
Using the AADL to describe distributed applications
from middleware to software components

Thomas Vergnaud1, Laurent Pautet1, and Fabrice Kordon2

1 GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

thomas.vergnaud@enst.fr, laurent.pautet@enst.fr
2 Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/SRC

4, place Jussieu, F-75252 Paris CEDEX 05, France
fabrice.kordon@lip6.fr

Abstract. Distributed Real-Time (DRE) systems require the verification of their
properties to ensure both reliability and conformance to initial requirements. Ar-
chitecture description languages (ADLs) such as the AADL provide adequate
syntax and semantics to express all those properties on eachcomponent of a sys-
tem. DRE systems rely on a key component, the middleware, to address distribu-
tion issues. In order to build efficient and verifiable systems, the middleware has
to be tailorable to meet the application needs, and to be easily modeled to support
a verification process. We propose the schizophrenic architecture as a canonical
solution to these concerns. We study how to describe the middleware architecture
using the AADL. We also study how the AADL can be used to aggregate the
different aspects of the modeling of a complete system: architecture, behavioral
descriptions, deployment, etc.

1 Introduction

Distributed systems are widely used in various applicationdomains such as embedded
systems, business applications or web applications. Distribution has to address different
requirements, either related to system constraints (execution time, memory footprint,
limited bandwidth. . . ) or related to the application design(reuse of legacy components,
programming languages heterogeneity. . . ).

An application can take advantage by the reuse of COTS to cut down develop-
ment costs. Besides, architecture description languages (ADL) can capture the design
of a complete application and of its key components. As they allow for a more ab-
stract view of the application than programming languages,they help in identifying the
structural components, and eventually expressing properties on the whole architecture.
Large projects rely on an ADL to design embedded systems. In addition to architectural
considerations, attention is focused on property verification to assess system reliability.

The ASSERT project3, coordinated by the European Space Agency and the Euro-
pean Union, chose the Architecture Analysis & Design Language (AADL) as a support
for modeling. The AADL is targeted to the description of real-time embedded systems.

3 http://www.assert-online.org



It is based on component composition and provides very convenient facilities to specify
properties on the architecture. AADL descriptions are tightly related to the implemented
systems they represent, and the AADL provides support for system generation.

Distributed systems rely heavily on middleware to handle a large part of the distri-
bution issues [1]. Compliance to constraints can only be verified once the system has
been completely designed; in order to ensure property verification, the middleware has
to be modelled as well as the other system components.

As a middleware is a complex piece of software, modelling it with an ADL may be a
very tedious task. Moreover, middleware usually implements a given distribution model
like CORBA [2], DSA [3] or Web Services [4]. Middleware may have a very different
architecture depending on the distribution model it implements. To overcome these is-
sues, we propose to focus on a middleware architecture whichwould be representative
of most middlewares.

Schizophrenicmiddleware allows to instantiate a generic middleware for one or
more distribution models. In other words, such a highly tailorable middleware can be
adapted to meet the exact application requirements. In [5],we presented PolyORB, an
implementation of the schizophrenic architecture.

The schizophrenic architecture can be decomposed into several well identified com-
ponents that can be analyzed. Thus it eases the modeling of middleware; its clear struc-
ture facilitates its description using an ADL. This can easeproperty verification, con-
figuration and deployment of an application.

Our long-term objective consists of extracting general properties from distributed
real-time embedded (DRE) systems. In this paper, we aim at studying the ability of the
AADL to describe such systems from middleware to application components. As a case
study, we especially focus on the middleware, which represents the core component
of a DRE system. Because of its clear structure and its versatility, the schizophrenic
middleware architecture is a good candidate to evaluate AADL modelling capabilities.

This paper is structured as follows. We first give an overviewof the AADL and its
main features. We then describe the schizophrenic architecture and explain why it is
a viable choice to model middleware. We give some elements onhow to describe the
architecture of a system based on a schizophrenic middleware using AADL. We finally
study how the AADL can be used to federate all the aspects of a system description.

2 Modeling the architecture using the AADL

The AADL is an evolution of MetaH, [6] and thus they share manycommon features.
The AADL aims at allowing for the description of DRE systems by assembling blocks
developed separately. Thus, it focuses on the definition of clear block interfaces [7], and
separates the implementations from those interfaces.

The AADL standard [8] is based on a textual syntax. It also provides a graphical
notation. An XML notation [9] is also defined to ease interoperability between tools.
It also defines a run-time and how to translate AADL constructions into programming
languages [10]. Hence, the structure of an application can be automatically generated.

