

Using MetaScribe to prototype an UML to C++/Ada95 code generator

Dan Regep
PhD student at CS TELECOM,

28, rue de la Redoute, BP 74
92263 Fontanay-aux-Roses Cedex, France

E-mail

:

Dan.Regep@lip6.fr

Fabrice Kordon
LIP6-SRC

Université P. & M. Curie
4 place Jussieu, 75252 Paris Cedex 05, France

E-mail

:

Fabrice.Kordon@lip6.fr

Abstract :

 The use of program generation from graphical
representations like UML is increasing in software pro-
jects. The notion of hypergenericity is raising up to
improve program generators. This paper presents MetaS-
cribe, a tool designed to build program generators provi-
ding guidelines to program generator designers and
having enhanced facilities for reusability. An example
illustrates the use of MetaScribe: the construction of pro-
gram generators from UML Class diagrams to C++ and
Ada95.

Key word:

Prototyping, Meta-data description, Semantic
transformation, Program generation, Hypergenericity.

1. Introduction

Program generation from complex graphical representa-
tions such as HOOD

[6]

 or UML

[13]

 is now widely used
in Computer Aided Software Engineering Environments
(CASEE) such as Rational/Rose

[14]

 or Objecteering

[16]

.
Now, most CASEEs propose such functionnalities that

ease the development of software, increase its security and
reduce its cost. Version management capabilities of pro-
gram pieces to be inserted in the generated programs are
supported at the input specification level (i.e. HOOD or
UML). Predefined classes also ease interfacing with the
execution environment.

Objecteering, implement an interesting notion: hyperge-
nericity

[4, 5]

. It is a way to parameterize the program ge-
neration strategy. Thus, users can define templates that are
processed for the generation of programs or documentation
from the input specification. The use of hypergenericity is
of interest to experiment various code generation strategies,
to adapt a code generator to quality criteria, or to refine a
program generation strategy. This is becoming an essential
issue while more code is being produced automatically
(user interfaces, object interfaces etc.).

Implementation of hypergenericity can be achieved
using a meta-program generator. Such a tool must provide
flexible representation techniques, such as the one found in
XML

[10]

 or MOF

[11]

. Moreover, transformation rules
may be defined at a semantic level. Such rules can be used
for the generation of a transformation engine that trans-
forms a data representation into another one.

To experiment distributed application generation techni-
ques and ease their implementation, we have implemented
a transformation engine generator: MetaScribe

[9]

.
In this paper, we present the use of MetaScribe in the im-

plementation of a program generator from UML to a target
object oriented language. This example assessed the use of
such a tool. We also got good evaluations of how it could be
of interest to generate a program generator.

Section 2. introduces MetaScribe. Then, Section 3. pre-
sents the case study we use in Section 4. to illustrate the use
and advantages of MetaScribe before concluding remarks.

2. MetaScribe

2.1. MetaScribe Architecture

MetaScribe is designed to enhance reusability in the im-
plementation of transformation engines. Our main goal is to
provide an environment allowing the definition of a trans-
formation semantics separately from the syntactic sugar
that has to be applied (Figure 1). Then, discrete syntactic
sugar may be applied on one semantically defined transfor-
mation (i.e. when generation rules from UML class dia-
gram to OO languages are defined, several OO languages
having discrete syntax can be easily targeted).

Figure 1 :

Structure of a generation engine.

The transformation semantics is defined using rules ap-
plied on a polymorphic representation of the input data to
be processed. These rules, grouped in a

 semantic pattern

aim to produce an internal abstract expression semantically
describing the output. Semantic constructions in these ex-
pressions are represented by semantic constructors on
which syntactic rules, grouped in a

syntactic pattern

, are
applied to produce the output data in an appropriate format.

Figure 2 :

Elements to produce a transformation engine.

