

Testing Prototypes Validity to Enhance Code Reuse+

Didier Buchs†, Alioune Diagne* & Fabrice Kordon*,

E-mail: Didier.Buchs@di.epfl.ch, Alioune.Diagne@lip6.fr, Fabrice.Kordon@lip6.fr

*
LIP6, Université P. & M. Curie,

4 place Jussieu ,75252 Paris - France

†
Swiss Federal Institute of Technology

1015 Lausanne - Switzerland
e
te
th
th
a
-
n

n
v
ot

n
a
r
,
rs

m
s
e
e
to

e
s
f

ec
te

o
ly
 o
e
-

e

at

e.

ct
e.

m-
uch
and

ces
p-

 ex-
ts.
o-

ach

m-
e-
nt

cta-
or

de
are
n-

ll).
l its
ex-
es
om-

ca-
 be-

r to

ch
we
ore
Abstract
The complexity of distributed systems is a problem wh
designers want to evaluate their safety and liveness. Of
they are built by integration of existing components wi
newly developed ones. Actually, it is valuable to handle
integration of external pieces of software in the specific
tion and testing activities. However, it is difficult to vali
date them formally unless doing reverse-engineeri
(which is a heavy procedure).
This paper proposes to use structured formal specificatio
to generate a reasonable set of tests that evaluate beha
of software components in order to get an answer to b
questions.
To do so, we use the description of components’ exter
behavior and express it using the OF-Class formalism (
encapsulation of Colored Petri Nets). Test patterns a
generated using an appropriate formalism, HML logic
and exploit various hypotheses corresponding to use
testing procedure

1. Introduction

The complexity of distributed systems is a proble
when designers want to evaluate their safety and livene
So their expected properties (basic ones like deadlock fr
ness or domain dependent ones) must be known and v
fied during the specification of the solution and traced
the implementation by means of tests.

Formal description techniques like Petri nets are a pot
tial solution to this problem. Structuration rules and/or a
sociation with structured representations compensate
their lack of structuration [3, 10, 2]. They have also been
proved to be valuable basis for testing [1]. In the remainder
of the paper, we consider Petri nets associated with obj
oriented concepts for specification and an object-orien
layout for implementation.

Often, distributed systems are built by integration
existing components with newly developed ones. Actual
it is valuable to handle the integration of external pieces
software in the specification and testing activities. How
ver, it is difficult to validate them formally unless doing re
verse-engineering (which is a heavy procedure).

Components of a distributed system can be formally d
cribed by the following characteristics :
d
+ This work has been jointly performed during an exchange between t

Swiss Federal Institute of Technology in Lausanne and the Universi
P. & M. Curie.
n
n,

e
-

g

s
ior
h

al
n
e

’

s.
e-
ri-

n-
-
or

t-
d

f
,
f

-

s-

1) what they guarantee to other components i.e. wh
are their local properties,

2) what they require from the other components i.
what are their expectations,

3) the means (methods or operations) by which corre
interactions with the environment are handled, i.
the internals.

These internals do not need to be known for reused co
ponents at the specification phase. The behavior of s
elements can be abstracted through their expectations
properties to enable verification of the system [7]. For ins-
tance, one kind of expectation we consider is the sequen
of operation invocations that can be safely and reliably su
ported by the external pieces of software. Properties and
pectations define a "formal signature" for the componen
Code may then be derived from newly developed comp
nents and integrated with existing parts. Such an appro
raises two questions :

1) are stated properties and expectations of all the co
ponents verified at the different stages of the lif
cycle? This enforces traceability of a compone
from specification downto implementation,

2) what happens when stated properties and expe
tions are not verified? It is a robustness criteria f
the component (see section 2.).

Formal verification and tuned tests generation provi
an answer to question (1) above. Then, we may not c
about question (2) if the system structurally avoids such u
verified expectations (e.g. closed system built once for a
However, the reuse of an external part may not meet al
expectations. The behavior of a component in case of
pectation violation needs therefore to be known. It com
along as a characterization that can be attached to the c
ponent as well as the test cases for its evaluation.

This paper proposes to use structured formal specifi
tions to generate a reasonable set of tests that evaluate
havior of software components in order to get an answe
both questions.

