
Rapid Prototyping of Intrusion Detection Systems

Fabrice Kordon and Jean-Baptiste Voron
Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe

4, place Jussieu, F-75252 Paris CEDEX 05, France
Fabrice.Kordon@lip6.fr, Jean-Baptiste.Voron@lip6.fr

Liviu Iftode
Department of Computer Science

Rutgers University
Piscataway, NJ 08854-8019, USA

iftode@cs.rutgers.edu

Abstract

Designing security softwares that evolve as quickly as
threats is a truthful challenge. In addition, current software
becomes increasingly more complex and difficult to han-
dle even for security experts. Intrusion Detection Softwares
(IDS) represent a solution that can alleviate these concerns.

This paper proposes a framework to automatically build
an effective online IDS which can check if the program’s
expected behavior is respected during the execution. The
proposed framework extracts relevant information from the
program’s source code to build a dedicated IDS. We use the
GCC compiler to produce the structure of our behavior’s
model and ensure the IDS is correct. Thanks to Petri nets,
our framework allows program offline monitoring and sim-
plifies the online monitoring development.

1 Introduction

Intrusion Detection is defined as the monitoring and
analysis of events occurring in a computer system or net-
work, in order to detect signs of intrusions. Consequently,
Intrusion Detection Systems (IDS) are software or hard-
ware products that automate this monitoring and analysis
process [2].

An IDS could be considered either offline or online. In
the first case, IDS is used on logged data to detect if an in-
trusion has happened. The second option, online detection,
allows to detect intrusions with very short delays or before
they happen.

To be efficient, an IDS must be adapted to a given ap-
plication to take into consideration its specificities. Thus, a

developer must design the right IDS for a given system. A
typical example is the monitoring of system calls. The asso-
ciated IDS must consider the application profile and reject
unusual system calls sequences.

So far, such a process is performed “manually” by ex-
perts. This is a problem because such a process takes time
when IDS must adapt rapidly to detect new intrusion tech-
niques exploiting new vulnerabilities.

The objective of this paper is to propose a technique that
automatically generates IDS dedicated to a program. This
work sketches the process that extracts relevant information
from the source code and uses it for both online monitoring
and offline monitoring. Our technique uses Petri-Nets [11]
and is plugged on the GCC front-end ; it is thus relevant for
several programming languages like C, Java, C++.

The paper is organized as follow. Section 2 briefly pre-
sents the domain and usual problems concerning it. Section
3 describes our method to extract and build a model using
Petri nets. Section 4 presents experimental results and com-
pare our approach with others.

2 Motivation and Related Work

Beginning in 1980 with James Anderson’s paper [1], the
notion of intrusion detection was born. Since then, several
proposals have been made and IDS research has clearly pro-
gressed. This part describes more precisely IDS’ functions
and then raises some major issues in their construction.

2.1 What is an IDS

Considering the detection methods that are used, IDS
could be broadly divided into two families :

• misuse detection uses signatures to represent attacks
scenarios then looks for patterns that matches an attack
signature during the execution. This method is very
efficient for known attacks but often needs a human
expert to express new signatures or refine old ones.

• anomaly detection uses a comparison between ex-
pected behavior and observed behavior during the pro-
gram’s execution.

There are two ways to detect intrusions in anomaly-
based systems. In the first one, the IDS learns the mon-
itored program’s behavior by looking at many executions
of it. Thus, after a learning period, the IDS is able to dis-
tinguish normal behaviors (those observed during the train-
ing phase) from others. IDS using this technique are either
rule-based [14], statistic-based [6] or time-based [13, 18].
Finally, Forrest et al. proposes a process-based approach
from a description of computer immunology [8] and uses
sequences of system calls to handle the program’s behavior.

In the second approach, an external actor extracts the ex-
pected behavior from the system to feed the IDS. This op-
eration takes place before any execution of the monitored
program. The actor may use security specifications either
expressed by means of a dedicated language [16] or directly
issued from the program’s specifications [5]. More recently,
static analysis has been introduced to automatically derive
a behavior’s model from source [17] or binary [10] code.