MetaScribe requires three elements to be operated
(Figure 2):

•

The formalism definition

 is expressed using the MSF
(

M

eta

S

cribe

F

ormalism) meta-description language.
Users declare any entity that can be found in the input
data to be processed, MSF allows to type a model des-
cription using the MSM polymorphic data description

transformation
semantics

syntactic
sugar

abstract
expression

input
data

output
data

Transformation engine

Semantic
pattern

Syntactic
pattern

Formalism definition (MSF) and
related model description (MSM)

semantic
expression-trees

input
data

output
data

Transformation engine

Transformation rules
(MSSM)

Syntax of semantic
constructors (MSST)

Free ASCII
format

language. An MSM description is translatable into a
memory representation to be manipulated by instruc-
tions of the semantic pattern.

•

The semantic pattern

 is defined using the MSSM
(

M

eta

S

cribe

S

e

M

antic) language. Users declare a set of
constructors that are located in semantic expression-
trees and define the transformation rules that are applied
on models having the format declared in the input for-
malism.

•

The syntactic pattern

 is expressed using the MSST
(

M

eta

S

cribe

S

yn

T

actic) language. Users define the syn-
tactic representation associated to constructors declared
in the corresponding semantic pattern.

Semantic expression-trees

 are produced by the semantic
pattern and serve as a link with the corresponding syntactic
pattern. The semantic expression-trees structure is very si-
milar to the one proposed in the Ada Semantic Interface
Specification (ASIS)

[7]

. Moreover, it is polymorphic and
can express any concepts. Semantic expression-trees are ty-
pically a basis on which a «decompilation» process can be
performed to dress expressions with a syntax (a given lan-
guage instructions or calls to some runtime provided by an
execution environment).

MetaScribe generates a transformation engine from a tri-
plet

<input formalism, semantic pattern, syntactic pat-
tern>

. This transformation engine is implemented as an
Ada95

[1]

 program that can be compiled and then able to
process any input description in MSM format if it respects
the corresponding MSF formalism description.

2.2. Reusability with MetaScribe

The separation of the three aspects manipulated by Me-
taScribe (input formalism, semantic pattern and syntactic
pattern) enables the reuse of components in any of the in-
volved elements.

Let us consider an UML specification described using
the MSM data description language (Figure 3).

Let a first semantic pattern be dedicated to the transfor-
mation of this UML description into an object-oriented like
program. If the OO constructions produced by these rules
are not dedicated to some language characteristics, the se-
mantic pattern can be associated with several syntactic pat-
terns (for example, C++, Ada95 and Java).

Figure 3 :

Reusability in MetaScribe.

Let a second semantic pattern be dedicated to the pro-
duction of procedural-like code. Similarly, it could be asso-
ciated with several syntactic patterns (for example, C and
Pascal).

The definition of both semantic and syntactic patterns is
very modular. Then, some rules of the OO semantic pattern
can be reused in the procedural semantic pattern (like the
generation of object’s methods). The same observation can

be done between some parts of the C, C++ and Java syntac-
tic patterns (idem with some aspects of Ada95 and Pascal).

2.3. Comparison with XML

MetaScribe has many similarities with XML that is now
an emerging standard for data interchange. In both cases
there is a meta-data description mechanism (DTD versus
MSF), associated with a customizable data description lan-
guage (XML versus MSM).

To format some output, XSL

[17]

 provides facilities to
express style sheets on an XML description. For example,
it is possible to specify the representation of a class of XML
documents by describing how an instance of the class is
transformed into an XML document that uses the format-
ting vocabulary. This mechanism is similar to the one pro-
vided in MetaScribe syntactic patterns. However, The
MSST language provides more flexibility.

MetaScribe management of semantic transformation is
also more flexible than the one of XML. XSL mainly pro-
poses a one-pass transformation of the input data. The
MSSM language allows navigation over the input data, de-
finition and use of variables, and manipulation on the input
data such as the definition of temporary flags. Such func-
tions are suitable to do any kind of transformation, even the
one including the use of mechanisms similar to cross-refe-
rence tables (i.e. a transformation based on several passes).