First, we identifies key problems in our testing approa
before a description of the context of our study. Then,
present our solution and apply it to a small example bef
a short conclusion.

2. Key Problems

In this paper, we consider the verification, validation an
he
té

m
 o
t
ir
h

n

It
lo
ib

n

r

rip

e

e

-
T
n
e

o
h

f
s

m
ly
t

cu

th

m
q
c
l

o

"

r

-

a-
 is
d si-
. It
 pe-

-
ful

mi-

po-
are

the
e-

ding
n a
era-
 in-

the

 its

he
se-
tees
tests for distributed systems where newly developed co
ponents are integrated with existing ones. A specification
a system is valid if all the components are able to guaran
their properties while handling the interactions with the
environment as long as their expectations are met. T
means that "nothing bad would happen in the system" and
"everything good and expected will eventually happe
whenever the environment respects the expectations.
the nominal behavior. Once these expectations are no
ger met, the system or its components have two poss
behaviors :

1) detect that the expectations have been violated a
raise some exception. This means that it is robust
against illegal behavior from the environment,

2) go out of the nominal behavior so that "something
bad happened" or "some expected other thing neve
happens".

For existing components, we require an external desc
tion basically consisting of :

• how to use the available primitives i.e. what are th
sequences allowed (expectations),

• what are the guarantee when using these primitiv
according to the expectations (properties).
No information at all is provided about the way primiti

ves are implemented, as explained in the next section.
supplied information is valuable to check if the compone
is properly manipulated by other components of the syst
[12].

This is necessary to take into consideration importati
of software components that are already implemented. T
external description (what it does and how to use it) o
component is basically an automata that can be expres
using Petri nets.

Figure 1 describes the behavior of a simple filesyste
component which can run either in read-only or write-on
mode. This component offers six operations (open, crea
read, write and close) for which a possible correct exe
tion is described by the following :

(create && (write)* || open && ((read)*||(write)*))
&& (close||delete) 1

The number of initial tokens in place c_desc corres-
ponds to the available file descriptors in the system (i.e.
maximum number of files to be opened).

A specification like the one of Figure 1 allows a syste
designer to state the way a component runs. Such prere
sites must be respected by any element that use the spe
cation component through its implementation. We ca
those expectations of the system. We note Exp a set of such
expectations. It means that a client must satisfy the f
lowing relation:

client |= Exp
Based on such a description, we can state properties of

the system. In the example of Figure 1, properties are no
more than 64 files can be simultaneously opened" or "it is
impossible to read in a write-only opened file and vice-ve

(1) && stands for sequence and || for alternative.
-
f

ee

is

"
is
n-
le

d

-

s

he
t
m

n
e

a
ed

e,
-

e

ui-
ifi-
l

l-

-

sa". We note Prop the set of properties attached to a com
ponent.

Figure 1 : External description of the simple filesystem
component by means of a Petri net.

In the example of Figure 1, what happens if an applic
tion opens more than 64 files ? or if it writes in a file that
not yet opened ? In those cases, the component shoul
gnal an improper use exactly when the problem occurs
means that the component also remain at least safe and
rhaps reliable when :

 client |=/ Exp
If Prop U Exp can be formally verified using a forma

lism like Petri nets, automatic generation of tests are use
to check if the corresponding implementation also has si
lar characteristics. Evaluation of client | ≠ Exp enforces to
specifically verify unexpected behaviors. Here, automatic
generation of tests is also valuable to know how the com
nent implementation behaves when its requirements
violated.

