
New features in CPN-AMI 3 :

focusing on the analysis of complex distributed systems

A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault and Y. Thierry-Mieg

LIP6, Université Pierre & Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France

cpn-ami@lip6.fr, http://www.lip6.fr/cpn-ami

Due to the state-space size explosion problem, be-
havioral analysis techniques are difficult to scale up to
industrial size problems. Our group couples research
on analysis tools with an introspection on modeling
and software engineering techniques.

CPN-AMI is an integrated development and analysis
environment dedicated to Petri nets. The numerous
services it offers are built by a homogeneous integration
of tools developed internally, and third-party tools from
partner universities. These tools include state of the
art algorithms and data-structures. This third major
release offers better support for modeling and analysis
of very large systems.

New features in CPN-AMI 3

This paper briefly presents the new features in CPN-
AMI 3. PetriScript responds to a need to program
flexible and compositional Petri nets. A symbolic
model checker allows to transparently use symmetries,
to tackle larger systems. A symbolic unfolder allows
to compute structural properties (such as bounded-
ness), without state-space exploration. A prototype
support for PNML enables connexion with other Petri
net tools.

The PetriScript language PetriScript [5] has been
designed to ease assembling and parametrization of
Petri net modules. PetriScript allows to construct large
models and test them in various configurations, by us-
ing a compositional bottom-up approach : small com-
ponent’s behaviors may be modeled separately, then
assembled according to a certain configuration, prior
to running analysis tools. We successfully applied this
approach to model and analyse PolyORB [7], and this
tool captures usage patterns identified in that case-
study.

PetriScript’s main purpose is to automate modeling
operations such as merging or connecting places and

transitions. To do so, it provides classical control in-
structions such as tests, loops,. . . , as well as a macro
system to parameterize Petri nets.

Supported operations on Petri net objects are: cre-
ation, modification, connection, deletion and fusion
of nodes. Creation and connection operations, com-
bined with control instructions, are of particular inter-
est when creating repeated patterns ; fusion operators
are useful when assembling patterns and/or modules.

The fusion operation can merge either single nodes
or lists of nodes. Lists are built by adding nodes one
by one, or by using regular expressions on Petri net
objects attributes. For example, you can insert into a
list all places having a color domain equal to color*.

So, by using an appropriate naming scheme and
PetriScript, it is very easy to automate construction
and assembly of Petri nets.

Model checking on the symbolic reachability
graph This model-checking service exploits symme-
tries to offer better scaling up of verification. The prin-
ciple is to construct an aggregated state-space graph
(the ”symbolic reachability graph” SRG), where nodes
represent equivalence classes of states. Depending on
the permittivity of the equivalence relation used, SRG
nodes may represent an exponential number of “con-
crete” states, thus allow to scale up verification to in-
dustrial size examples.

Distributed systems frequently contain repeated
component instances, that only differ by their iden-
tity. Typical examples are processes executing the
same code, but having different pid, or memory ad-
dresses. Another example is large value domains, ob-
tained by discretization of continuous system variables
(e.g. altitude), of which only few values are critical for
control (“never open landing gear above Max feet”).

Analysis techniques to exploit such symmetries have
been implemented, like in Murphi [8] or GreatSPN [4].
However these tools require the designer to identify ad-
missible symmetries, leading to a cumbersome formal-

1



ism, and making modifications of a model costly. We
have developed a tool using algorithms described in
[11] that allows to automatically extract all significant
symmetry information, allowing the user to transpar-
ently use these techniques. This is particularly impor-
tant in the context of reconfigurable models and models
generated from higher level specifications, where such
symmetry information is not present.

Thanks to strong collaborations with Torino and
Alessandria, we have based our CPN-AMI tool on
GreatSPN’s implementation of SRG construction (de-
velopment of the corresponding component is now
shared between Paris and Torino). For full state-space
generation, the user has thus simply to launch the
appropriate service, that will detect any and all ex-
ploitable symmetries, before running GreatSPN and
re-importing the results.

