
Generation of distributed programs in
their target execution environment

Frédéric Gilliers, Jean-Pierre Velu
frederic.gilliers@sagem.com
jean-pierre.velu@sagem.com

SAGEM SA
Etablissement d’Eraggny, Avenue du Gros Chêne

95610 Eragny
B.P. 51 - 95612 Cergy Pontoise Cedex, France

Fabrice Kordon
Fabrice.Kordon@lip6.fr

Laboratoire d’Informatique de Paris 6/SRC
Université Pierre & Marie Curie

4, place Jussieu
F-75252 Paris CEDEX 05, France

Abstract— This paper presents how we use LfP, a formal-
based, Object Oriented notation dedicated to the development of
distributed application.

The language comes with a development methodology which
emphasizes the separation between the control aspect of the
application, and the computational aspect. Specificationswritten
in L fP focus on the control part of the application which is
known to be a difficult issue of distributed applications. The
corresponding code is then automatically generated to implement
the behavior in the target execution environment.

This paper briefly presents the LfP language, how we handle
connection between computational and control aspects. We then
describes a prototype implementation of the code generatorand
the associated runtime.

Note: the work presented in this paper is being performed
withing the MORSE project. MORSE is a French government
founded research project (RNTL) with industrial partners
(Sagem, Aonix) and academic partners (LIP6 - Univ. P. &
M. Curie, LaBRI - Univ. Bordeaux I).

I. I NTRODUCTION

The rapid advance of distributed technology has lead to sys-
tems stretching limits in terms of complexity and manageabil-
ity [1]. This problem is crucial for reliable distributed systems
which are required to have a deterministic behavior. A way
to consider this development problem is to use "prototyping
techniques".

Prototyping is defined by IEEE as"A type of development
in which emphasis is placed on developing executables early
in the development process to permit early feedback and
analysis in support of the development process"[2]. However,
this definition was variously interpreted and several typesof
prototyping are considered for various purpose [3].

For some kinds of systems, prototyping can be usefully
considered as a development approach strongly supported by
program generation techniques. This approach distinguishes
two strong components [4]:

• a model on which any type of validation or verification
techniques may be applied,

• the programs that implement this model ; in a prototyping
based design, programs are generated from the model.

Such an approach becomes widely accepted under various
names. As an example, MDA [5] (Model Driven Development)
may be considered as a sort of prototyping approach. However,
generated programs must interact with their execution envi-
ronment: operating system or middleware as well as libraries
providing routines for various purpose (i.e. device drivers).

A distributed application is made of two orthogonal aspects:
the control aspect, and the computational aspect. The control
aspect manages the global state of the application whereas the
computational aspect covers the domain specific computational
components.

Prototyping is of particular interest for distributed applica-
tions for the following reasons:

• They are very difficult to develop since they are very
undeterministic ; thus, some apparently minor choices
may have dramatic influences on the system behavior.

• The control aspects (the difficult part to build) do strongly
interact with both the execution environment and compu-
tational aspects, these interactions have to be carefully
studied.

We consider that distributed applications group together a
control part managing the application (interaction protocol
between the application’s components, initialization, termina-
tion, etc..) and external components that contain routinesto
be appropriately invoked when the control part evaluates they
have to be processed. Since these two aspects of a distributed
system cannot be easily captured in one single semantics,
it is necessary to separate them. Thus, the model specifies
all the control aspects of the system and references external
components to be appropriately inserted in the control code
by the program generation tool.

This paper presents how we aim to provide such flexibility
using L f P [6]: a modeling language dedicated to the pro-
totyping of distributed systems. We present how we model
the separation between the control code and the execution
environment (the "external routines"). We also illustrateour
technique using an experimentation to generate Java-RMI [7]
code from aL f P specification.

Section II presents the methodology developed aroundL f P
and the structure of the resulting applications. Section III
describes the language itself using an example: a simple load
manager for a group of server. This example is followed
through the whole paper and lets us introduce the code
generation techniques required to automatically generatethe
control part of the distributed application. Section IV presents
the techniques we developed to implement the methodology
associated toL f P focusing on three aspects: deployment
of the generated application, the runtime required for code
generation, and the generated code structure.