It is quite easy, based on a behavior specification like
one of Figure 1, to generate many primitive invocation s
quences that either respect or violate expectations regar
a software component. However, it is of interest to obtai
reasonably sized benchmark which ensures a good cov
ge of potential problems. Hereafter are some valid and
valid sequences for illustration.

client |= <open><read><close>
client |=/ <read><open><close>

Under the hypothesis that the environment sticks to
expectations of a component, this one (noted server hereaf-
ter) should support the expectations and guarantee
properties :

server |- Exp and server |= (Exp ⇒ Prop)
The first equation means that the specification of t

component is compliant with its expectations and the
cond one means that under these expectations, it guaran

open

create

delete

close
write

[m=W]

read
[m=R]

o_desc
open_dsc

c_desc
F_DSC

<f_dsc.ALL>

<f>

<f> <f,u,W>

<f,u,m>

<f,u,m><f>

<f,u,m><f>

<f,u,m>

<f,u,m>

<f,u,m>

<f,u,m>

Class
f_dsc is 1..64;
usr is 1..100;
mode is [R,W];
Domain
open_dsc is <f_dsc,usr,mode>;

Var
m in mode;
f in f_dsc;
u in usr;

nt
t is
(to
ra-
e-
n
ns-
is-

n-
in
he
the
ith
as a
f

es-
e-
he
ro-
o-

rts

s

s
ip-
nd
are
ed

the
is

res

ut
t of

lly
 ma-
ice

in
ver

its properties.

3. Context of the Study

The work presented in this paper relies on the MARS
methodology [7]. MARS is a multi-formalism approach de-
signed to offer a suitable representation for each description
stage (from conception to verification and prototyping) of a
distributed system.

3.1. Overview of the MARS Methodology

The MARS methodology proposes a frame to specify,
evaluate and implement distributed applications : it defines
a track that leads a system designer from the conceptual
description (specification) to the operational description
(implementation) from which programs are automatically
generated.

The conceptual level is dedicated to the explicit defini-
tion and verification of safety and liveness properties. The
operational level is more likely dedicated to implicit pro-
perties addressing the optimization and automatic produc-
tion of the generated prototype.

Figure 2 illustrates steps of the MARS methodology. It
relies on three formalisms :

• Well-formed Petri nets [4] fit all the formal needs. It is a
potential target used to verify and compute properties of
the system model;

• OF-Class (Object Formalism Class) [5] provides a con-
ceptual description of the system. It contains informa-
tion about the association of components, the way they
behave and how they should be used. It may be transfor-
med into a formal description;

• H-COSTAM (Hierarchical COmmunicating STAte
Machine Model) [9] allows the designer to deal with
operational aspects of his system. Such a description
may be derived from the conceptual description by
addition of information. It can also be transformed into
a formal description and enables code generation.

Figure 2 : Overview of the MARS methodology.
Three operations between these representations are cha-

racterized:
• Two transformations from respectively OF-Class into

Petri nets (Tv in Figure 2) and H-COSTAM into Petri
nets (To in Figure 2) enable the link with the formal

representation. These transformations are differe
while they do preserve discrete properties. The resul
a Petri net that express either functional relations
extract conceptual properties of the system) or an ope
tional description (to extract implementation charact
ristics). Transformation Tv aims to provide informatio
about the safety and liveness of the system while tra
formation To focuses on the computation of character
tics for optimization purpose;

• Elicitation of the system is the transformation of a co
ceptual description into an operational one (E
Figure 2). This step should not be automatic like t
two other ones. It should be performed once when
system attains a satisfactory level of confidence wh
respect to expected properties. It can be considered
list of questions that gradually clarify all the points o
the implementation.

• Code generation is performed from the operational d
cription (Gp in Figure 2). It may compute and use op
rational properties to optimize code generation. In t
context of distributed systems, this operation must p
duce both a compilable program and a location prop
sal. In our methodology, a prototype is made of pa
generated from the operational description plus external
components that correspond to already existing piece
of software.
In MARS, any component description must identifiy it

internal behavior (how it evolves) and its external descr
tion (how it must be used). For components modeled a
evaluated at the conceptual level, the two descriptions
required. Only the external description has to be provid
for external components.

3.2. External Description of a Software
Component

External description of a component is described at
conceptual level while its verification is performed at th
stage of the methodology.

It is expressed using a structured language that decla
operations, organizes them into services and provides a
usage pattern for each service.

An operation is a procedure (with its input and outp
parameters) that appears to be atomic from a user’s poin
view. A service is a way to classify operations and logica
group them. Services may share operations. The usage
nual of a service defines how operations in the serv
should be operated.