LTL model-checking is performed thanks to Spot 1

[3], a model-checking library with support for plugging
in third party state-space generators, now coupled with
GreatSPN (which doesn’t natively support LTL).

Atomic properties of an LTL formula allow to char-
acterize relevant system configurations. In our frame-
work, atomic properties may be either event based, i.e.
“transition T fires”, or state-based, i.e. “place P con-
tains N tokens”.

Event-based properties are specified by referring to
an existing transition of the Petri net, and can be re-
fined to observe specific firings of the transition by pro-
viding a standard guard expression.

State-based properties are specified by adding obser-
vation transitions to a net : the atomic state property
is considered true in any state such that the obser-
vation would be fireable. These added transitions are
never fired, they do not impact on the net’s behavior,
thus they may not have output arcs. However, they
may have as many input or inhibitor arcs as necessary,
and a guard, offering great flexibility in the definition
of the target states.

LTL model-checking is run using on-the-fly algo-
rithms, and yields an error trace if the property is not
preserved. The formula to be checked may have an im-
pact on the symmetries that can be used to construct
the symbolic reachability graph, thus it is analyzed be-
fore computation to find the maximal symmetries such
that the truth of the formula can be checked using the
symbolic reachability graph. The whole procedure is
entirely automatic and transparent for end-users of the
platform.

This tool has been successfully used to verify be-
havioral properties of an intermediate size system, the
resource broker of the PolyOrb middleware [7]. Analy-

1http://spot.lip6.fr

1,E+00

1,E+02

1,E+04

1,E+06

1,E+08

1,E+10

1,E+12

1,E+14

1,E+16

1,E+18

State space

Quotient graph

Ratio

Figure 1. Evolution of concrete and symbolic
state space sizes when varying parameters of
the PolyOrb case study. 100 million states is
a higher limit for most explicit techniques.

sis of realistic configurations of this middleware could
not have been performed using classical techniques, as
shown in Figure 1 that exhibits the exponential reduc-
tion in state-space size due to symmetry exploitation as
the number of threads allocated to PolyORB varies.

Optimized Colored nets unfolding As some
structural properties cannot be verified on colored Petri
nets, an operation, called unfolding is used to tran-
form these nets to P/T ones. Depending on the colored
model, its unfolded net can contain dead parts whose
size may vary from nothing to almost all nodes.

For example, in Well Formed Nets, integer expres-
sion, like i× j on arc valuations are not available, lead-
ing the modeler to use a pattern to emulate it. Un-
folding of these patterns generates a huge number of
transitions, but most of them are dead.

Several optimizations can be applied to remove these
dead parts : removal of transitions guarded by false,
removal of the maximal unmarked syphon and removal
of orphaned marked places. All these are already im-
plemented in our previous unfolder. However, opti-
mization fails on huge unfolded nets since it needs to
store the full unfolded net in memory.

So, our new unfolder uses a symbolic representation
for places and transitions of the unfolded net, using
Data Decision Diagrams [1], and an implicit one for
arcs. The use of decision diagrams gives usually good
performances both for execution time and memory us-
age, as operations on the symbolic representation make
a heavy use of caching.

The UniformizedTrain [2] model makes a strong
case for this method. Without optimizations, its un-
folded net contains more than 105 places and 109 tran-
sitions. After optimization, it is reduced to 343 places

2



and 202 transitions. Execution ends after only 7 sec-
onds and uses less than 72 MB of memory.

t_2_2t_2_1t_1_2 t_1_1
C_2_2_4

1

C_2_1_2
1

C_1_2_1
1

C_1_1_1

1

B_4
B_2

B_1

A_2_21A_2_11A_1_21 A_1_11

A
D

<C1.all, C1.all>

B
C2

t

C

D1

<1,1,1>,
<1,2,2>,
<2,1,2>,
<2,2,4>

<i,j,k>

<i,j,k>
<k>

<i,j>

Class
C1 is 1..2;
C2 is 1..4;
Domain
D is <C1,C1>;
D1 is <C1,C1,C2>;

Var
i,j in C1;
k in C2;

(a)

(b)

Figure 2. Multiplication table.