An AADL description consists ofcomponents. Each component has an interface
providing features(e.g. communication ports), and zero, one or several implemen-



tations. The implementations give the internals of the component. Most component
implementations can havesubcomponents, so that an AADL description is hierarchi-
cal. The components communicate one with another byconnectingtheir features. The
AADL defines a set of standardpropertiesthat can be attached to most elements (com-
ponents, connections, ports, etc.). In addition, it is possible to add user-defined proper-
ties, to specify specific description information.

2.1 Components

Basically, an AADL description is a set of components that represent the different el-
ements of the whole architecture. The AADL standard defines software and hardware
components; so it is possible to model a complete system.

Execution platform componentsrepresent all the components related to the com-
puters and networks that are part of the whole system.

– busesare used to describe all kinds of networks, buses, etc;
– memoriesare used to represent any storage device: RAM, hard disk,. . .;
– processorsmodel micro-processors with schedulers: they are the general represen-

tation of a computer shipped with a basic operating system;
– devicesrepresent components whose internals are not precisely known. Typical

examples of such black boxes are sensors: the knowledge is limited to their external
behavior and their interface. We do not control their structure.

Execution platform components are mostly hardware components. Yet, components
like devicesor processorsmay have software parts.

Software componentsallow for the description of pure software elements (no hard-
ware is involved).

– datacomponents are used to describe data structures that are stored inmemoryor
exchanged between components;

– threadsare the active components of a software application;
– thread groupsgather severalthreads, thus allowing to describe a hierarchy among

thethreadsof an application;
– processescorrespond to memory spaces used to executethreads. A thread must

execute within aprocess, and aprocessmust have at least onethread;
– subprogramscorrespond to procedure calls in imperative programing languages

such as Ada or C. They allow to model an entry point in athreador adatacompo-
nent (which can be viewed as a class for object oriented languages) or can simply
be used to model normal subprograms.

Systemsare either used to make high-level descriptions or to add hierarchy in the
description. They contain other components, and thus are neither pure software nor
pure hardware components.Systemsdescribe self-sufficient components. For instance,
a thread cannot be directly put into asystem, since athread must be contained in a
process.



The AADL introduces the notion ofcomponent typesandcomponent implementa-
tions. A component typecorresponds to what is visible from the outside of the compo-
nent, such as its interface (basically its inputs and outputs); acomponent implementation
describes the internals of a component: its sub-components, the connections between
them, etc. There can be several differentimplementationsof a giventype. The AADL
also allows for the inheritance ofcomponent typesandcomponent implementations: a
typeor animplementationcan extend another one.

Subcomponents are instantiations of component types or implementations, the same
way as objects are instances of classes in object oriented languages.

2.2 Ports, subprograms and connections

Components communicate throughports andsubprogram calls, that are provided as
features of the component type.

Ports are used to model asynchronous communications:

– data portsare associated to a data component. They can be compared to the state
of a port in an integrated circuit: the destination component may or may not listen
to the data. If not, the information is lost;

– event portscan be seen like the signals of an operating system. Comparedto data
ports, they can trigger events in components, but do not carry data. Unlike data
ports, a queue is associated with each event port;

– data event portshave the characteristics of the two former ports: they can trigger
events and carry data. They are typically used to model the communications with
message oriented middleware.

Event data ports can be used to model communications based onmessage passing.
Portscan be declaredin, out or in out.

Subprogramscorrespond to synchronous calls, like Remote Procedure Calls (RPC)
or direct procedure call (as defined in programming languages) and acceptin, out and
in out parameters;parametersare comparable todataports orevent dataports, but are
synchronous and dedicated tosubprograms.

2.3 Properties and property sets

The AADL defines a set of standard properties. These are used to specify execution
deadlines forthreads, bindings between software and execution platform components,
protocols forconnections, transmission times forbuses, etc. They can describe all the
information required to check the validity of the system, orto complete the description
of its architecture.

Property types can be integers, floats, strings or booleans,componentreferences or
enumerations. Complex data structures such as Ada records or C structures do not exist.

Eachpropertyname is meant to be applied to some (or all) elements of a description:
processors, connections, ports, etc.

Properties can be specified inside elements (e.g. componenttypesor implementa-
tions). They can also be associated to instances of subcomponents. This allows for great



flexibility, as a given component implementation can be characterized when instanti-
ated; it is not necessary to specify another implementation.