The small file manager component (presented
Section 2.) contains five operations that are distributed o
two services :

• read-only groups operations open, read, close, delete
and has open&&(read)*&&(close||delete) for usage
manual

• write-only groups operations create, write, close,
delete and has create&&(write)*&&(close||delete) for
usage manual.

Conceptual
description
(OF-Class)

Operational
description

 (H-COSTAM)

E

Executable
prototype

Formal description
(Petri nets)

Tv

To

From OO requirements

Gp

Test
sets

Gt

External
components

O

ns

ms

s
 Of

t

eo-
he

 in

-

-

ing
size
ext,
 to

not

-

The Petri net of Figure 1 is derived from such a specifi-
cation. It is useful to define a behavioral signature of the
software component. It can be used as well to generate tes-
ting sequences.

3.3. Introducing Testing Techniques in MARS

We introduce testing techniques in order to evaluate
both validity and robustness of software components issued
from formal specifications. This concerns :

• External components to check if they correspond to
their external description;

• Newly developed components to verify that implemen-
tation choices introduced during the elicitation proce-
dure (E in Figure 2) have not altered their robustness.
The extension of the MARS method we describe in this

paper corresponds to the gray part Figure 2. Sets of tests are
generated (Gt in Figure 2) from the formal description of
selected components and applied (O in Figure 2) on the cor-
responding software implementation. As we will explain in
Section 4., we mainly exploit the information contained in
the external description of components.

3.4. Theoretical Grounds on Testing

In the following sections, we will shortly describe the
theory of the test selection techniques for object oriented
software. Interested readers can find more information on
those techniques in [1] and [11].

Functional testing is an approach to find errors in a pro-
gram by verifying its functionalities, without analyzing the
details of its code, but by using the specification of the sys-
tem only. The goal is to find cases where a program does
not satisfy its specification. It can be summarized as the
equation:

(P |=/ O T ⇔ P |=/ SP)
i.e. that the test set T applied on a program P will reveal

that the program P does not implement correctly the speci-
fication SP. (This observation is performed through the
help of an oracle, formally denoted by |=O). Of course, the
goal in selecting T is to uncover the cases where the pro-
gram does not satisfy the tests, and thus reveal errors with
respect to the specification.

Test selection is based on the knowledge of the proper-
ties of the specification language, which must be theoreti-
cally well founded. Usually, specification languages have a
notion of formula representing properties that all desired
implementations satisfy. Tests can be expressed using a
common language, however it is not necessary to have the
same language to express both specification properties and
tests. The most interesting solution is to have a specifica-
tion language well adapted to the expression of properties
from an user point of view, and another language to descri-
be test cases that can be easily applied to an oracle, as long
as there is a full agreement between these two languages.

3.4.1. The Theory of Testing

The theory of testing is elaborated on specificatio
Spec, programs Prog and tests Test, and on adequate
compatible satisfaction relationships between progra
and specifications, |= , and between programs and tests, |=O.
This is defined by the following equation:

(P |=O TSP ⇔ P |= SP).
The equivalence relationship ⇔ is satisfied when the

test set TSP is pertinent, i.e. valid (any incorrect program i
discarded) and unbiased (it rejects no correct program).
course, the exhaustive test set is pertinent.

However, a pertinent test set TSP can only be used to tes
a program P if TSP has a "reasonable" finite size. Limiting
the size of a test sets is performed by sampling. In our th
ry, sampling is performed by applying hypotheses on t
program P, making assumptions that the program react
the same way for some inputs.

Assuming that hypotheses H have been made on the pro
gram P, the following formula has to be verified for any se
lected test sets TSP,H:

(P satisfies H) => (P |=O TSP ⇔ P |= SP).

3.4.2. Practicable Test Context and Hypotheses

Thus, the test selection problem is reduced to apply
hypotheses to a program until a test set of reasonable
can be selected. For that purpose, we build a test cont
called practicable because it can be effectively applied
the oracle: Given a specification SP, a practicable test con-
text (H, T)O is defined by a set of hypotheses H on a pro-
gram under test P, a test set T of "reasonable" finite size and
an oracle O defined for each element of T.