II. L f P, PROTOTYPING AND EXECUTION ENVIRONMENT

A. Application development methodology

L f P is a language developed to support our prototyping
methodology for the developpement of distributed systems.It
focuses on the control aspect since this aspect is related to
most of the specific issues that may be encountered when de-
velopping a distributed application. The components required
to implement the computational aspect are not modeled inL f P
and are therefore called external components.

LfP Model
(3)

Code Generation

Distributed
Application

control aspect

Computational
aspect

High level
Specification

External
Components

(1)
Formal model
Generation

(2)
Formal

Analysis

(4)

(5)

Fig. 1. L f P methodology for distributed applications developpement

Our methodology is presented on figure 1. It starts from
a high level specification, for example written in UML. This
specification should outline the distinction between the control
aspect of the application and the external components that
handle the computational aspect.

External components define a set of interfaces used by the
programmer to link the computational aspect of the application
to its control part where required. External data (requiredby
external components to perform their task) are handled by the
control part of the application using a mechanism very similar
to private types defined in the Ada language [8].

Requirements of the application concerning the control
aspect should be translated into assertions or properties.As-
sertions such as “a variable never has a given value” should be
written in OCL, whereas properties which involve sequences
of actions such as “if a service S is invoked, then it will always
provide an answer” are written in temporal logic.

The control aspect of the application is then translated
to a L f P specification (step 1 on figure 1). Given that (1)
the control aspect of the application is now unambiguously
defined and that (2) the external data are not modified outside
of the external components, it is possible to apply formal
techniques to the resultingL f P model (step 2 of figure 1).
It is therefore possible to check that this specification meets
all the application’s requirements expressed in the model.

Once the model is verified, the source code of the control
aspect is generated (step 3 of figure 1). This code is linked with
the external components using external calls defined in the
L f P specification. Development of external components (steps
4 and 5 of figure 1) is out of the scope of our methodology
and of this paper. They may be implemented using various
techniques or come from legacy code, as long as they respect
their specifications.

This paper focuses on the automatic code generation, formal
verification is presented in [9], [10]. Let us now present
a more detailed structure of the generated applications. In
the following sections, we call aL f P component a control
component automatically produced from aL f P model.

B. General structure of aLfP application

The development of distributed applications usingL f P
highly relies on the separation of the control aspect from the
computational aspect. This leads to the application structure
of figure 2. This figure outlines the communication scheme
of an applications designed using our methodology.L f P
components (control aspect) handle the interaction mecha-
nisms between external components (computational aspect),
and manipulates them by means of function calls.

In order to comply with this communication scheme, an
external component must not :

• modify the current state of aL f P component;
• call a method of aL f P component;
• directly communicate with an other external component.

Breaking one of these rules may alter the control com-
ponents behavior, therefore invalidating formal verifications
performed on the model.

C3

C2

C1

LfP Class
Instances

Computational
Components
Instances

C4

C4

Fig. 2. Structure of an application generated fromL f P

III. PRESENTATION OFL f P THROUGH AN EXAMPLE

In order to model the control aspects of distributed appli-
cations,L f P provides a "protocol oriented" structure.

• classes manage interface with the external components,
and handle the data required to manipulate these compo-
nents;

• media provide a convenient way to relateL f P classes
together using arbitrary complex protocols.

• anarchitecture diagram describes the application ar-
chitecture .

A. The load manager system

This section introduces our language through a simple
protocol example: a simple load_management system for a
group of servers.

