a VM that could delay its shutdown,
thus preventing the launching of the next one (and leading
to a bad run). The use of unique identifiers associated to
each run was useful to automatically retrieve and reprocess
these defect runs (this could not have been done manually
since 4.8% of 52020 is about 2500).

The total execution of all runs took 84 days, 6 hours, 2
minutes and 23 seconds of CPU that was operated in about
one week. This low performance can be explained as follow:

1) we had numerous configuration troubles with ebro
that was finally available at the very end of our test
(only 1 640 runs could be processed on this machine).
Since this computer represented more than 60% of or
computation strength, we missed it.

2) we performed a static a priori load balancing of the
runs. So, we often had to wait for a few V n while all
others were idle,

3) the BenchKit overhead (see section IV-B), even when
the tool declared it was not participating in an exam-
ination (this is the only way to know it).

4) Booting/halting time of VMs was not measured.
The new management of the FIFO-run presented in

section III-E was performed to solve the load balancing
problem. Apart user facilities that have been improved based
on our experience during the MCC’2013, this is the major
improvement we introduced in BenchKit that will improve
its efficiency on multicore machines.

The post-processing phase. Once the process was com-
pleted, we got about 2 Gbytes of raw ASCII data: the
sampling of memory and CPU consumption all over each
execution, a summary of the executions, traces from the ex-
ecutions, trace of the configuration used for each execution.

Shell scripts and dedicated programs exploited these data
to produce charts and results that were made available in
HTML (http://mcc.lip6.fr/2013) and as a report [12].

Figure 2 shows an example of comparison for various
scaling parameters of a model (the legend identifying tools
id not provided here). There was 2 093 such charts produced
from the raw data we obtained.

Figure 3 shows the variation of CPU and memory usage
during one execution (this one failed due to CPU confine-

 0%

20%

40%

60%

80%

100%

 0 500
 1000

 1500
 2000

 2500
execution duration (s)

PROGRAM: StateSpace for HouseConstruction/020 (P/T)

CPU Memory

Figure 3. Execution chart generated from BenchKit data, the name of the
measured tool has been removed, confinement is 2700 seconds

ment). Sampling of monitored parameters is performed each
second. There was 17 284 such charts produced (only the
relevant ones where produced, when the corresponding tool
invocation stated that outputs would be computed).

B. Overhead Precision and Stability of Measures

To evaluate the execution duration overhead induced by
BenchKit, the precision and the stability of measures we
could observe from one execution to another, we used
a perl program which duration could be parameterized.
This program repeatedly performs memory allocation and
deallocation in a deterministic way so that all executions
generate the same sequence of actions.

We launched this program natively on a computer rep-
resentative2 of those found in any organization. Then, this
program was launched on the same machine but within
BenchKit. All measures are averages based on 50 executions.

Execution Duration Overhead. To perform a measure, it
takes more than just executing the program since we need
to: (i) boot the VM, (ii) launch the monitoring program
(SysStat in our case), and (iii) retrieve the sampled data.
Our experiment revealed that boot time is about 40 seconds
and other operations far below 1 second. Thus, the execution
duration overhead depends on the execution time of the
programs to be benchmarked. The longer it is, the lower
the overhead is. If the program lasts 5 minutes, it is about
14% and for a 1 hour length program, it drops to 1.1%.

Precision of Measures. To evaluate stability of measures,
we operated our test program in both situations, time being
used to measure execution duration outside BenchKit.

Figure 4 summarizes the precision of our measures with
regards to execution time. We observe that for a 7s calculus,
precision is about 1% and drops to 0.1% (that seems to
be close to an asymptote) for a 5 minutes length program.
However, for shorter programs, the overhead increases and
was measured at 7.34% for a 1 second program. This
behavior is due to the initial cost of monitoring that is a
constant disadvantaging for small programs.

2Intel CPU Q6850 @ 3GHz, 4 GB of memory, SATA-II 7 200 rpm disk.