The selection of a pertinent test set T of "reasonable"
size is made by successive refinements of a possibly
practicable initial test context (H0, T0)O which has a perti-
nent test set T0 (but not of "reasonable" size), until obtai
ning a practicable test context (H, T)O:

(H0, T0)O ≤ ... (Hi, Ti)O ≤ (Hj, Tj)O ... ≤ (H, T)O.

Figure 3 : Iterative refinement of the test context
At each step, the preorder refinement context (Hi, Ti)O ≤

(Hj, Tj)O is such that:
• The hypotheses Hj are stronger than the hypotheses Hi ,

Hj => Hi.
• The test set Tj is included in the test set Ti
• If P satisfies Hj then (Hj, Tj)O detects no more errors

than (Hi, Ti)O

• If P satisfies Hj then (Hj, Tj)O detects as many errors
than (Hi, Ti)O

Hi

H

H0

...

T0

T
i

...

T

Hj T
j

... ... Reduction
of the test

Application
of

 sethypotheses

g
es
n be

 be
 a
an
di-
the

ecu-
ted
cle
the

a
s
 the

to be
hy-
nd
-

ra-
 At
po-
. At
i.e.

sses
ole
de-
mi-
ses
ered

 in
ns

 we
ca-

 of-
 on
he

 in
Therefore, if Ti is pertinent then Tj is pertinent.
Since the exhaustive test set is pertinent, we can use it

for the initial context T0.

4. Proposal and Example

Our proposal integrates testing techniques in the MARS
methodology according to the objectives identified in
Section 3.3. In this section, we describe the mechanisms of
our technique and then apply them to the small example
presented Section 3.1.

4.1. Testing Behaviors and Properties in OF-Class

4.1.1. Expressing Tests with HML Formulae

For the specification language, the tests can be ex-
pressed with the HML Logic introduced by Hennessy-Mil-
ner [8]. HML formulae built using the operators Next
(<_>), And (̂), Not (¬), T (always true constant), and the
events Event (SP) of the specification SP ∈ Spec, are noted
HMLSP. An advantage of this approach is to have an obser-
vational description of the valid implementation through
the tests. A test is a formula which is valid, invalid or raise
an exception (failure). It must be experimented in the pro-
gram (i.e. a correct implementation behaves similarly to the
specifications and detects usage problems).

An elementary test for a program under test P ∈ Prog
and a specification SP ∈ Spec can be defined as a couple
<Formula, Result> where:

• Formula ∈ HMLSP : (ground) temporal logic formula.
• Result ∈ {true, false, failure}: value showing whether

the expected result of the evaluation of Formula (from a
given initial state) is true, false or generates a compo-
nent failure.
A test <Formula, Result> is successful if Result reflects

the validity of Formula in the labeled transition system mo-
deling the expected behavior of P. In all other cases, a test
<Formula, Result> is a fail. It is important to note that the
test definition will allow the test procedure to verify that a
non-acceptable scenario cannot be produced by the pro-
gram (for instance, to read in a file that is not opened). For
tests expressed using HMLSP, we can define the exhaustive
test set ExhaustSP, Ho ⊆ Test such that:

ExhaustSP, Ho = {<Formula, Result> ∈ HMLSP × {true,
false, failure} | (SP |= Formula and Result = true) or (SP |≠
Formula and no exception are raised and Result = false) or
(SP |≠ Formula and an exception is raised and Result =
failure)}.

4.1.2. Test Selection

From a practical point of view, the reduction process is
implemented as a selection process: to each reduction hy-
pothesis on the program corresponds a constraint on the test
set. Indeed, the exhaustive test set can be defined as a cou-
ple < f, r > where f is a HMLSP formula with variables uni-
versally quantified. The aim of the test selection becomes

the reduction of the level of abstraction of f by constrainin
the instantiation of its variables. The various techniqu
that can be applied could not be described here, they ca
found in [1] and [11].

4.1.3. Operational Test Selection

The concrete implementation of the test selection can
performed by means of a logic programming engine if
complete axiomatization of the specification language c
be given in Horn clauses. In the test selection tool, a mo
fied resolution mechanism based on random choice of
resolvant clause is used.

4.1.4. The Oracle

Once a test set has been selected, its elements are ex
ted on the program under test. Then the results collec
from this execution are analyzed. It is the role of the ora
to perform the analysis, i.e. to decide the success or
failure of the test set.