� � � � � � � � �

� 	
 � �
 �
 � � �
� �

� �
� �

� � � � �
! � � " � � � � � # � � � � � � � # � � � � � � � # � � � � �

Fig. 3. Class diagram of the load manager system

The UML class diagram of this system is provided on
figure 3. It displays four classes :client models a simple
client that sends a batch of requests to the server;server re-
ceives the requests and handles them;load_manager provides
the reference of the less loaded server to a client; classRPC
is an interaction class that handles communications between
the application’s components. This model behavior can be
succintly described as follows:

• clients ask for a server identifier with method
get_server of classload_manager,

• then the client sends its requests to the server using
methodhandle_request of classserver,

• when the client does not need the server anymore, it
releases it by calling methodrelease_server of class
load_manager.

B. A short presentation of the correspondingLfP model

Figure 4 shows theL f P architecture diagram of the
"load_manager" system. The three main UML classes of the
system are translated intoL f P classes. The interaction class
RPC is translated into aL f P media. From now we use the word
"component" when no distinction needs to be done between a
class or a media.

const nbr_of_server : integer := 3 ;

srv1, srv2, srv3 : server with() ;

client1, client2,client3, client4, client5 : client with() ;

load_mngr : load_manager with ();

-- port type for componant’s interface

type simple_port is port ;

type client_port is port (simple_port);

-- Requests handled by the server

type t_request is opaque ;

-- return value of a request

type t_req_val is opaque

-- request manager (external componant)

type req_handler is opaque

 function handle_request(req : in t_request) ;

end ;

1

server.mngr_itf

1 fifo

LOAD_MANAGER

SERVER CLIENTRPC

1

load_manager.itf

1 fifo

1

server.itf

1 fifo

1

client.itf
1 fifo

Fig. 4. Architecture diagram of the load_manager system

Some elements that cannot be modeled in UML also appear
on this diagram: thebinders model interaction points between
the classes and the media. They describe characteristics of
the buffer required for communications between components.
Binders are handled inside the components throughports.
Components ports are references to all the binders that the
component may use to communicate.

At the binder level, every interaction between components
is a message. AL f P message contains two sections: the
discriminant contains the information needed by the media
to handle the message and send it to its destination, the data
section contains the data sent to the destination component.
The structure of the discriminant for a given port is given
by its type. Two types of ports are declared in figure 4:
simple_port and client_port. When a class declares a
simple_port port, it means that the class must send all its
messages through this port without a discriminant; whereas

when a class sends a message to aclient_port port, it
must provide a discriminant that contains a reference to a
simple_port instance. On the media side, the port type is
only required when reading information from a port (to get
the discriminant structure).

This diagram also shows the declaration of two external
types: typet_request contains a request that the client sends
to the server, and typet_result contains the results that
the server sends back to the client. Sincet_result and
t_request do not declare any method for external calls, it
is possible to use variable of these types as parameters for
L f P methods.

L f P classes are "active classes" which means that they
define an execution unit of the application (very similar to a
thread). When an instance of a class is created, it executes its
automata as long as it finds executable transitions. When the
automata comes into a state only followed by one or several
methods, it holds its execution until one of the pending method
is called from another class.

itf : simple_port ;

type srv_load is record

 server_id : server ;

 number_of_clients : integer ;

end ;

type t_srv_array is array (1..nbr_of_server) of srv_load ;

srv_list : t_srv_array ;

srv_index : integer := 1 ;

function get_server return server ;

synchronous procedure release_server (server_id : in server) ;

synchronous procedure register(server_id : in server) ;

 S1

get_server

[srv_index <= nbr_of_server]

[srv_index>nbr_of_server][srv_index>nbr_of_server]

register

release_server

Fig. 5. behavioral diagram for the load manager class

A class behavior is modeled using a class hierarchical
automata, such as the one of figure 5. Attributes and methods
declarations appear on the main behavioral diagram (for this
class, the one presented in figure 5). Sub-diagrams provide a
hierarchical mean to simplify the description of the automata.
When a sub-diagram is named after a method, it represents the
execution flow of the corresponding method. The behavior of
classload_manager can be described as follows (see figure 5):

1) when activated the class initializes its local variables
(srv_list and srv_index) with default values spec-
ified in the declaration part,

2) then the class waits for a call toregister whose
behavior is presented on figure 6 and which registers a
server on the load manager and incrementssrv_index
by one,

3) onceregister has been executed the class reaches state
S1 which may be described as follows:

• if srv_index is less or equal tonbr_of_servers,
the only activatable method is register,

• if srv_index is greater thannbr_of_servers, then
get_server or release_server may be executed.