The very new draft standard XSLT

[18]

 seems to provi-
de more possibilities than XSL. Basically, it allows to
group together several XSL descriptions to produce better
transformations. However, in current drafts, it appears that
some possibilities of MetaScribe (like the management of
variables and dynamic flags on the input description) have
no equivalent yet.

XML users have to manage themselves reusability at a
semantic level. No guidelines are provided. Such guidelines
are present in MetaScribe with the separation of semantic
and syntactic aspects.

3. A case study

This section illustrates on an example the construction,
using MetaScribe, of a code generator from an UML class
diagram to an object oriented language. UML class dia-
grams represent the skeleton above which any object orien-
ted application is built. C++ and Ada95 are both object
oriented languages but their phylosophy is quite different.
Therefore, the re-factoring of the UML-to-C++ transforma-
tion engine from to an UML-to-Ada95 one is not natural
and should illustrates the capabilities of MetaScribe.

Implementation of UML descriptions does not represent
the main purpose of this paper, which is to illustrate the use
of a tool such as MetaScribe. More argued details about ge-
nerating C++ code from UML models can be found in

[15]

.
The Ada95 generated code is semantically equivalent

(as far as possible) to the C++ code in the sense of

[8]

. Ano-
ther comparison of the Object-Oriented features of Ada95
and Java can be found in

[3]

. It can be used as an extrapo-
lation from Java to C++ due to the similarities of these lan-
guages.

We use a small example provided in Figure 4. Associa-
ted C++ and Ada95 code fragments are presented in
Section 4. We selected this example because it covers most
of the possibilities of an UML class diagram. We used it to

Object
languages

Procedural
languages

C++

UML
descriptions

(MSM format)

Ada95

Java

C

Pascal

C++ programs

Ada95 programs

Java programs

C programs

Pascal programs

Input output
semantic syntactic
pattern pattern

validate our code generator. Due to space reasons we will
give only fragments of the C++ and ADA95 generated code
which exemplify the proposed translation technique.

Figure 4 :

The example of one UML Class Diagram

3.1. From UML to C++

UML classes are directly projected to C++. Our code ge-
neration scheme improves the Rational/Rose

[14]

 ap-
proach:

• All UML instance attributes are projected to equivalent
C++ private attributes.

• Access to these attributes is made using two primitives:
"

Set

" and "

Get

".
• Primitive visibility is directly derived from the attributes
(public, protected or private).

• Class-wide attributes or operations are mapped using
"

static

" C++ attributes.
UML operations are also projected to C++ functions.

Single or multiple class inheritance is directly supported.
Compared with the Rational/Rose UML mapping scheme,
we support attributes and operation parameters with an ar-
bitrary multiplicity. Moreover, the mapping of the opera-
tions parameters access modes (IN, OUT or INOUT) is also
provided. IN access mode parameters are projected to a "by
value" C++ parameter. OUT and INOUT access mode pa-
rameters are projected to a "by reference" C++ parameters
(using pointers).

Associations are simulated using one or more class-ins-
tance auxiliary attributes associated to two navigation func-
tions ("

Set_Role

" and "

Get_Role

") named according to the
distant associated class role. The type of these auxiliary at-
tributes is built using the Standard Template Library like in
Rational/Rose.

There is no difference when mapping associations, ag-
gregations or compositions because we generate only the
header files and do not provide any implementation of the
C++ Constructor/Destructor functions yet.

3.2. From UML to Ada95

The UML to Ada95 code generation scheme is more dif-
ficult due to some semantic differences with UML. In par-
ticular, Ada95 does not support multiple inheritance. Our
strategy follows the Ada95 semantics by not providing
multiple inheritance. A reference about mapping C++ to
Ada95 can be found in

[8]

 and several workarounds to im-
plement multiple inheritance can be found in

[2]

.
In Ada95 classes are represented by two features: a

pac-
kage

 having a container role and, a

tagged type

 used to im-
plement per-instance attributes

[3]

.
We group all per-instance attributes in a

controlled re-

cord type

 specified in the private part of the package, hid-
den from other components view.