[9] proposes an IDS classification based on how the ex-
pected behavior is computed. So-called “black box” and
“gray box” families learn the behavior from repeated execu-
tions of the program. On the contrary, the “white box” fam-
ily computes expected behavior from the program’s struc-
ture and code only.

Consequently, the “white box” approach allows devel-
opers to evaluate the program before its execution. This
first step, called offline-monitoring, leads to software ver-
ification techniques, also used in the context of program
verification, to perform model checking directly on pro-
grams [12].

On the contrary, online monitoring takes place during the
execution. The IDS runs as an independent entity and en-
sures that the program’s execution remains in the expected
behavior. In others terms, at any moment, the state of the
program must correspond to an existing and planned be-
havior representation’s state. To do so, the monitor has to
be able to capture the state of a program, compare it to the
expected one, and raise a response according to the validity
of the state.

This paper focuses on online monitoring based on the
“white box” approach. The first step consists to build a
model describing the expected behavior thanks to static
analysis (step 1 in figure 1). Then, the dedicated IDS is
automatically generated (step 2 figure 1).

inside (...) { if (...) {
write; } else { close;}
if(unlink){ ...; } else {

write; } lseek;}
main (...) {open;
while (...) { read;
inside(...); close;

 inside(...); } close;
 unlink; }

Program's source code

Static
Analysis

Behavior model

Offline monitoring Online monitoring

IDS

1 2Code
Generation

Figure 1. Two steps in IDS Prototyping

2.2 Problems in IDS construction

There are four main challenges in IDS construction: the
runtime overhead, the way non-determinism is handled, the
size of the model representing expected behavior, and the
extraction of the expected behavior.

Runtime overhead This is the most critical point [7]. If
too many verifications are done at runtime, then the pro-
gram’s execution is too slow. In this case, the problem is
to find a trade-off between the amount of information to be
checked from the model and the time required by the IDS
to process this information. The accessibility of informa-
tion inside the model determines the time needed to process
each state of the program.

Handling non-determinism There are two types of non-
determinism, either states or stacks.

State non-determinism implies that multiple paths could
start from the current state. So, for each step, the system
has to cover all current states’s successors. Consequently,
the overhead is proportional to the number of states.

Stack non-determinism deals with the evolution of the
program’s execution stack. For each state, every possible
paths in the model have to be explored to determine the
possible next states and stack contents. Handling stack non-
determinism may induce an exponential overhead.

Representation of expected behavior When monitored
programs’ complexity grows, representation of expected
behavior must fit into memory [15]. Current approaches
solve this problem by using a “higher-level” view on the ex-
ecution. As a result, less precise configurations are handled
but they still fit in memory.

Extraction of the expected behavior It is important to
automate the extraction of the monitored program’s behav-
ior. Such an operation must be automatic in order to al-

low a quick and costless evolution of an IDS, either when
the monitored program evolves or when attacks exploit new
vulnerabilities.

Finally, a developer must consider the following points
issued from the main challenges in IDS construction:

Efficiency: During execution, an important point is the
runtime monitoring. For some models, this runtime
could exceed 40 minutes per system call [7]. For this
issue, the objective is to design models with the mini-
mum of non-determinism.

Accuracy: Models have to be as precise as possible to
handle a large number of attacks and to reduce the
number of false negatives. The objective is to design
a model representing exactly the program’s behavior.
According to previous researches, parameters like sys-
tem calls, call stack and program counter information
are the minimum to satisfy the accuracy.

Scalability: The space needed to store models is targeted
by this concern. Models have to store the minimum in-
formation to keep the ability to handle large programs.

3 Principle of IDS Prototyping

Our objective is to show how an IDS can be automati-
cally produced from a program’s source code. This work
should serve as a basis to implement an IDS generator.

We believe that formal methods could help us to an-
swer some problems outlined in the previous section. In
the meantime, the formal method study has to be merged
with computer security domain. Thus, a common behav-
ior’s representation has to be build to blend these domains.
This representation must be able to describe a program’s
behavior and serve as inputs to formal methods. Following
choices are made in this paper:

• Petri nets [11] are used to model the expected behavior.