4) once the selected method is executed, the component
jumps back to stateS1.

function handle_request (req : in t_request) return t_result

is

 res : t_result

end ;

res:=handler@handle_req(req);

&itf:return(res);

Fig. 6. behavioral diagram for method register

Figure 7 displays the behavioral diagram of class server.
The declaration part of this class shows the declaration of an
external component type (request_handler) which provides
methodhandle_request which executes a request and returns
its result. Just after this type declaration, an instance ofthe
external component is declared and initialized. On the con-
trary to typest_request and t_result, request_handler
declares an interface, therefore a variable of this type cannot
be a parameter of aL f P method.

handle_request

itf : simple_port;

mngr_itf : client_port;

my_rpc : rpc ;

type request_handler is opaque

 function execute_req(req : in t_request);

end;

handler : request_handler:=new request_handler;

function handle_request(req : in t_request);

my_rpc := rpc(caller => mngr_itf)

&mngr_itf [load_mngr.itf]:register(self) ;

Fig. 7. behavioral diagram for classserver

The behavioral diagram ofserver performs the following
actions: (1) create an instance of mediaRPC to handle commu-
nications with otherL f P components, then (2) wait for method
handle_request.

Figure 8 presents methodhandle_request that contains
a call to the external methodexecute_request. The result

&itf;

function handle_request (req : in t_request) return t_result is

 res : t_result

end ;

res:=handler@execute_req(req);

&itf:return(res);

Fig. 8. behavioral diagram of methodhandle_request

returned by this call is then returned to the component that
invoked the method.

caller : client_port ;

target : simple_port ;

msg : message ;

&caller [target]:msg ;

&target: msg ;

&caller:msg ;

&target : msg ;

Fig. 9. behavioral diagram for classRPC

Media are active components dedicated to the modeling of
communication protocols between classes. The only interac-
tion scheme known at the media level is message passing.
Figure 9 presents the behavioral diagram of mediaRPC in our
example. This media waits for a message coming from an input
port (connected to the corresponding binder instance) and copy
it into a local variable:msg. Then it forwards this message to
an output port (connected to another binder), waits for the
return message and then forward back this return message
to the sender. Let us note that the output port (target) is
a routing parameter provided by the caller. This is the way
to model point-to-point communication (the output port is
computed using a reference to a binder instance).

IV. I MPLEMENTATION OF A L f P MODEL

This section presents the translation ofL f P models to
programs to be deployed in the final execution environment.
This is a two phases process: the user first specifies the
deployment of its model, then the code generator uses both
the model and the corresponding deployment data to produce
the code corresponding to the control part of the application.
The generated code relies on a set of low-level functions that
creates a common execution environment.

A. Deployment of aLfP specification

Deployment is a very important aspect of a distributed
application. Within our methodology, deployment maps the
application behavior defined in theL f P model on the physical
architecture. AL f P model is typically deployed over several
hosts linked by a network; every host that belongs to the
application is called a node. Deployment is expressed using
an external configuration file interpreted by the code generator
and allocatingL f P components and instances on the target
execution architecture.

The L f P approach provides a unified interaction scheme
between components via a limited set of operators (remote
procedure call or message passing), regardless of the deploy-
ment criteria. This means that the way a model is deployed
does not influence its behavior. The code generator and the
runtime handle a deployment scheme provided by the user
and generate the appropriate network interactions. Therefore,
the user only has to specify the nodes where static instances
of the models are instantiated.

B. TheLfP runtime

Let us now present theL f P runtime. We first present its
requirements, and then comment a prototype implementation
in java.

1) The LfP runtime requirements:We define theL f P
runtime as the set of low-level functions required to provide
the execution environment needed by the generated code. The
runtime is a set of functions and components that handle
thread management, binder implementation, naming services
and memory management.