 Equivalence between the UML, C++ and Ada95 visibi-
lity is presented in Table 1.

UML per-instance private attributes are represented in
Ada95 using an access to an incomplete type defined later
in the package body.

We manage access to the per-instance attributes using
two primitive operations named "

Get_

" and "

Set_

". The
first parameter (named "

This

") of any per-instance opera-
tion is an explicit reference parameter to the actual class
instance.

Class-scope attributes and operations are declared as
normal Ada95 package variables and procedures.

All UML operations are mapped to Ada95 procedures. If
the UML operation provide a return value then "

This

" is
mapped to an "OUT" access mode parameter named "

re-
turns

".
The proposed implementations do not claim to be in the

best ones. However, it appears to be satisfactory for our
specific needs. An overview of equivalencies between
UML, C++ and Ada95 features is presented in Table 2.

4. Using MetaScribe to experiment the
case study

4.1. The MSF representation of UML

UML is a graphical modeling language. To translate it,
we use a concrete representation based on a MSF descrip-
tion. UML Class Diagram models are represented using a
MSM description in concordance with this MSF descrip-
tion.

To generate programs from an UML Class Diagram, we
first identify all entities that might be present in one model.
We view these diagrams as a collection of nodes (model
classes) connected by means of links representing the rela-

Parent_Class

"+" public_attr1 : int = 1

Associated_Class

"+" attribute : string

Child_Class

"+" attr : int = 0
"#" attr2 [4] : int
"-" attr3 : float
"+" class_attr : int = 1

"+" op1(in_par : int = 10) : boolean
"#" op2(inout_par int = 20) : int
"-" op3(in_par : string) : void

1..*

+theChild_Class

0..*

qulifier : int

Component_Class

"+" name : string1 1

UML C++ Ada95

public public the public part of the package specification
protected protected private part of the package specifiation
private private package body

Table 1:

Visibility equvalences between UML,C++ and Ada95

UML features C++ Ada95

Class Class Package and tagged type
Single and multi-

ple inheritance
Direct single and multiple

inheritance
Single inharitance using
the derived tagged type

Class accesibility Using # include Using with and use clause

Class initialisation Class Constructor and
Destructor

Controlled types with Ini-
tialize, Adjust and Fina-

lize procedures

Class-instance
reference

Implicit through the C++
class-instance

reference mechanism

Explicit using an ins-
tance parameter named

"

This

"

Class attributes Private atributes and pri-
mitive acces functions

Access to a controled
record type and primitive

access procedures and
functions

Class operations Functions Procedures

Operation parame-
ters access modes :

IN

,

OUT

 or

INOUT

Call "

by value

" for IN
access mode parameters
and, "

by reference

" for
OUT and INOUT access

mode parameters

Using

IN

,

OUT

 or

INOUT

 parameter
 access mode

Table 2:

Equivalence between UML, C++ and Ada95 features

tional aspects (generalizations, associations, compositions
or aggregations). This is an interpretation of the detailed
UML definition provided in

[12]

.
UML Classes (or Interfaces) are mapped to MSF nodes

and UML Generalizations or Associations to MSF model
links (Aggregations and Compositions are considered as
special Associations). These MSF entities contain one ex-
pression-tree for which structure follows the UML 1.3 no-
tation guide.

Figure 5 : The MSF definition of a Class
Figure 5 shows the MSF specification of an UML class.

All classes components are described in the expression-tree
THE_CLASS attribute. The MSF description also provides
connectability rules with an arbitrary number of generaliza-
tion or association links (direction and maximum of con-
nections).