The oracle O is a partial decision predicate of a formul
in a program P. The problem is that the oracle is not alway
able to compare all the necessary elements to determine
success or the failure of a test; these elements are said
non-observable. This problem is solved using the oracle
potheses HO which are part of the possible hypotheses a
collect all power limiting constraints imposed by its imple
mentation.

The failure result (see Section 4.1.1.) has been elabo
ted to detect a component failure during execution time.
the oracle level, it corresponds to no response : the com
nent is out and can event not answer to signal a problem
the specification level, we consider its a deadlock state (
without successor).

4.1.5. The Incremental Test Selection Process

We use the structure of the dependencies among cla
to determine a test selection process in which the wh
specification is tested class by class. In case of mutual
pendencies, a linearization is proposed in order to deter
ne sequence of test application. Previously tested clas
require less care, so stronger hypothesis can be consid
while the class of interest need weaker hypothesis.

4.2. Example

Let us come back to the filesystem example sketched
Section 2. which models a basic file system six operatio
(create, open, read, write close and delete). Hereafter,
provide a partial description expressed using our specifi
tion model : OF-Class.

Expectations are stated in the interface by means of
fered services. They allow to define coherent viewpoints
the component involving just the appropriate part of t
operations. For instances the readers offered service define
the behavior allowed for components accessing the file

s-

te-
 by
 be
ns.

ns-
ach

-

re-

s-

ple,

)

uce

co-

e-
read-only mode. This enables the definition of clients clas-
ses and thus the use of a component in discrete contexts wi-
thout facing its whole complexity.

In this simple file system, we have two kinds of proof
obligations :

1) basic properties like reliability for servers. The com-
ponent must ensure that each request to one of its
operations is eventually followed by a result

2) the second one is domain-dependent. The numbers of
file-descriptors should always be less than 64.

The properties depicted in (1) are implicit and always
verified. They ensure the correctness of the specification.
The reader can refer to [6] for more information about such
implicit basic properties and the specification model in ge-
neral. The properties in (2) are explicitly stated in the spe-
cification and verified.
filesystem ISA OFCLASS 2

DECLARATION {
type f_dsc is 1..64;

 }
MACRO-LEVEL

EXPORTS {
service readers

operations {
f_dsc : open (char name);
char : read (f_dsc fd);
void : close (f_dsc fd);

}
manual {
open && (read)* && (close || delete)}

#definition of service writers (omitted)
}

MICRO-LEVEL
RESOURCES {

#local resources declaration (omitted);
}
INSTANCES {

inst1 ;
}
OPERATIONS {

 # here are defined a part of the internals
 # i.e. the algorithms for the operations

void : close (f_dsc fd)
{

actions to close the file (omitted)
}

}
ENSURES { # invariant to be respected

Alw(card(files)+card(opened_files)=64)
}

ENDOFCLASS

4.2.1. Structural Constraints

As said before, test selection consists in applying suc-
cessive constraints in order to implement strategies inten-
ded to implement hypothesis on the programs under test.
For our example we are going to illustrate the possible tests
that can be selected for the filesystem class. We will first
use general hypothesis not related to the example and then
instanciate them to it.

Hypothesis: If a test <f, r> is successful for all instances
of f having a number of events equal to a bound k, then it is
successful for all possible instances of f. The number of
events is computed recursively with the function nb-events

as follows:
Thus the constraint C ∈ CONSTRAINTSP, X is the predica-

te: nb-events (f) = k
Strategy: The strategy used to solve the former con

traint C generates all the HMLSP, XS formulae with a number
of events equal to k, without redundancy. With this stra
gy, only skeletons are generated and nothing is imposed
the specification. Later, free variables are supposed to
instantiated to events based on environment’s operatio
For instance, the constraint nb-events (f) = 2 produces the
four following tests:

T0: <(not <V0> T) and (not <V1> T),result>
T1: <(not <V0> T) and (<V1> T), result>
T2: <(<V0> T) and (<V1> T), result>
T3: <<V0> <V1> T, result>
where the variables V0 and V1 are of type event.

