Journée Vérification et Réseaux de Capteurs Sans Fil

20 September 2013 Rabat, Marocco

Precise Robustness Analysis of Time Petri Nets with Inhibitor Arcs

Étienne André, Giuseppe Pellegrino, Laure Petrucci

Laboratoire d'Informatique de Paris Nord Université Paris 13, Sorbonne Paris Cité, France

Introduction

Context: Verifying Complex Timed Systems (1/2)

- Need for early bug detection
 - Bugs discovered when final testing: expensive
 - \rightsquigarrow Need for a thorough modeling and verification phase

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 2 / 27

Context: Verifying Complex Timed Systems (2/2)

Use formal methods

A property to be satisfied

Context: Verifying Complex Timed Systems (2/2)

Use formal methods

A model of the system

A property to be satisfied

Question: does the model of the system satisfy the property?

Context: Verifying Complex Timed Systems (2/2)

Use formal methods

A model of the system

A property to be satisfied

Question: does the model of the system satisfy the property?

Motivation: Robustness Analysis

Timed systems are characterised by a set of timing constants

- "The packet transmission lasts for 50 ms"
- "The sensor reads the value every 10 s"
- Challenge: Robustness [Markey, 2011]
 - What happens if 50 is implemented with 49.99?
 - In which neighbourhood of 50 does the system still behave well?

Motivation: Robustness Analysis

Timed systems are characterised by a set of timing constants

- "The packet transmission lasts for 50 ms"
- "The sensor reads the value every 10 s"
- Challenge: Robustness [Markey, 2011]
 - What happens if 50 is implemented with 49.99?
 - In which neighbourhood of 50 does the system still behave well?

Parametric analysis

- Consider that timing constants are parameters
- Find good values for the parameters, such that the system still behaves well

Outline

- 1 Time Petri Nets with Inhibitor Arcs
- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 5

5 / 27

Outline

1 Time Petri Nets with Inhibitor Arcs

- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 6 / 27

Time Petri Nets With Inhibitor Arcs (ITPNs)

- Powerful formalism for verifying real-time systems [Merlin, 1974]
- Transition t_1 can fire from 5 to 6 units of time after being enabled
- An enabled transition must fire before (or at) its upper bound
- An inhibitor arc enables its transition (t₂) when its source place
 (A) is empty

Some possible runs

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 8 / 27

Some possible runs

Laure Petrucci (Paris 13)

Some possible runs

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 8 / 27

Some possible runs

AB

Laure Petrucci (Paris 13)

Trace set

Trace: time-abstract behaviour

• What happens if $t_2[0;2]$ is implemented with $t_2[0.01;2]$?

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 9 / 27

• What happens if $t_2[0;2]$ is implemented with $t_2[0.01;2]$?

 Trace AB → CB → CD cannot happen anymore: t₁ can occur only after exactly 5 units of time. Then t₂ must wait for another 0.01 time units. But t₃ reaches its maximum bound and must fire, disabling t₂.

9 / 27

• What happens if $t_3[1;5]$ is implemented with $t_3[1;4.99]$?

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 9 / 27

• What happens if $t_3[1;5]$ is implemented with $t_3[1;4.99]$?

Trace $AB \xrightarrow{t_1} CB \xrightarrow{t_3} CE$ cannot happen anymore:

 t_3 must occur before 4.99 units of time.

 t_1 can only occur afterwards.

 \sim This system is not robust, in the sense that infinitesimal variations of the bounds lead to a different discrete behaviour (trace set).

Definition (LT-robustness)

Let \mathcal{B} be the set of timing bounds. An ITPN N is LT-robust if there exists $\{\gamma_b > 0\}_{b \in \mathcal{B}}$ such that N_{γ} and N have the same trace sets. (where N_{γ} be an ITPN similar to N where each timing bound $b \in \mathcal{B}$ is replaced with any value within $[b - \gamma_b, b + \gamma_b]$)

Definition (LT-robustness)

Let \mathcal{B} be the set of timing bounds. An ITPN N is LT-robust if there exists $\{\gamma_b > 0\}_{b \in \mathcal{B}}$ such that N_{γ} and N have the same trace sets. (where N_{γ} be an ITPN similar to N where each timing bound $b \in \mathcal{B}$ is replaced with any value within $[b - \gamma_b, b + \gamma_b]$)

Challenges:

- Is an ITPN robust?
- If not, why is it non-robust?
- Is it possible to render robust a non-robust ITPN? If so, how?