Figure 6 shows the structure of the THE_CLASS expres-
sion-tree. This is an internal standard defined when desi-
gning the MSF description of UML and thus, all class node
instances in a model have to respect this structure.

Figure 6 : The Class syntax tree structure in MSM.
In the graphical notation used in Figure 6, imposed parts

are connected using a continuous line while optional parts
are connected using a dotted line. Sub-trees are marked as
triangles and nodes as circles. Tree nodes can hold: a cons-
truction labels (marked with capital letters), a string (pre-
fixed with $) and/or an integer (prefixed by #). Alternative
sub-trees are separated by the word "or".

As in UML, the structure of the THE_CLASS expression-
tree is divided in compartments. The "Name Compartment"
has to be defined. Figure 7 shows the structure of the "Na-
me Compartment" expression tree (referenced in the class
syntax-tree of Figure 6).

Figure 7 : The "Name compartment" structure in MSM.
Both "Attributes Compartment" and "Operations Com-

partment" hold the class attributes and operations. The "Ge-
neric compartments" provides an extension mechanism
suitable for extending UML classes (for example, the des-
cription of exceptions that may be raised by the class).

The MSM representation of our example (Figure 4) con-
tains 7 entities: 4 nodes corresponding to the 4 UML classes
and 3 links corresponding to the UML Generalization, the
UML qualified Association and the UML Composition.
(see Figure 8).

Figure 8 : A graphical representation of the MSM entities
Figure 9 presents the MSM description of the

"Child_Class" in Figure 4.

Figure 9 : THE_CLASS attribute of node "Child_Class"
The definition of Generalisation expression-trees and

association expression-trees follows the same strategy.

4.2. Building the semantic pattern

Semantic expression-trees are an abstract internal repre-
sentation of the output formalisms. Therefore, they are built
according to its semantic. When building the semantic pat-
tern, we must take care about the semantic expressions
found in the output formalism and about what is the input
formalism information used to build these expressions.

Because we use several output formalisms (here, Ada95
and C++) the semantic expression trees produced by the se-
mantic pattern have to be compatible with both semantics.
This remains possible because, despite their difference,
they belong to the same formalism class (here, OO langua-
ges).

In the next part of the section, we first present the struc-
ture of a semantic-tree associated with an UML class and
then we will explain the reasons that lead us to such a repre-
sentation.

The semantic expression-tree structure provided in
Figure 10 corresponds to the description of a class. Nodes
are marked as an ellipse and sub-trees as triangle. Imposed
sub-trees are linked with continuous lines while optional
are with dotted lines. Nodes may contain one or more of the
following elements:

• a semantic constructor (marked in capital letters). When

node (CLASS) is
 attribute_list
 attribute expression : THE_CLASS;
 end;
 connectability_list
 with GENERALISATION
 direction non_oriented,
 maximum none;
 with ASSOCIATION
 direction non_oriented,
 maximum none;
 end;
end CLASS;

AME_COMPARTMENT

CLASS_TREE

ATTRIBUTES_COMPARTMENT OPERATIONS_COMPARTMENT

GENERIC_COMPARTMENT

ABSTRACT_CLASS

IMPLEMENTATION_CLASS

or

NAME_COMPARTMENT

$NAME $STEREOTYPE ONE_TAGVALUEONE_NOTE

$TEXT

ONE_TAGVALUE

$NAME $VALUE

CLASS_TYPE

node ‘Class_1’ is CLASS
…

node ‘Class_2’ is CLASS
…

node ‘Class_3’ is CLASS
…

node ‘Class_4’ is CLASS
…

link ‘Generalisation_1’ is
 GENERALISATION

link ‘Association_1’ is
 ASSOCIATION

link ‘Association_2’ is
 ASSOCIATION

node 'Class_2' is CLASS where (
attribute THE_CLASS =>
 sy_node (CLASS_TREE:
 sy_node (NAME_COMPARTMENT:
 sy_node (NAME:
 sy_leaf ('Child_Class')
),
 sy_leaf (IMPLEMENTATION_CLASS),
 sy_node (ONE_NOTE :
 sy_leaf ('A NOTE example.')
)
),
 sy_node (ATTRIBUTES_COMPARTMENT:

);

underlined, it contains one out of several values (e.g. in
Figure 10, the TYPE constructor can have one of the fol-
lowing values, INPLEMENTATION_CLASS or
ABSTRACT_CLASS),

• a string value (marked "string"),
• an integer value (marked "int").