• Only system calls are monitored.

• The program to be monitored is written in C.

3.1 Overview of the Methodology

Our framework is composed of four distinct modules
(see figure 2), each of them is responsible for a specific task.

Parser module : GCC is used to parse and extract relevant
information from the program. GCC 4 provides us a
way to extract a rich control flow graph (CFG) contain-
ing all information require to build a complete model.

inside (...) { if (...) {
write; } else { close;}
if(unlink){ ...; } else {

write; } lseek;}
main (...) {open;
while (...) { read;
inside(...); close;

 inside(...); } close;
 unlink; }

Program's source code

Parser
Module

Intermediate Language

Builder
Module

Petri net Model

Optimization
Module

Code
Generation

IDS

inside (...) { if (...) {
write; } else { close;}
if(unlink){ ...; } else {

write; } lseek;}
main (...) {open;
while (...) { read;
inside(...); close;

 inside(...); } close;
 unlink; }

Offline Verification

Online Verification

Step 1

Step 2

Figure 2. Several modules are necessary to
transform the source code to an IDS.

Builder module : The control flow graph is then analyzed
and transformed into a Petri net following basic rules
(presented in section 3.3). This current work only fo-
cuses on gathering system calls’ information but other
data could be retrieved for other types of IDS.

Optimization module : Models provided by the builder
module can be optimized. For example, a function that
does not contain any system call can be discarded from
the model. Then, based on known reductions that pre-
serve properties [3], the first Petri net is reduced to an
optimized one.

Code generation module : It generates the effective IDS
from the model using a token game strategy [4]. To
do so, the monitor must catch system calls and check
them thanks to the model. When execution does not
conform with the behavior’s model, appropriate deci-
sions are made (counter-measures, program abortion,
warning sent to a security engineer).

3.2 Petri Nets

The following reasons motivate the use of Petri Nets:

• Petri nets can handle quite large models. This is partic-
ularly true for parallel or multi-threaded program. In
this case, the Colored Petri Nets lets us factorize the
behavior of all program’s components into one model.

• Petri nets are used by numerous research teams all over
the world and profit from large collection of dedicated
tools. Offline monitoring may profits from these re-
search works (but this is not the goal of this paper).

Intuitive definition Let us introduce Petri nets by means
of a small example. The Petri net in figure 3 represents
a control flow graph of a multi-threaded programs. After a
calculus, threads (identified by a identity in type T) perform
a write on a ressource. The program does not create more
than TR threads.

Class
T is 0..TR;
Var
t in T;

Init
•

fork

[t!0]

Calc write EndWaitingopen
<t>

<t++1>

<t><1> <t><t>

Figure 3. Example of Petri Net.

Places represent states of the system. Basically, a place
contains one or more tokens. In our example, places Calc
and End hold threads’ identifiers. Place Waiting contains
the next thread’s identifier.

Transitions represent the evolution of the system. A tran-
sition is fired when all precondition places hold a sufficient
marking and when the condition is verified. For example,
transition write can be fired if there is one token in Calc.
Transition fork is fired when the token’s value is not 0.
Types are circular, thus the successor of TR is 0.

When a transition is fired, input tokens (they may con-
tains a value) are dropped from all precondition places to
post condition places according to arcs’ indications. For
example, when fork is fired, the thread’s identifier is trans-
mitted to the place Calc and a new identifier is generated in
place Waiting.

The Reachability Graph Petri nets allow to elaborate
the state space of the specified system for model checking,
thanks to the firing rule. The state space is usually called
reachability graph and represents all concrete states of the
system. Figure 4 presents the reachability graph for the
Petri net of figure 3 with TR = 2. This state space has eight
states (the initial state is represented by a double circle); it
will grow following the rule: 2TR+1.

Efficient storage of the expected behavior A huge state
space is generated when the number of threads grows.
While a normal automaton stores one information in each
state, a Petri net can store many information in each of its
state. Thus, Petri net is used as a generator of a normal au-
tomaton (or a state space), which is far more compact for
real programs.