4.2.2. Event Based Constraints

Another way to reduce the size of the test sets is to co
train the number of occurrences of a given operation in e
test.

Hypothesis: If a test <f, r> is successful for all instances
of f having a number of occurrences of a given operationm
equal to a bound k, then it is successful for all possible ins
tances of f.

The number of occurrences of a given operation m is
cursively computed with the function

nb-occurrences: HMLSP, XS × Operations → IN,
which is defined like the function nb-events.

The constraint C ∈ ConstraintSP, X is the predicate nb-oc-
currences (f, m) = k.

Strategy: The strategy used to solve the former con
traint C generates all the HMLSP, XS formulae with a number
of events based on the operation m equal to k. For exam
let us consider a filesystem fl on which we assume:

nb-occurrences (f, open) = 1 (one occurrence of open
which leads to this kind of tests :

T:<<f 1 fl.open(<str>)><c 1 fl.read(<f 2>)>
<c2 fl.read(<f 3>)>T, result>

where variables str is a string, variables c1 and c2 charac-
ters and variables f1, f2 and f3 file descriptors.

Free variables should be instanciated in order to prod
the finite set of applicable tests. Uniformity hypothesis can
be used for that goal, producing for instance :

T:<<2 fl.open("xxx")><c 1 fl.read(<3>)>
<c2 fl.read(<4>)>T, result>

This test is obviously unsatisfied (it means that result
should be false). Selecting tests in this way lead to bad
verage of the different specification cases.

4.2.3. Subdomain Decomposition

A better way to proceed is to first decompose the diff
rent tests by performing a so called sub-domain decompo-
sition leading to two cases:

• satisfiable test(2) Lines beginning with a # are comments

s-
sets
of

of
d
,

-
-

i-
n,
er

r
th
ry
,

-
-

.
n

-

-

l

A

,

ic
al
-
pp

ri
r-
,

l.

ion
ci-
,

o-
 In
on
o-
T: <<f 1 fl.open(<str>)> <c 1 fl.read(<f 1>)>
<c2 fl.read(<f 1>)>T, true>

• exception case due to the fact that we are testing expec-
tations
T: <<f 1 fl.open(<str>)> <c 1 fl.read(<f 2>)>
<c2 fl.read(<f 2>)>T, false>
with f1 ≠ f2

The next step is to apply the previously mentioned uni-
formity hypothesis for correctly instantiating variables.

4.2.4. Other Hypothesis

More hypotheses can be imagined from the above pre-
sented one. It must be noted that they are designed to reflect
the usual test practices. Interested reader can consult [11]
which explains a set of interesting hypotheses as well as
how to implement them by a suitable logic programming
engine.

4.2.5. Testing Expectations and Properties

The idea of differentiating expectation and properties is
taken into account by having discrete interpretations of the
unsatisfiable formulae (satisfiable formulae are interpreted
in the same way for both kinds of specifications):

• Expectations must produce exceptions when applied
(result = false)

• Properties must produce unsatisfiable behavior (result
= false).
For instance, another kind of test can be derived from

properties :
T:<<f 1 fl.open(<str 1>)> f 2 fl.open(<str 2>)>

..f 65 fl.open(<str 65>)>T, false>
Where the following constraint is verified : ∀ i, j

∈ [1..65] with i≠j, fi ≠ fj. This test checks that the filesystem
component rejects the opening of more than 64 files at a ti-
me.

In both cases (expectations or properties), it is expected
to the component to signal a bad usage through the oracle.
If it does not (failure detected by the oracle), we consider it
has crashed and thus, is not reliable.

5. Conclusion

In this paper, we have proposed to enrich MARS, a Petri
net based design and prototyping methodology for distribu-
ted systems. The enrichment introduces a way to evaluate
the correspondence between specifications and generated
prototypes. One of our goals is to check their robustness.
Robust software components should be able to detect inap-
propriate use by other components and signal it.

To do so, we use the external description of components
that describe their external behavior and express it using the
OF-Class formalism. In this formalism, users may express
a usage protocol by means of atomic operations (called ex-
pectations). They may also express properties on the sys-
tem’s components.