If a given characteristic does not correspond to a property of the standard set of
properties, it is possible to define specific properties, usingproperty sets. A property set
defines a namespace that containsproperty typesandproperty names.

2.4 Packages

By default, all elements of an AADL description are declaredin a global namespace. To
avoid possible name conflicts in the case of a large description, it is possible to gather
components withinpackages.

A packagecan have a public part and a private part; the private part is only visible
to elements of the same package.

Packagescan containcomponentdeclarations. So, they can be used to structure
the description from a logical point of view – unlike systems, they do not impact the
architecture.

3 Architecture concerns for distributed applications

Middleware is a fundamental element of a distributed application, as it addresses several
distribution issues. Some of them are related to the distributed nature of the application,
like the location of the physical nodes. Others are related to each local node, like the
execution of the whole application. Some other considerations are related to both lo-
cal configuration and deployment, like the communication protocol used between the
nodes. All these issues can be separated, as shown on figure 1.In this paper, we focus
on the local node concerns.

application architecture

configuration topology deployment

local node distribution

Fig. 1. Principles of distributed application description

3.1 Tailorable middleware architectures

There are two main reasons to design a highly tailorable middleware. First, such a mid-
dleware would fit exactly with the application requirementswith a reasonable develop-
ment cost. Second, it could meet the requirements of severalsystem families by being
configured for a specific distribution model. Some middleware architectures have been
proposed to provide tailorability; for example configurable and generic middlewares.



The main limitation of configurable architectures (e.g. TAO[11]) is that they fo-
cus on a given distribution model (CORBA in the case of TAO). They are not efficient
enough with applications that do not fit well into this model:An application designed
in a Message Oriented Middleware (MOM) approach will not be as efficient if imple-
mented with a Distributed Object Computing (DOC) middleware such as TAO.

The main drawback of generic architectures (e.g. Jonathan [12]) is that the devel-
opment of a new personality implies the engineering of a significant amount of code.
For instance, since Jonathan is mostly based on abstract interfaces, personalities like
David (for CORBA applications) and Jeremie (for RMI applications) reuse only 10%
of the generic code. Despite the fact that such an architecture could be a good solution
to adapt the middleware to application needs, the cost of this adaptation is too high in
most cases.

3.2 The schizophrenic architecture

Configurable and generic architectures ease middleware adaptation; they are one step
towards middleware modularity. However, they do not provide complete solutions, as
they are either restricted to a distribution model, or too expensive. A middleware archi-
tecture combining configurability, genericity but also addressing interoperability with
other middlewares is needed to support a distribution infrastructure that can be fully
tailorable and built from reused components.

This requires an architecture that provides a synthesis of different middleware ar-
chitectures, and emphasizes the separation of concerns. Such an architecture should
be compared to the one adopted in classical compilers: compiler theory describes a
flexible architecture, separating machine code generationfrom source code analysis: a
front-end module analyzes source code; a back-end assembles machine code; both of
them interact using different neutral representations. Projects like GCC4 clearly demon-
strates component reuse capabilities while providing support for multiple languages and
targets.

Similarly, we proposed an original middleware architecture which separates con-
cerns between distribution model API and protocol, and their implementation related
mechanisms.

Decoupling middleware functionalities A schizophrenic middleware refines the def-
inition and role of personalities. It introducesapplication-levelandprotocol-levelper-
sonalities and aneutralcore layer which are to middleware what front-ends, back-ends
and an intermediate layer are to compilers.

Application personalitiesconstitute the adaptation layer between application com-
ponents and middleware through a dedicated API or code generator; they provide ser-
vices similar to those provided by a compiler front-end: translation of high-level con-
structs into simpler ones. They provide APIs to plug application components with the
core middleware; they interact with the core layer in order to allow the exchange of
requests between entities.

4 Free software compiler front-ends and back-ends availableathttp://gcc.gnu.org



– On the client side, they map requests made by client components from their perso-
nality-dependent representation to a personality-independent one. This neutral rep-
resentation is then processed by the neutral core layer; results are translated back
from neutral to personality-dependent form.

– On the server side, they receive requests for local objects from the core middleware,
assign them to actual application components for evaluation, and return results.

Application personalities can instantiate middleware implementations such as CORBA,
the Distributed System Annex of Ada 95 (DSA), the Java Message Service (JMS), etc.