 Init: <..>

 Waiting: <.1.>

 Waiting: <.2.>
 Calc: <.1.>

Waiting: <.2.>
End: <.1.>

 Waiting: <.0.>
 Calc: <.1.> + <.2.>

 Waiting: <.0.>
 End: <.1.>
 Calc: <.2.>

Waiting: <.0.>
End: <.2.>
Calc: <.1.>

 Waiting: <.0.>
 End: <.1.> + <.2.>

fork
 t = 2

fork
 t = 2

write
 t = 1

fork
 t = 1

open

write
 t = 1

write
 t = 2

write
 t = 2

write
 t = 1

Figure 4. Reachability graph for the example

3.3 Extraction of the expected behavior

Construction of the Petri Net from the program’s sources
is performed in two steps.

Building the Petri Net Relevant information are ex-
tracted from the simple CFG generated by GCC. This in-
formation is used to build a skeleton that represents the pro-
gram’s structure. During this operation, each function is
processed and its structure is represented by an assembling
of blocks. Each block is related to its predecessors and suc-
cessors blocks. Moreover, important instructions (like sys-
tem calls or function calls) are represented in the CFG.

The parser module gather this information to build the
skeleton that prefigure the expected behavior’s model. In
this paper, all the information about system calls is picked
up. Once a block is processed, its description is replaced by
the new description in terms of system calls.

The builder module uses the enriched skeleton to set up
a Petri net. The construction is performed with respect to
the following rules :

R1 Each function has a Entry state and a Exit state.

R2 CFG’s blocks are represented by places.

R3 For each successor, in a bloc, a transition is created.

R4 A system call is represented by a transition.

R5 Each system call has a pre and a post place.

R6 A transition is included between two functions.

R7 Functions must carry their call site’s identifier.

There are two types of tokens. The first one is a enu-
meration representing all possible system calls used in the
program and the value “no-system-call” (no system call but
structure information to keep). The second one serves to

track functions. It is also an enumeration type with a value
per function call in the CFG. Transitions between functions
generates a colored token (see figure 6(c)). Its value de-
pends on the function call site.

Finally, the Entry place’s value of the main function is
set with a simple non colored token. The model resulting is
ready to be embedded into the IDS or to be used for offline
monitoring.

Optimizing the Petri Net The use of Petri nets gives the
possibility to apply reductions on the net. These reductions
do not modify the meaning of the model but only its rep-
resentation. In our proposal, three kinds of reductions are
used to remove useless places and transitions. In this way,
the size of our model may be significantly reduced (see sec-
tion 4.2).

3.4 Automatic generation of the IDS

Our IDS is divided into three layers (see figure 5). The
first level is dedicated to the capture of events. Thus, this
part is built as a listener waiting for messages coming from
the system. These messages, related to the monitored pro-
gram, carry a type of event and a value. This part is invariant
for all generated IDS and will be detailed in the future work.

Firing
Manager

Sensors

Program's state

IDSEvent Event Event

Alarm

Expected Behavior

Level 1

Level 2

Level 3

Figure 5. IDS architecture

The second floor is considered the engine of the IDS:
the firing manager. It determines if a received event (in
our work: a system call) is valid or not, according to the
current program’s state and the expected behavior. Like the
previous one, this part is the same for all produced IDS.

The last layer is the only variable part of an IDS. It con-
tains the expected behavior and the current representation
of the program’s state.

Expected behavior’s representation The behavior is
represented by an incidence matrix, which statically spec-
ifies the rules that govern the evolution of the net. This
matrix indicates the conditions needed to fire each transi-
tion (pre-conditions) and the rules to update the net after

the firing (post-conditions). The code generation module
does this transformation by browsing all places and transi-
tions and filling out the matrix. This step is very quick and
easy since there is no expensive computation needed (see
section 4.2). The size of the incidence matrix follows the
rule : p ∗ t (where p and t are respectively the number of
states and transitions in the model). In fact, only 3∗ t values
will be stored in this matrix.