Test patterns are generated using an appropriate forma-

lism (HML logic) and exploit various hypotheses corre
ponding to users’ testing procedure. We generate tests
for both nominal behavior of components and violation
their expectations.

6. References

[1] S. Barbey, D. Buchs, and C. Péraire, "A Theory
Specification-based Testing for Object-Oriente
Software", In Proceedings of EDCC2, LNCS 1150
pages 303-320, Taormina, Italy, Oct. 1996.

[2] O. Biberstein, D. Buchs, and N. Guelfi, "Object
oriented nets with algebraic specifications: The CO
OPN/2 formalism", In G. Agha and F. De Cindio, ed
tors, Advances in Petri Nets on Object-Orientatio
volume to appear of Lecture Notes in Comput
Science. Springer-Verlag, 1997.

[3] P. Buchholz, "Hierarchical High Level Petri Nets fo
Complex System Analysis", Proceedings of the 15
International Conference on Application and Theo
of Petri Nets (LNCS, spinger Verlag), Zaragoza
Spain, June 1994, LNCS vol. 815 PP. 119-138.

[4] G. Chiola, C. Dutheillet, G. Franceschini & S. Had
dad, "On Well-Formed Colored Nets and their Sym
bolic Reachability Graph", High Level Petri Nets
Theory and Application. Edited by K. Jense
G.Rozenberg, Springer Verlag 1991

[5] A. Diagne & P. Estraillier, "Formal Specification and
Design of Distributed Systems", International Works
hop FMOODS’96, Paris, Mars 1996

[6] A. Diagne & P. Estraillier, "A Component-based Fra
mework for for the Specification, Verification and
Validation of Open Distributed Systems", Technica
Report of the LIP6 Laboratory #1997/037.

[7] A.Diagne & F.Kordon, "From Formal Specification to
Optimized Implementation of Distributed Systems :
Multi-Formalism Approach", Technical Report of the
LIP6 Laboratory #97/039, December 1997.

[8] M. Hennessy & R. Milner, "Algebraic laws for non-
determinism and concurrency", Journal of the ACM
32(1):137-161, January 1985.

[9] F. Kordon & W. El Kaim, "H-COSTAM : a Hierarchi-
cal Communicating State-machine Model for Gener
Prototyping", Proceedings of the 6th Internation
Workshop on Rapid System Prototyping, N. Kano
poulos Ed, IEEE comp. Soc. Press 95CS8078,
131-138, Triangle Park Institute, June 1995

[10] C.A. Lakos, "From Colored Petri Nets to Object Pet
Nets", Proceedings of the 16th International Confe
ence on Application and Theory of Petri Nets (LNCS
spinger Verlag), Torino, Italy, June 1995, LNCS vo
935, PP 278-297

[11] C. Péraire, S. Barbey, and D. Buchs, "Test Select
for Object-Oriented Software Based on Formal Spe
fication", In Proceedings of PROCOMET98, N.Y
USA, 8-12 June. 1998.

[12] J. Sa, J. A. Keane & B. C. Warboys, "Software Pr
cess in a Concurrent, Formally-based Framework",
Proceedings of the IEEE International Conference
Systems, Man and Cybernetics, Beijing, China, Oct
ber 1996, pages 1580-1585

	1. Introduction
	2. Key Problems
	3. Context of the Study
	3.1. Overview of the MARS Methodology
	3.2. External Description of a Software Component
	3.3. Introducing Testing Techniques in MARS
	3.4. Theoretical Grounds on Testing
	3.4.1. The Theory of Testing
	3.4.2. Practicable Test Context and Hypotheses

	4. Proposal and Example
	4.1. Testing Behaviors and Properties in OF-Class
	4.1.1. Expressing Tests with HML Formulae
	4.1.2. Test Selection
	4.1.3. Operational Test Selection
	4.1.4. The Oracle
	4.1.5. The Incremental Test Selection Process

	4.2. Example
	4.2.1. Structural Constraints
	4.2.2. Event Based Constraints
	4.2.3. Subdomain Decomposition
	4.2.4. Other Hypothesis
	4.2.5. Testing Expectations and Properties

	5. Conclusion
	6. References