Protocol personalitieshandle the mapping of personality-neutral requests (rep-
resenting interactions between application entities) onto messages exchanged using a
chosen communication network and protocol; similar to a compiler back-end which
transforms intermediate code representation into low level mnemonics. Requests can
be received either from application entities (through an application personality and the
neutral core layer) or from another node of the distributed application. They can also
be received from another protocol personality: in this casethe application node acts as
a proxy performing protocol translation between third-party nodes. Protocol personal-
ities can instantiate middleware protocols such as IIOP (for CORBA), SOAP (for Web
Services), etc.

The neutral core layeracts as an adaptation layer between application and protocol
personalities. It manages execution resources and provides the necessary abstractions to
transparently pass requests between protocol and application personalities in a neutral
way. It is completely independent from both application andprotocol personalities. This
enables the selection of any combination of application and/or protocol personalities;
as the GCC compiler allows the selection of any given front-end/back-end pair.

Fundamental servicesA schizophrenic middleware requires a flexible implementation
and the identification of the functionalities involved in request processing to ease the
prototyping of new personalities and their interactions.

Figure 2 describes the main elements of the schizophrenic architecture.

µ-broker
addressing activation

binding

appli. perso.

execution

application

proto. perso.

protocol
transport

represent.

Fig. 2. The schizophrenic architecture

The personalities and the neutral core layer are built on topof seven fundamental
services embodying client/server interactions found in the distribution models.



A client personality invokes theaddressingservice to get the reference of the server
entity (e.g. an object). Thebinding service then associates a binding object to this ref-
erence; a gateway is created between the actual server entity and the surrogate entity on
the client side. Theprotocol service calls therepresentationservice to format the re-
quest data and sends them through thetransport service. Upon reception on the server
side, theactivation service ensures the targeted entity is available. Theexecutionser-
vice is then invoked so that the targeted entity actually processes the request. The re-
sponse is returned using the same mechanism.

The composition of these fundamental services allows for the implementation of
different distribution models. The inner part of the middleware core is controlled by a
central element namedµ-broker, on which the services rely. It is formally described,
and supports verification facilities to ensure real-time properties [13].

A distributed application is made of several components, animportant one being the
middleware. The schizophrenic middleware architecture provides a canonical architec-
ture, made of fundamental services that provide well identified functions. Schizophrenic
middleware is versatile enough to instantiate middleware supporting different distribu-
tion models. The architecture of the neutral core layer remains unchanged from one in-
stantiation to another. It can ensure various properties regarding real-time requirements.
The schizophrenic architecture helps model middleware using a component-based lan-
guage such as an ADL.

4 Using the AADL to describe a DRE system

We now present elements on the description of the server nodeof a simple mono-task
application. We first describe the middleware architecture. This description is based
on PolyORB, our implementation of the schizophrenic architecture, presented in 3.2.
We then describe how the middleware part integrates with theother parts of the whole
server application: the application itself and the operating system.

4.1 Describing the schizophrenic architecture

Middleware is made of active components (i.e.threads) that call reactive components
(i.e. subprograms). The data exchanged between subprograms or threads are modeled
by datacomponents.

The middleware architecture mainly consists of the reactive components. Those
components model the different middleware parts: personalities and the internals of the
neutral core layer. Those parts naturally correspond to AADL packages. We cannot use
systemsto structure the architecture into more abstract components: the AADL syntax
does not allowsubprogramsto be subcomponents ofsystems.

A middleware configuration consists of a selection of the appropriate component
implementations for the neutral layer and the personalities.

The seven services of the neutral layer and theµ-broker are represented by distinct
packages. Thus we can isolate the different fundamental functions of the neutral layer.
The public part of each package should only contain the subprograms that are required



for the interconnection with the other elements of the middleware. The auxiliary sub-
programs are to be placed in the private part of the packages.So the public parts of the
packages will contain the data components and the entry points for the services.

Protocol and applicative personalities are not modeled thesame way. An application
personality can be modeled as a subprogram. This subprogramis to be called by the
execution service, which transmits the neutral request. This neutral request has to be
translated into the particular data format used by the application. This translation is
typically handled by auxiliary subprograms of the personality. The main subprogram of
the personality is to be placed in the public part of the personality package, while the
translation subprograms should be in the private part.

A protocol personality is actually a combination of three services: protocol, trans-
port and representation. Consequently, a protocol personality may just correspond to a
selection of given service implementations. However, in practice, protocol personalities
often require specific service implementations. So a protocol personality is typically
modeled by a package which contains the required service implementations.