Thread management mainly includes priority management,
instantiation and termination of execution supports for compo-
nents. SinceL f P does not specify any specific priority man-
agement or specific operation on thread, most current thread
libraries should work. The goal of this section of the runtime
is rather to provide a unified access to thread management in
order to avoid modification of the code generator for every
thread management system.

Binders are the communication means forL f P compo-
nents. Therefore, they also handle distribution and network
interface. Basically, binders are buffers containing messages.
They implement a producer / consumer model. The tricky
thing is that the read / write operations are distributed: the
message sender (resp. reader) may be instantiated on a distant
node, therefore binder instances must be included in the
naming service.

Thenaming service allows to reach a component (or one
of its binders) from every part of the model. In the example
of section III, classclient gets a reference to a server,
and extracts the corresponding binder instance. Figure 10

server_id := &itf [load_mngr.itf]:get_server;

Fig. 10. Part of classclient behavioral diagram

presents a part of classclient which shows this sequence
of instructions. The implementation of these operations rely
on the naming service. TheL f P semantic says that a variable
which has the type of a component of the model or of a
binder is a reference to the corresponding instance, regardless
of distribution. The naming service must also be able to handle
dynamic creation / termination of instances.

Memory management in the runtime is mainly focused on
the instantiation and termination ofL f P components.L f P
allows dynamic instantiation of component, and this instan-
tiation also instantiate the required elements for the compo-
nent, that is: the thread or process that holds its execution,
and its related binders. At termination, theL f P component
itself, and all its resources must be destroyed, including the
corresponding entries in the naming service.

2) A prototype implementation using java:We have imple-
mented a prototype of theL f P runtime. In order to reduce
its size in terms of lines of code, we use java and RMI
(Remote Method Invocation). This is currently only a proof
of feasibility, and performance was not a concern for this
implementation.

$ % & ' () * *

$ % & ' + , - + . / . 0

$ % & 1 / 2 3)

$ % & 4 5 . 0 3 , /

6 / 7 8 / 7 4 5 . 0 3 , /$ % & 9 3 . 2 / 7

' + , - + . / . 0 :) ; (/

Fig. 11. Class diagram of the runtime

Figure 11 shows the runtime simplified class diagram. Every
class (resp. media) of the model extendsLfPClass (resp.
LfPMedia); these class both extendLfPComponent which is
linked to the runtime itself. This is mainly a way for the
component to access to runtime primitives. This class also
provides the required interface for naming management.

ClassLfPRuntime provides the interface required by com-
ponents. This includes message management, naming services,
and instantiation service. This class also directly handles
the hosts component table (classComponentTable) which
provides a way to retrieve a local component from itsL f P
reference. This class also forwards all the requests to the
appropriateServerRuntime instance. If the target node is
the local host, then the call is a direct method invocation,
otherwise the runtime uses the RMI protocol.

ClassServerRuntime executes the forwarded requests. It
is the only declared RMI class, since its methods may be

remotely invoked by the instances ofLfPRuntime that forward
component’s requests to distant hosts. This class handles the
node’s components via the local instance ofLfPRuntime.

Class LfPBinder implements theL f P binders services
(message queues). Its local instances are stored in the node’s
local instance ofComponentTable to be retrieved by the
runtime when required for message operations.

C. Generated code structure

Let us now present the general structure of the generated
code. The runtime provides the set of primitives required to
implement each instruction of the model. Therefore, code gen-
eration must implement the automaton of every component of
the model, translatingL f P instructions in the target program-
ming language, or inserting runtime calls where apropriate. Let
us present an outlook of the structural aspect of the generated
code:

• L f P components (classes and media) are implemented as
java classes,

• L f P types are implemented as java classes, each sort of
type (enumerated type, record type etc. . .) has a “pattern”
to build the corresponding java classes,

• L f P methods are mapped to methods of the component
java class,

• attributes of theL f P class are mapped as attributes of the
java class,

• local variable of theL f P specification are declared in the
instruction block that implements the construction that
declares them.