Figure 10 : The structure of the "Class" semantic expression
tree.

According to Table 2 packages are the Ada95 equiva-
lents of C++ compilation units (classes). For that reason,
the constructor located in root of the semantic-expression
tree of Figure 10 identifies an UML class instead of a lan-
guage-based one:

• 1-The first sub-node specifies the class type (ABSTRACT
or IMPLEMENTATION).

• 2-The second sub-node sets constants and elements that
are useful to establish the C++ inclusion system, mainly
the "#define" directive. Such information is ignored for
a language like Ada95, which provide a better mecha-
nism than the preprocessor-based one.

• 3-The third sub-node sets the relation with other units.
In C++, this will correspond to the " #include " prepro-
cessor directives. In Ada95 it will be translated into "
with " and " use " clauses.

• 4-The note sub-tree contains class specific comments.
• 5-The fifth sub-tree contains the list of all inherited
parent classes.

• 6,7,8-The three last sub-trees (PUBLIC, PROTECTED and
PRIVATE) have the same structure defining a list of attri-
butes, operation and related association ends for the cor-
responding visibility.

Figure 11 : The main MSSM semantic rule
Figure 11 shows one of the main semantic rules. It is the

entry point of our transformation engine. It processes all
MSM nodes having CLASS type and performs the fol-
lowing actions:

• extraction of the class name,
• construction of an expression-tree describing the class

implementation in OO languages (this is done in the rule
WORK_ON_A_CLASS),

• application of the syntactic pattern to this semantic-tree.
The result is written in a file named after the class name
and its format depends on the associated syntactic pat-
tern. Here, we build two transformation engines, one for
C++, the other one for Ada95 that will reuse the same
semantic pattern. As mentioned in Section 2.2., the same
semantic pattern could be reused for other OO langua-
ges such as Java of Effeil.
With the experience, the definition of a semantic pattern

usually follows these steps:
• identification of the pertinent semantic expression-trees
structure,

• identification of the relevant semantic constructors in
these expression-trees,

• definition of the semantic rules building these semantic
expression-trees.

4.3. Building C++ and Ada95 syntactic patterns

The syntactic pattern is the element that dresses seman-
tic expression-trees to produce the appropriate output.
Theoretically, it is the only part to be rewritten when chan-
ging the output formalism.

Figure 12 : The C++ structure of "Child_Class".
It is connected to the semantic pattern by means of the

semantic constructors described. Each one corresponds to a
syntactic rule. Extra rules (that do not correspond to a se-
mantic constructor) may be defined for convenience.
However there must be one rule per declared semantic
constructor.

Figure 13 : The Ada95 structure of "Child_Class"
Figure 12 and Figure 13 respectively provide an exam-

ple of C++ and Ada95 structures corresponding to
"Child_Class" in the example from Figure 4. By shake of
place, we cannot provide bigger examples.

Figure 14 shows the Ada95 syntactic rule associated
with the ONE_CLASS semantic constructor (root of the se-
mantic-tree presented in Figure 10). It refers to several
other rules dedicated to the generation of an element of the
class. $N represents the Nth son in the implicit expression-
tree provided as a parameter (it will then be the implicit pa-
rameter of the invoked rule). $0 represents the complete ex-
pression-tree itself.