Current program’s state The initial state of the gener-
ated IDS is given by the model’s initial marking. This state
is store by the IDS as a vector containing the current values
for each places of our net.

4 Application to a Simple Example

This section presents our proposal applied to a simple ex-
ample. This way, we can illustrate the two phases described
before. Some complete examples and results are also pro-
posed.

4.1 The program to be monitored

Listing 1 presents a simple program that reads a file,
prints its content and writes the first argument to the
same file. One of the functions used in this program is
strcpy(). This function may be used to override the
stack’s content and consequently to change the behavior of
the program by buffer-overflow approach.

In this example, given a special value to the first argu-
ment ARGV[1], it is possible for an attacker to execute the
admin function, which is called nowhere in the program.

int main (int argc, char** argv) {
int back = open("exec.log",O_RDWR);
if (back == -1) exit(-1);
char buf[40];
while ((read(back,buf,40))>0) printf("%s",buf);
back_arg(argv[1],back);
close(back);
return 0;

}
static void back_arg (const char *s, int back) {
if (s) {
char text[20];
strcpy(text,s);
strcat(text,"ok\n");
write(back,text,strlen(text));

}
}
void admin() {
printf("Unauthorized access !!\n");

}

Listing 1. A simple example

0

12

34

5

0

21

0

main (7)

back_arg (8)

admin (9)

(a) GCC’s output

7_Entry

7_1

7_Exit

7_0

7_2

7_3

7_5

7_4

8_Entry

8_2

8_0

8_1
8_Exit

9_Entry 9_0 9_Exit

(b) Skeleton produced by the parser

7_Entry

[open]

[exit]
[read]

back_arg

8_Entry

[strcpy]

[write]

[y=1] [close]

[return]

7_Exit

[printf]

7_0

7_17_2
7_4

7_37_5

8_0

8_1

8_2 8_Exit

<1>

<y>

<y>

<y>

<y>

<y>

<y>

<y>

<y>

<y>

<y>

<y>

<y>

<y>

<y> <y>

(c) Model includes system calls

7_Entry

[open]

[read]

7_4

[exit]

[printf]

8_Entry

[strcpy]

[write]

8_2

[y=1] [close] [return]

7_Exit

<y>

<y>

<y>
<y>

<y>

<y>

<1>
back_arg

(d) Model after optimizations

Figure 6. Four steps are necessary to build the model of program’s behavior

4.2 Extraction of the expected behavior

Presented in figure 6(a), GCC provides a CFG for the
three functions: main (identified by 7), back_arg (iden-
tified by 8) and admin (identified by 9). Additionally to
this graph, GCC includes some information into the blocks.
For example, GCC indicates that an open function is called
into block 0 of function main.

Following rules R1, R2 and R3, the parser builds the
basic skeleton (see figure 6(b)). During the link phase, the
admin function is removed from the model because it is
never called from any other function.

Thanks to GCC’s indications, system calls are added to
this skeleton following rules R4, R5, R6 and R7 (see figure
6(c)). Every blocks are still visible. The resulting net has
21 states, 23 transitions and 46 arcs.

Too much information about structure remain. After
optimizations, 47% of nodes (places and transitions) have
been removed. Numerous blocks have been deleted, and
some structures’ information have been merged too. Thus,
the final net has only 11 places, 12 transitions and 24 arcs.
It is presented on figure 6(d).

The overall time needed to build this model is less than 2
second. Moreover, no overhead has been measured during
the program’s compilation. The production of the CFG by
GCC is thus negligible.

4.3 Building the IDS

The behavior’s model is transformed into an incidence
matrix. This transformation is done by applying the follow-
ing algorithm on the Petri net:

for all transition t do
matrix[t][PreState(t)] := − Arc(PreState(t), t)
matrix[t][PostState(t)] := Arc(PostState(t), t)
matrix[t][“Event”] := Guard(t)

end for

PreState(t) and PostState(t) functions return respec-
tively, the place’s identifier preceding and following the
transition t. The Guard(t) function returns the value of
the transition’s guard. The Arc(a, b) function returns the
value of the arc linking two nodes: a and b.