L f P classes extend the classLfPClass, media extend the
classLfPMedia.

public class Load_Manager{

 public Simple_Port itf;

 private class Srv_Load {

 Server server_id;

 Integer number_of_clients;

 }

 private class T_Srv_Array {

 int first = 1;

 int last = nbr_of_server;

 Srv_Load value;

 }

 public T_Srv_Array srv_list;

 public Integer srv_index;

}

Fig. 12. Declaration of the attributes of classLoad_Manager

Type declaration also depends on theL f P type’s visi-
bility: types declared in the architecture diagram such as
simple_port on figure 4 will be generated as public classes in
a separate java file. Types declared inside aL f P component
such assrv_load will be declared as private classes inside
the component’s class. Figure 12 presents the declarationsof
class Load_Manager: The declarations of the attributes are

self-explanatory. Local types are mapped to private classes:
Srv_Load implements a record type, every attribute is a field
of the record. ClassT_Srv_Array implements an array type,
which requires three fields:first is the lowest valid value of
the index,last is the highest valid value of the index, and at
last value is the array itself.

while(true) {

 switch(next) {

 case initial:

 request.addMethod(register);

 msg = runtime.getMessage(request);

 if (msg.method.equals("register"){

 register((Server) msg.paramters[0]);

 runtime.setnMessage(msg, this);

 } break ;

 ...

 }

}

Fig. 13. Structure of the generated code

The dynamic aspect of the diagram is handled by creating
code for the automaton states and transitions. The main
diagram is generated in a method calledrun which is a default
mean to implement the “main” function of a thread in java.
Code generation for methods follows the same pattern, only
the java method’s name changes. Since the java language does
not implement a “goto” statement, we “emulate” it with a
“switch” structure inside a while loop: Every state is labeled
with a number, and thenext variable contains the label of the
next state to execute. This solution remains efficient because
the number of states per automaton is generally quite reduced
since a dedicated loop is produced for every sub-diagram.

Figure 13 displays the structure of the code generated for
the initial state of the main diagram of figure 5. Since this
state is followed by a list (here reduced to one element) of
method transitions, we apply the following pattern:

• for every outgoing transition whose guard is true, add the
name of the method in the list of valid methods,

• send the request to the runtime,
• get the activation message and execute the corresponding

method,
• send the return message with the return value.

The first two items allow to build and send a request
that will ask for all activatable method(s). The runtime call
returns a message that contains both the name of the activated
method and the parameters. The content of the message is
directly used as parameters for the method call, since java
only uses references for object parameters,L f P inout and
out parameters are updated in the message. If the method is
a function, the message also stores the return value. At last, if
the method is a synchronous procedure or returns a value, the
message is sent back in the binder, with the method’s updated
parameters or return value.

The code generated for a state followed by a set of tran-
sitions is much simpler: evaluated the outgoing transition’s

guard, and “jump” to the corresponding label if the guard
is true. This “jump” means to set the value ofnext to the
transition’s label.

If several transitions follow one state,L f P does not specify
a default evaluation order for the guards. If required, it is
possible to specify it on the model by giving priorities to every
outgoing arc of a state.

public T_Result handle_request(T_Request req) {

 Request_Handler handler = new Request_Handler();

 T_Result res ;

 next=S1;

 loop:

 while (true) {

 switch (next) {

 case S1:

 next = T1;

 break;

 case S2:

 next = T2;

 break;

 case T1:

 res = handler.execute_request(req);

 next= T2;

 break;

 case T2:

 return (res);

 }

 }

}

Fig. 14. Structure of the code generated forhandle_request

Transitions are relatively easy to translate since the instruc-
tions available inL f P often have a direct equivalent in every
structured programing language, however some constructions
specific to theL f P language are harder to implement. The
code for thehandle_request method of figure 8 is displayed
on figure 14. This figure displays the general structure of the
code generated for methods and the call to the external com-
ponent (handler.execute_request(req)) which has been
initialized on instantiation of classserver. Communication
instructions are harder to translate and require the runtime
interface for message manipulation, the generated code is not
presented in this paper.