0.1%
1.0%
2.4%

7.3%

 1 10 30 60 120 180 300
execution duration of the monitored program (in seconds)

Figure 4. Precision of the CPU measures taken by BenchKit

So, a constant bias exists and decreases rapidly with exe-
cution time. Moreover, it is constant, whatever the program
is (at least for the implementation we experimented).

Stability of Measures. Figure 5 summarizes our measures
of CPU and memory consumption on our program (param-
eterized to consume 59970 ms of CPU and 227 Mbytes
of memory) over 50 executions. CPU is displayed on the
left while memory on the right. In both cases, the interval
between the measures is low: 0.08% for the CPU and 1.56%
for the memory. So, it appears that measures are quite
reliable. For other durations, a similar interval was observed
(so it appears to be a constant due to the monitoring).

 60041

 60065

 60089

tim
e

in
 m

s

measure interval = 0.08%
 230544

 232467

 234180

m
em

or
y

in
 K

by
te

measure interval = 1.56%

Figure 5. Stability of measures for CPU (left) and memory (right)

C. Discussion

Usability aspects. BenchKit, elaborated to automate the
extraction of monitoring data for the MCC’2013, showed it
could handle a large number of benchmarks and let us take
benefits from concurrency over several computers or several
processors/cores in a single machine.

At this stage, the most challenging problem (out of
the BenchKit scope) is the management and analysis of
produced information.

Reliability of measures. Even if virtualization and monitor-
ing introduce a bias, it appear that BenchKit provides quite
reliable monitoring information. At least, for our usage in
the Model Checking Contest where evaluated programs are
more likely to consume a reasonable amount of time and
memory, we can consider the bias as being negligible.

Extra Time Required to Perform Benchmarks. The extra
CPU required to benchmark programs with BenchKit could
be considered as very high. For example it corresponds to 25
extra days for the 84 days of CPU measured for the MCC.

However, two aspects tend to minimize this problem.
Firstly, thanks to parallelism, this cost is heavily reduced
(the theoretical gain by N is in fact achieved for N machines

or cores). On a multicore machine, our kernel most likely
ensures that VM are booting while other are executing the
program. On a multimachines, several kernel are executed
in parallel. So, in fact, the 25 extra days for computation
where greatly absorbed by the use of our parallel machines.

Secondly, it is negligible compared to the cost of con-
figuring and installing the participating tools and their (po-
tentially conflicting) dependencies. For the MCC, we avoid
having to care with this time consuming task when config-
uring several machines. Moreover, this task is impossible
without root permission.

V. CONCLUSION

This paper presented BenchKit, a generic environment
to automatically operate massive parallel benchmarks on
various sets of machines that can be organized according
to various consistency criteria. We present the principles
of such an environment and discuss some potential imple-
mentation (Unix based). We showed that, BenchKit has a
small footprint and provides fair and stable measures, except
for very short programs (e.g. below 1 second where 7%
overhead was measured).

BenchKit is intended to evaluate resource consumption
(CPU, memory, I/O, etc.) all over the execution of the
program to be benchmarked. It also handles confinement
of such programs (max memory or CPU) and stops their
execution when needed. There could be various application
of such an environment, especially in continuous integration
development approaches. We have experimented a prototype
version for the model checking contest @ Petri Net in 2013
and the version described in this paper will be used for
the MCC’2014. After this event, it will be published under
an open source license3. At this stage, BenchKit is more
intended for large programs that is the context of the MCC.

Future extensions of BenchKit should consider the bench-
marking of multicore programs (this is technically possible
at this stage but requires to extend the configuration inter-
face) as well as the reduction of bias for short programs.
Help to the end-user such as VM construction and default
data plotting are also being investigated.