The initial state (0) is stored by initializing the array
State. The following algorithm describes this operation:

for all place p do
state[0][p] := 0
state[0][“main_Entry”] := 1

end for

The first level of the IDS is sensible to messages build
upon the pattern : <event,value>. It receives these
messages by way of signals and processes them as soon as

they arrived. Thus, when a event is detected, IDS enqueues
it; waiting to be processed by the firing manager.

The second level is designed to read the queue and try to
apply the read event on the embedded representation. The
following algorithms describe the way to proceed.

The first function indicates if a transition t is fireable
considering the current state s and the incidence matrix.

function IS_FIREABLE(t, s)
fire := true;
for all place p do

if (matrix[t][p] ≥ 0) then
next;

end if
if (state[s][p] > |matrix[t][p]|) then

fire := false; break;
end if

end for
return fire;

end function

The FIRE function creates a new state for each fireable
transition.

function FIRE(t, s)
newstate := s + 1;
for all place p do

state[newstate][p] := state[s][p]+matrix[t][p]
end for

end function

The next function tries to fire all transitions for all current
possible states given a specific event e. If a transition is
fireable, new states are created and the old one is deleted
(once all transitions of this state have been tested).

function TRY(e)
modify := false;
for all state s do

for all transition t do
if (matrix[t][“Event”] 6= e) then

next;
end if
if (is_fireable(t, s)) then

fire(t, s);
mark_to_delete(s); modify := true;

end if
end for
if mark_to_delete(s) then

delete(s);
end if

end for
return modify;

end function

The MAIN function first simulates a “no-event” event to
fire all possible structural transitions. Once the model is
blocked, it waits for an event. If the received event does
not trigger any changes in the model, there is a problem.
Thus, the ALARM function is raised. Otherwise, the process
continues.

function MAIN
repeat

try(“no-event”);
wait until(event e);
if (¬try(e)) then

alarm(); break;
end if

until true
end function

4.4 Results

We have chosen three other programs to try out our so-
lution. Those are: whois, gzip and ping. Results are
presented in the table below.

whois ping gzip
Program’s size (lines) 874 2454 7323
Model’s size (nodes) 1499 2348 5692
Optimized model’s size (nodes) 627 1037 3301
Time to produce the model (s) 165 723 830

The program size is given by the number of source code
lines. In fact, this number is obtained by browsing all files
used during compilation and by removing all duplicated
code.

These results illustrate the optimizations proposed in our
simple example (see 4.2). For most of programs, the opti-
mized model is 50% smaller than the basic one. This phase
is also the longest one by taking near to 80% of total calcu-
lation time. In future works, we will focus on these algo-
rithms to increase their speed.

Considering previous sequential programs test suites,
our results concerning the representation size are similar to
those proposed by other solutions. This can be explained
by the fact that Petri Nets are a very compact representa-
tion for concurrent programs. Since our example is mostly
sequential, the Petri Net and the corresponding state graph
are very similar. Future work on concurrent multithreaded
programs will show the real advantage of our solution on
that particular aspect.

At last, the time needed to produce the model begins
from the end of the compilation to the end of the optimiza-
tions. For the gzip benchmark, the production time must
be compared to the 15000 system calls needed by some
other solutions [15] to learn a consistent behavior.

5 Conclusion and Future Work

This paper presents a technique to automatically gener-
ate IDS dedicated to a program. This is a way to speed up
the adaptation of such systems to face new intrusion tech-
niques exploiting new vulnerabilities. Thus, it avoids long
“training” phases of the IDS to adapt to specific programs.

A characteristics of our approach is to rely on Colored
Petri Nets. Such an approach has several advantages. The
first one is to allow on-line monitoring by “executing” the
Petri net in parallel of the program. This allows to drive
larger systems that the traditional “automaton” approach
can not handle and will provide full benefits for the mon-
itoring of multithreaded programs.