Place C in Figure 2 (a) models a multiplication ta-
ble. Typically, unfolding this place leads to a great
number of ordinary places (n4 places if n is the multi-
plication table length) and only a few of them (n2) are
useful (see Figure 2 (b)).

Experimentation of the ISO/IEC-15909 ex-
change standard CPN-AMI serves as a testbench
for the new PNML [9] (Petri Net Markup Language)
standard (ISO/IEC-15909 part 2) since we are exper-
imenting a prototype implementation. PNML is a
XML-based universal transfer syntax for Petri nets to
allow interoperability among Petri nets tools.

The interest of this prototype is to explore new ways
to sustain PNML development and easy integration
into various Petri net tools, backing the Standard. To
achieve these objectives, OMG’s Model-Driven Devel-
opment principles [10] and techniques have been put
into practice. [6] sets the rationales for such an ap-
proach.

References

[1] J-M. Couvreur, E. Encrenaz, E. Paviot-Adet,
D. Poitrenaud, and P-A. Wacrenier. Data deci-
sion diagrams for petri net analysis. In J. Esparza
and C. Lakos, editors, 23rd Intl. Conf. on Appli-
cations and Theory of Petri Nets, number 2360 in
LNCS, pages 101–120. Springer Verlag, 2002.

[2] A. de Groot, J. Hooman, F. Kordon, E. Paviot-
Adet, I. Vernier-Mounier, M. Lemoine,
G. Gaudiere, V. Winter, and D. Kapur. A
survey: Applying formal methods to a software
intensive system. In The 6th IEEE Int. Sympo-
sium on High-Assurance Systems Engineering,
pages 55–64. IEEE Computer Society, 2001.

[3] A. Duret-Lutz and D. Poitrenaud. Spot: an exten-
sible model checking library using transition-based
generalized Büchi automata. In Proceedings of
the 12th IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS’04),
pages 76–83, 2004.

[4] GreatSPN: GRaphical Editor, Analyzer for
Timed, and Stochastic Petri Nets. http://www.

di.unito.it/∼greatspn/.

[5] A. Hamez and X. Renault. PetriScript Refer-
ence Manual. LIP6, http://www-src.lip6.fr/
logiciels/mars/CPNAMI/MANUAL SERV.

[6] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves.
Building an api for iso/iec 15909, based on model
engineering techniques. Petri Net Newsletter,
69:22–40, October 2005.

[7] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet,
S. Baarir, and T. Vergnaud. On the Formal Ver-
ification of Middleware Behavioral Properties. In
Proceedings of the 9th International Workshop on
Formal Methods for Industrial Critical Systems
(FMICS’04), volume ENTCS 133, pages 139 –
157. Elsevier, September 2004.

[8] N. Ip and D. Dill. Verifying systems with repli-
cated components in murphi. In Rajeev Alur
and Thomas A. Henzinger, editors, Proceedings of
the Eighth International Conference on Computer
Aided Verification CAV, volume 1102, pages 147–
158. Springer Verlag, 1996.

[9] E. Kindler. Software and Systems Engineering -
High-level Petri Nets. Part2: Transfert Format.
Working Draft for the Int. Standard ISO/IEC
15909 Part 2 - Version 0.6.3, June 2005.

[10] OMG. MDA Guide Version 1.0.1, document no:
omg/2003-06-01, 2003.

[11] Y. Thierry-Mieg, C. Dutheillet, and I. Mounier.
Automatic symmetry detection in well-formed
nets. In Proc. of ICATPN 2003, volume 2679 of
Lecture Notes in Computer Science, pages 82–101.
Springer Verlag, June 2003.

3