The active part of the middleware is an executionthread. The thread receives re-
quests and returns responses usingsockets. socketsare modeled as event data ports,
since at the lowest network level, data frames can be actually compared to messages.

Upon the reception of a request, this thread calls the subprograms of theµ-broker.
Then theµ-broker will invoke the appropriate services to process therequest. The re-
sponse returned by theµ-broker will be sent back by the thread.

4.2 Describing a complete node

We gave the outline of the description of a schizophrenic middleware architecture us-
ing the AADL. In order to be able to perform analysis related to memory footprint or
schedulability, we have to completely describe each node ofthe distributed system. A
node is constituted by the application executed on the node,the middleware and the
operating system components (cf. figure 3). The hardware part of the system could also
be of some interest, but we will not discuss this here, as we focus on the software archi-
tecture.

operating system

middleware

application

m
id

dl
ew

ar
e

th
re

ad

Fig. 3. A server application

The application relies on the middleware and operating system components. Since
the application consists of purely software components (i.e. mainly subprograms), it
should be described as a package, like the middleware application personalities.



The operating system can be modeled by a set of subprograms. Since a processor
component is meant to model both a hardware micro-processorand a minimalist oper-
ating system, the entry point subprograms of the operating system may be integrated in
a processor component, while the auxiliary subprograms could be located in a package.

The middleware and application subprograms and the threadsare instantiated as
subcomponents of a process. This process must be bound to theprocessor which con-
tains the operating system.

5 Discussion

We gave the main lines of the modeling of the server part of a PolyORB-based DRE
system using the AADL.

We isolated three main parts: the operating system, the middleware and the applica-
tion itself. These three parts are independent enough to be treated as separated issues,
provided that the interfaces are clearly defined. This allows the separate development of
the different parts of the system. For example, in the ASSERTproject, PolyORB is to
be used on the real-time kernel ORK [14], separately developed. The middleware itself
is not represented as a component, but as a set of components defined in packages; this
illustrates the fact that the middleware is part of the application, not an independent
component. The services of the schizophrenic architectureremain easily identified.

A noticeable aspect of this description is that all AADL packages and components
have clearly identifiable Ada counterparts: AADL packages correspond to Ada pack-
ages, same thing for subprograms; threads can be compared toAda tasks. The AADL
allows the specification of additional properties, such as execution time, etc. In addition,
the AADL allows for the description of hardware components;it provides a unified no-
tation to describe the whole system.

We can see that a software description made with the AADL leads mainly to define
subprograms. Therefore, a too much detailed description would nearly lead to a direct
mapping between Ada procedures and AADL subprograms, whichwould be useless.
The AADL subprogramsshould rather correspond to sets of Ada procedures.

Component implementation should not necessarily be described using program-
ming language: as it is the control part of the middleware, the µ-broker is likely to
be modeled using formal methods in order to ensure the reliability of the application.

So, the generation of the whole system shall require intermediate code generation:
some components are described using formal methods; othersare purely related to the
middleware configuration (e.g. the execution service). Other parts of the middleware,
such as the personalities, are likely to be written in plain Ada (or any language chosen
to implement the subprograms).

Relevant properties, such as the required amount of memory or the processing time
could be associated to each component of the description. This would facilitate the
verification or the simulation of the whole system.

Besides node generation or analysis, the AADL could also be used to describe the
deployment of the whole distributed system. GLADE, an implementation of the Dis-
tributed System Annex (DSA), provides a configuration language to partition a dis-
tributed system. We are currently working on an AADL model togeneralize such an



approach for any distribution model and to express the deployment of a distributed sys-
tem using AADL properties.

Tools are required to process AADL descriptions: perform analysis on the descrip-
tion (schedulability of the whole system, compliance to system constraints. . . ); or to
instantiate an executable system, by generating the code for the components, and then
linking them to an AADL execution runtime; or to configure anddeploy a system, ac-
cording to its description; or simply to check the syntax andthe completeness of the
description.

OSATE5, an open source tool, has been developed for this purpose. OSATE is writ-
ten in Java and is bound to the Eclipse platform. OSATE is meant to receiveplug-ins
that perform analysis, code generation, etc.

Since we are developing PolyORB in Ada, the fact that OSATE isa Java oriented
tool is a drawback for us. As we are experimenting with the AADL, we need complete
control on the tools, so that we can study some extensions to the AADL syntax, etc.
Thus we are developing our own multi-purpose free software tool in Ada 95: Ocarina6.