Another interesting feature (not explored in this paper)
is to allow off-line monitoring of the program using “clas-
sical” verification techniques such as model checking or
structural analysis available for Petri nets.

Our prototype of IDS generator is plugged on GCC. So
far, it was only experimented with C but GCC also handles
numerous languages. We foreseen a solution that could be
language independent.

Currently, our approach only focus on system call super-
vision. We plan to apply similar techniques on other types
of monitoring such as memory and stack profile.

We also plan to apply our approach to generate IDS for
the monitoring of multithreaded programs. Our long-term
objective is to achieve the monitoring of several parameters
(system calls, stack profile, etc.) on concurrent programs.

Acknowledgments This work was supported in part by
NSF through CAREER grant CCR-0133366.

References

[1] J. P. Anderson. Computer security threat monitoring and
surveillance. Technical report, James P. Anderson Co., Fort
Washington, Pennsylvania, Avril 1980.

[2] R. G. Bace. Intrusion detection. Macmillan Publishing Co.,
Inc., Indianapolis, IN, USA, 2000.

[3] G. Berthelot. Checking properties of nets using transfor-
mation. In G. Rozenberg, editor, Applications and Theory
in Petri Nets, volume 222 of LNCS, pages 19–40. Springer
Verlag, 1985.

[4] J.-M. Colom, M. Sylva, and J.-L. Villarroel. On software
implementation of Petri Nets and colored Petri Nets using
high-level concurrent languages. In 7th International Work-
shop on Application and Theory of Petri Nets, pages 207–
222, 1986.

[5] A. Durante, R. D. Pietro, and L. V. Mancini. Formal spec-
ification for fast automatic ids training. In A. E. Abdal-
lah, P. Ryan, and S. Schneider, editors, FASec, volume
2629 of Lecture Notes in Computer Science, pages 191–204.
Springer, 2002.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Trans. Software Eng.,
27(2):99–123, 2001.

[7] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack information.
sp, 00:62, 2003.

[8] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for unix processes. In SP ’96: Proceedings of
the 1996 IEEE Symposium on Security and Privacy, pages
120–128, Washington, DC, USA, 1996. IEEE Computer So-
ciety.

[9] D. Gao, M. K. Reiter, and D. X. Song. Gray-box extrac-
tion of execution graphs for anomaly detection. In V. Atluri,
B. Pfitzmann, and P. D. McDaniel, editors, ACM Conference
on Computer and Communications Security, pages 318–
329. ACM, 2004.

[10] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-
sensitive intrusion detection. In NDSS. The Internet Society,
2004.

[11] C. Girault and R. Valk. Petri Nets for Systems Engineering.
Springer Verlag - ISBN: 3-540-41217-4, 2003.

[12] G. J. Holzmann. Trends in software verification. In
Springer, 2003.

[13] A. K.Ghosh and A. Schwartzbard. A study in using neural
networks for anomaly and misuse detection. 1999. Online
Publication.

[14] C. Ko, G. Fink, and K. Levitt. Automated detection of vul-
nerabilities in privileged programs by execution monitoring.
In Proceedings of the 10th Annual Computer Security Ap-
plications Conference, pages 134–144, Orlando, FL, 1994.
IEEE Computer Society Press.

[15] Z. Liu and S. M. Bridges. Dynamic learning of automata
from the call stack log for anomaly detection. In ITCC (1),
pages 774–779. IEEE Computer Society, 2005.

[16] R. Sekar, Y. Cai, and M. Segal. A specification-based ap-
proach for building survivable systems. In Proc. 21st NIST-
NCSC National Information Systems Security Conference,
pages 338–347, 1998.

[17] D. Wagner and D. Dean. Intrusion detection via static anal-
ysis. In SP ’01: Proceedings of the 2001 IEEE Symposium
on Security and Privacy, page 156, Washington, DC, USA,
2001. IEEE Computer Society.

[18] C. Warrender, S. Forrest, and B. A. Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In
IEEE Symposium on Security and Privacy, pages 133–145,
1999.