 TYPE # #

ONE_CLASS # <<string>> #

NOTE # # <<int>>

DEFINE # #

INCLUDE # #
PARENTS # #

PUBLIC # #

PROTECTED # #

PRIVATE # #

1
2

3 4 5
6

7
8

semantic_rule PRODUCE_ALL (none) return void is
 SEM_TREE : semantic_tree;
 CLASS_NAME : string;
 NB_CLASSES : integer;
begin
 NB_CLASSES := nb_node_instance (CLASS);
 for I in 1 .. nb_node_instance (CLASS) do
 CLASS_NAME := sm_rule GET_CLASS_NAME
 (REF => get_node_reference (CLASS,

 $int (INDEX)));
 SEM_TREE := sm_rule WORK_ON_A_CLASS
 (REF => get_node_reference (CLASS,

$int (INDEX)),
 CLASS_NAME => $str (CLASS_NAME));
 generate $smt (SEM_TREE) in

{$str (CLASS_NAME) & '.h'};
 end for;
 return;
end;

#ifndef Child_Class_h
#define Child_Class_h 1

#include "Parent_Class.h"
#include "Component_Class.h"
#include "Associated_Class.h"

class Child_Class : public Parent_Class {...}

with Ada.Finalization; use Ada.Finalization;
with Parent_Class_Pkg; use Parent_Class_Pkg;
with Component_Class_Pkg; use ...
with Associated_Class_Pkg; use ...

package Child_Class_Pkg is
 type Child_Class is new
 Parent_Class with private;
 ...
end Child_Class_Pkg;
package body Child_Class_Pkg is
 ...
end Child_Class_Pkg;

 .

Figure 14 : the ONE_CLASS syntactic rule.
Figure 15 provides another example of syntactic rule:

the one associated to the WITH_USE constructor (root of the
PARENT sub-tree in Figure 10). It illustrates the functional-
like use of recursivity to go through all the expression-tree
sons. Here, $N* corresponds to the initial expression tree
from which the N-1 first sons have been deleted.

Figure 15 : The "WITH_USE" syntactic rule.

4.4. Metrics

The main goal of prototyping is the fast implementation
of a tool. MetaScribe clearly meets this goal. We have been
able to perform a fast implementation of three code genera-
tors from UML class diagrams to respectively C++, Ada95
and Java. The last one was developed between the paper ac-
ceptance and the final submission. Therefore, it is not pre-
sented in this paper.

The elaboration of a MSF description of UML took
about four days. Building the semantic pattern took about
one week and the construction of the C++ syntactic pattern
about three days. The elaboration of the UML-class dia-
gram to C++ took about two weeks. The develommement
of the syntactic pattern for ADA95 cost only three days.
The construction of the Java syntactic pattern was done by
reusing the C++ version and was performed in two days.

5. Conclusion

We have described MetaScribe, a tool for the prototy-
ping of transformation engine. A transformation engine is a
program transforming an input description to an output one.
Code generators, more and more used in CASE environ-
ment to develop programs from high level specification, are
examples of transformation engines.

To illustrate the use of MetaScribe and quantify the ad-
vantages of using it, we have developed a case study: pro-
gram generation from an UML class diagram in C++,
Ada95 and Java. This study was accomplished quite easily
in a reasonable time.

Compared to a "traditional hand made" approach, it ap-
pears that MetaScribe provides several advantages:

• Implementation of a transformation engine is at least
not longer.

• MetaScribe patterns provides a scheme helpful to the
designer of transformation engine.

• Reuse capabilities of MetaScribe allow to build easily
and at low cost new transformation engines based on

existing ones. Modifications mainly reside in the specifi-
cation of new syntactic rules for a new output and save
development time.

• MetaScribe provides tracking/debug facilities available
for both semantic and syntactic rules. Such mechanisms,
not presented by lack of place are useful to build and
maintain patterns.
We most probably have done the work better than with

a traditional approach combining the use of a lexical analy-
zer and parser generator such as lex and yacc.