Final states of components main diagram (not presented
in the example of this article) mean the deallocation of
the L f P component that reaches them. In java, this mainly
means to remove all the class instances that implement this
component from the naming service data structures (i.e.: set
their references to “null”). This removes the only references
to these class instances, thus allowing the garbage collector
to perform the effective deallocation. This work is done by a
runtime primitive called in the code generated for the diagram
final state.

V. CONCLUSION AND FUTURE WORK

The L f P language is dedicated to the prototyping of dis-
tributed applications. This language combine several concepts:

1) formal description techniques suitable for distributed
systems,

2) a process oriented design, suitable for distributed sys-
tems,

3) an object oriented design, suitable for the analysis of a
system (such as UML).

We presented in this paper how we intend to use our
language to automatically generate distributed applications.
The L f P model describes the control part of the system. We
have shown how it can be connected to "external" components
(that do not participate in the control but contain actions that
have to be executed). This is a difficult part sinceL f P is based
on a formal notation to enable formal verification.

Thus, we have elaborated a mechanism inspired from the
notion of "private types" found in the Ada programming
language. This allows the definition of variables that can only
be transported from aL f P component to another one. Methods
to be executed when the control part of the system decides can
be associated to these types.

We presented how the control part and the external compo-
nents can be merged into a coherent architecture implemented
on top of a runtime providing basic services for the execution
of a L f P model. In MDA terms, theL f P specification is
then a PIM (Platform Intependant Model). Combined with
deployment directives, it becomes a PSM (Platform Specific
Model) suitable for automatic program generation.

L f P is a foundation of the MORSE1 project that explores
the design and implementation of highly reliable distributed
systems. MORSE focuses on the design of the asynchronous
part of such systems and aims to be used for critical appli-
cations and covers the development of the control part of the
application from a high level specification written in UML to
code generation. TheL f P code generator is being written and
the general prototyping approach will be validated on real size
projects within the context of MORSE partners.

REFERENCES

[1] N. Leveson, “Software engineering: Stretching the limits of complexity,”
Communications of the ACM, vol. 40(2), pp. 129–131, 1997.

[2] C. Booth and G. Kurpis, “The new IEEE standard dictionaryof electrical
and electronics terms [including abstracts of all current IEEE standards],
5th edition,” Institute of Electrical and Electronics Engineers, Tech. Rep.,
1993.

[3] F. Kordon and J. Henkel, “An overview of Rapid System Prototyping
today,” to appear in Design Automation for Embedded Systems, vol. 8,
no. 4, pp. 275–282, december 2003.

[4] F. Kordon and Luqi, “An Introduction to Rapid System Prototyping,”
IEEE Trans. Softw. Eng., vol. 28, no. 9, pp. 817–821, 2002.

[5] OMG, “Model Driven Architecture (MDA), Document number
ormsc/2001-07-01,” OMG, Tech. Rep., 2001.

[6] D. Regep and F. Kordon, “L f P: A Specification Language for Rapid
Prototyping of Concurrent Systems,” inProceedings of the 12th Interna-
tional Workshop on Rapid System Prototyping. IEEE Computer Society,
2001, pp. 90–97.

1http://morse.lip6.fr

[7] “Java remote method invocation,” 1997, http://splash.javasoft.com/pages/
rmi.html.

[8] ISO, Information Technology – Programming Languages – Ada. ISO,
Feb. 1995, ISO/IEC/ANSI 8652:1995.

[9] F. Kordon, I. Mounier, E. Paviot-Adet, and D. Regep, “Formal veri-
fication of embedded distributed systems in a prototyping approach,”
in Monterey Workshop 2001: on Engineering Automation for Software
Intensive System Integration, June 2001.

[10] D. Regep, Y. Thierry-Mieg, and F. Kordon, “Modélisation et vérification
de systèmes répartis: une approche intégrée avec LfP,” inProceedings
of AFADL’03, January 2003.