REFERENCES

[1] “OAR home page,” 2013. [Online]. Available: http://oar.
imag.fr

[2] “Slurm Workload Manager,” 2013. [Online]. Available:
http://slurm.schedmd.com

[3] “memtime,” 2006. [Online]. Available: http://www.it.uu.se/
research/group/darts/uppaal/benchmarks/

[4] S. Hostettler, A. Linard, A. Marechal, and M. Risoldi,
“Improving the significance of benchmarks for petri nets
model checkers,” in Workshops of the 31st International
Conference on Application and Theory of Petri Nets and
Other Models of Concurrency (PETRI NETS), vol. 827.
CEUR-WS.org, 2010, pp. 475–489. [Online]. Available:
http://ceur-ws.org/Vol-827

3See http://benchkit.cosyverif.org

[5] “The R project for statistical computing,” 2006. [Online].
Available: http://www.r-project.org

[6] “gnuplot homepage,” 2006. [Online]. Available: http://www.
gnuplot.info

[7] Adaptive Computing, “TORQUE Resource Manager,”
2014. [Online]. Available: http://www.adaptivecomputing.
com/products/open-source/torque

[8] ——, “Moab HPC Suite Basic Edition,” 2014.
[Online]. Available: http://www.adaptivecomputing.com/
products/hpc-products/moab-hpc-basic-edition

[9] “genvm Generate debian virtual machines,” 2013. [Online].
Available: http://sourceforge.net/projects/genvm/

[10] Adaptive Computing, “Packer home page,” 2014.
[Online]. Available: http://www.adaptivecomputing.com/
products/hpc-products/moab-hpc-basic-edition

[11] “the SysStat utilities Home Page,” 2013. [Online]. Available:
http://sebastien.godard.pagesperso-orange.fr

[12] F. Kordon, A. Linard, M. Beccuti, D. Buchs,
L. Fronc, F. Hulin-Hubard, F. Legond-Aubry, N. Lohmann,
A. Marechal, E. Paviot-Adet, F. Pommereau, C. Rodrigues,
C. Rohr, Y. Thierry-Mieg, H. Wimmel, and K. Wolf, “Model
Checking Contest @ Petri Nets, Report on the 2013 edition,”
CoRR, Tech. Rep., September 2013. [Online]. Available:
http://arxiv.org/abs/1309.2485

VI. APPENDIX A, ONLINE HELP FOR BKLR

The bklr (BenchKit Launch a Run) launches a VM
and executes an examination on a given input for a given
machine. This is the main command of BenchKit. It is used
by the scheduler which operates all the tests for a given
benchmark.
$ bklr -h

BenchKit 2

F. Kordon & F. Hulin-Hubard

bklr : BenchKit Launch Run
$ bklr <disk image> <input name> <examination name>

Options
-c --config config file (default : conf/config.txt)
-d --debug mode debug
-h --help this help message
-v --version display version informations

VII. APPENDIX B, EXECUTION TRACE FOR BKLR

Here is a typical execution for the first submitted tool
for the Model Checking Contest @ Petri net for 2014. It is
performed on an example (FMS-PT-005) for the StateSpace
examination.

The only constraint for tools is to respect a formatted
output to be detected by the post analysis scripts. For this
examination, information must start with STATE_SPACE.

The time command added to the command line shows
that, while the execution time of the computation is about
60 seconds, the total execution time (including the overhead
for booting the VM) is about 83 seconds. Such an execution
overhead is acceptable since it compensates numerous time
consuming tasks.
$ time ./bklr ../tapaal.vmdk FMS-PT-005 StateSpace
runnning tapaal on FMS-PT-005 (StateSpace)
We got on stdout :
Probing ssh
...
==
Generated by BenchKit 2-1615

Executing tool tapaal
Input is FMS-PT-005, examination is StateSpace

==

content from stdout:

START 1398843898

* TAPAAL performing StateSpace search *

STATE_SPACE 2895018 -1 21 5 TECHNIQUES EXPLICIT
STOP 1398843958

content from stderr:

content from /tmp/BenchKit_head_log_file.1628:

real 1m23.516s
user 0m0.070s
sys 0m0.060s