It is more difficult to compare benefits of MetaScribe
compared to the XML environment. XML is now becoming
a standard for data exchange, even if it lacks in the potential
of manipulating the semantics of the input formalism to
produce some output. It definitely has a good potential but
we have to wait for a final release of elements such as
XSLT to really decide weather it has capabilities similar to
MetaScribe ones.

The use XML as an input to MetaScribe appears to be a
natural extension. We plane to study the implementation of
such a capability. Then, MetaScribe transformation engines
could be able to use either MSM/MSF or XML document/
DTD as input data.

6. References

[1] Ada 9X Mapping/Revision Team, "Ada 95 Reference Manual and
Rationale, ANSI/ISO/IEC-8652", Intermetrics, Inc. 733 Concord Avenue
Cambridge, Massachusetts 02138 1995
[2] J. Barnes, "Programming in Ada95", pp 449-453, Adison-Wesley,
1996, ISBN0-201-87700-7
[3] B. Brosgol, "A Comparison of the Object-Oriented Features of Ada
95 and Java™", White paper avilable on http://www.aonix.com/Pdfs/
CSDS/bmbta97.pdf, May 1999
[4] P. Desfray, "Object Engineering: The Fourth Dimension", Addison-
Wesley, 1994
[5] P. Desfray, "Automation of design pattern : concepts, tools and prac-
tices", UML'98 International Workshop, June 1998
[6] HOOD Technical Group, "HOOD Reference Manual, release 4",
June 1995
[7] ISO/IEC, "Ada Semantic Interface Specification (ASIS)", ISO/IEC
15291, 1999
[8] S Johnson, "Ada-95: A guide for C and C++ programmers" , 1995,
<http://www.adahome.com/Ammo/cpp2ada.html>
[9] F.Kordon, "MetaScribe, an Ada-based Tool for the Construction of
Tranformation Engines", in proceedings of the International Conference
on Reliable Software Technologies - Ada-Europe'99, LNCS- vol 1622, pp
308-319, Santander, Spain, June 7-11, 1999
[10] OMG, "Extensible Markup Language (XML) 1.0", W3C recomen-
dation, february 1998
[11] OMG, "Meta Object Facility (MOF) Specification, v 1.3", OMG
documentation, 1999
[12] OMG, "OMG Unified Modeling Language Specifiacation", version
1.3, June 1999, <http://www.omg.org/cgi-bin/doc?ad/99-06-09.zip>
[13] J. Rumbaugh, I. Jacobson, G. Booch , "The Unified Modeling Lan-
guage Reference Manual", Addison-Wesley (Object Technology Series),
1998
[14] Rational Software Corporation, Rational Rose 98 Help Chapter 10
"Rose C++", 1998, <http://www.rational.com/rose/>
[15] S. Si Ahir, "From the Unified Modeling Language (UML) to C++",
The Visual C++ Developers Jurnal, 1999, <http://www.vcdj.com>
[16] SofTeam, "Objecteering 4.3 user manual", SofTeam company, 1999
[17] W3C, "Extensible Stylesheet Language (XSL) Specification", http://
www.w3.org/TR/1999/WD-xsl-19990421, April 1999
[18] W3C, "XSL Transformations (XSLT) Version 1.0", http://
www.w3.org/TR/1999/REC-xslt-19991116, November 1999

syntactic_rule ONE_CLASS is
begin
 put ('with Ada.Finalization;');
 put_line ('use Ada.Finalization;');
 apply WHITH_USE ($2);
 apply NOTE ($4);
 apply PACKAGE_DECLARATION ($0);
 apply PACKAGE_BODY ($0);
end;

syntactic_rule WITH_USE is
begin
 if $# > 0 then
 apply ONE_WITH_USE ($1);
 if $# > 1 then
 apply WITH_USE ($2*);
 end if;
 end if;
end;