Ocarina is a set of libraries built around a central core. Thecore provides an API to
manipulate and check the semantics of AADL models. We developed a parser/printer
for the AADL syntax as described in the revision 1.0 of the standard. Other modules
are under development, such as an XML parser/printer to easethe interoperability with
other tools (e.g. OSATE). Ocarina will be used for the configuration and deployment
tools associated with PolyORB.

6 Conclusion

In this paper, we focused on the modeling of DRE applications. Building DRE applica-
tions requires verifications on the architecture. Such verifications are related to quanti-
tative properties like timeliness or memory footprint, as well as properties of reliability
(no deadlocks, no starvation, etc.).

We first presented the Architecture Analysis & Design Language. The AADL aims
at describing systems as an integration of separate components. Information can be
associated to the architectural description, using properties.

We outlined the fact that distributed applications have different and specific require-
ments. As designing specific middleware to a specific application would cost too much,
therefore, adaptable middleware is required that can meet many different requirements.
There is a need for fully tailorable middleware which can be verified.

We introduced the schizophrenic architecture as a good solution to middleware tai-
lorability. It relies on a clear separation of middleware functions and can then be struc-
tured into different modules; thus it eases modeling using languages such as the AADL.
As a large part of a schizophrenic middleware implementation remains unchanged, ver-
ification can be performed.

We showed how to describe the architecture of a node of a distributed applica-
tion. We first described the middleware part and then its integration into the application

5 available athttp://www.aadl.info
6 available athttp://eve.enst.fr/ocarina



node. The AADL allows for a clear modeling structure. Architectural description and
properties provide all the required information to configure a local application node.
In addition, the AADL can integrate behavioral descriptions of the components, using
either programming languages or formal methods. As additional properties can be de-
fined, the AADL can also be used to describe the deployment of the whole distributed
system. Consequently, the AADL can be used as a unification language to aggregate all
that is required to entirely describe a DRE system.

References

1. Bernstein, P.A.: Middleware: An archictecture: for distributed system services. Technical
Report CRL 93/6, Cambridge MA (USA) (1993)

2. OMG: The Common Object Request Broker: Architecture and Specification, revision 2.2.
OMG (1998) OMG Technical Document formal/98-07-01.

3. Pautet, L., Tardieu, S.: GLADE: a Framework for Building Large Object-Oriented Real-Time
Distributed Systems. In: Proceedings of the 3rd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’00), Newport Beach, California, USA,
IEEE Computer Society Press (2000)

4. W3C: Simple Object Access Protocol (SOAP) 1.1 . (2000)http://www.w3.org/TR/SOAP/.
5. Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: PolyORB: a schizophrenic middleware

to build versatile reliable distributed applications. In:Proceedings of the 9th International
Conference on Reliable Software Techologies Ada-Europe 2004 (RST’04). Volume LNCS
3063., Palma de Mallorca, Spain, Springer Verlag (2004) 106– 119

6. Vestal, S.: Technical and historical overview of MetaH. Technical report, Honeywell (2000)
available athttp://la.sei.cmu.edu/aadlinfosite/MetaHPublications.html.

7. Lewis, B.: architecture based model driven software and system development for real-
time embedded systems (2003) avilable athttp://la.sei.cmu.edu/aadlinfosite/
AADLPublications.html.

8. SAE: Architecture Analysis & Design Language (AS5506). (2004) available athttp://
www.sae.org.

9. Feiler, P.: Annex A: AADL Model interchange formats. (2004) Part of the AADL standard,
available from SAE.

10. Tokar, J.: Annex D: Language compliance and applicationprogram interface. (2004) Part of
the AADL standard, available from SAE.

11. Schmidt, D., Cleeland, C.: Applying patterns to developextensible and maintainable ORB
middleware. Communications of the ACM, CACM40 (1997)

12. Dumant, B., Horn, F., Tran, F.D., Stefani, J.B.: Jonathan: an open distributed processing
environment in java. In: Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, Londres, Springer Verlag (1998) 175–
190

13. Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On the Formal
Verification of Middleware Behavioral Properties. In: Proceedings of the 9th International
Workshop on Formal Methods for Industrial Critical Systems(FMICS’04), Linz, Austria
(2004) To be published.

14. de la Puente, J.A., Zamorano, J., Ruiz, J., Fernández, R., García, R.: The design and imple-
mentation of the Open Ravenscar Kernel. In: Proceedings of the 10th international workshop
on Real-time Ada workshop, ACM Press (2001) 85–90