Outline

1 Time Petri Nets with Inhibitor Arcs

2 The Inverse Method for ITPNs

- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

11 / 27

Parametric Time Petri Nets

Idea: parametric reasoning, using unknown constants

Parametric Time Petri Nets with Inhibitor Arcs (PITPNs)

 Constants in firing intervals replaced with parameters [Traonouez et al., 2009]

Parametric Time Petri Nets

Idea: parametric reasoning, using unknown constants

Parametric Time Petri Nets with Inhibitor Arcs (PITPNs)

 Constants in firing intervals replaced with parameters [Traonouez et al., 2009]

Parametric Time Petri Nets

Idea: parametric reasoning, using unknown constants

Parametric Time Petri Nets with Inhibitor Arcs (PITPNs)

 Constants in firing intervals replaced with parameters [Traonouez et al., 2009]

 Notation: given a PITPN N and a valuation π of the parameters, we denote by [N]_π the ITPN obtained from N by replacing all parameters with their valuation in π

Laure Petrucci (Paris 13)

Precise Robustness Analysis

12 / 27

The Inverse Method (IM)

Input

- 🗖 A PITPN 🔨
- A reference valuation π_0 of all the parameters of \mathcal{N}

Laure Petrucci (Paris 13)

The Inverse Method (IM)

Input

- 🗖 A PITPN 🔨
- A reference valuation π_0 of all the parameters of \mathcal{N}

Output: K_r

- Convex constraint on the parameters such that
 - $\blacksquare \ \pi_0 \models K_r$
 - For all points $\pi \models K_r$, $\llbracket \mathcal{N} \rrbracket_{\pi}$ and $\llbracket \mathcal{N} \rrbracket_{\pi_0}$ have the same trace sets

Laure Petrucci (Paris 13)

The Inverse Method: General Idea

- Initially defined for timed automata [A., Chatain, Encrenaz, Fribourg, 2009]
- Extended to PITPNs [A., Pellegrino, Petrucci, 2013]
- The idea
 - Exploration of the parametric state space
 - Instead of negating bad states (as in "CEGAR" approaches), remove π₀-incompatible states
 - Return the intersection of all constraints on the parameters

14 / 27

Application to an Example

Forward analysis

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013

15 / 27

Application to an Example

Laure Petrucci (Paris 13)

true

K :

true

Laure Petrucci (Paris 13)

π_0	
a = 5	b = 6
c = 0	d = 2
e = 1	f = 5
$\mathbf{a} = 6$	h = 7

Laure Petrucci (Paris 13)

π_0	
a = 5	b = 6
$\mathbf{c} = 0$	d = 2
e = 1	f = 5
a = 6	h = 7

Laure Petrucci (Paris 13)

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 15 / 27

Laure Petrucci (Paris 13)

Laure Petrucci (Paris 13)

Laure Petrucci (Paris 13)

Properties

Correctness

- $\pi_0 \models K_r$ and
- $\forall \pi \models K_r, [N]_{\pi}$ and $[N]_{\pi_0}$ have the same trace set.

IM is non-confluent

Several executions with the same input may lead to different outputs

■ *IM* is non-complete

K_r may not be the maximum set of parameter valuations with the same trace set as $[\mathcal{N}]_{\pi_0}$

Termination of IM is not guaranteed in general

Parameter synthesis for PITPNs undecidable [Traonouez et al., 2009]

Laure Petrucci (Paris 13)

Outline

1 Time Petri Nets with Inhibitor Arcs

2 The Inverse Method for ITPNs

3 Precise Robustness Analysis

4 Conclusion and Perspectives

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013

Robustness Using the Inverse Method

Let N be an ITPN.

General idea

- Construct the parametric version \mathcal{N} of N, and π_0 the reference valuation such that $[\![\mathcal{N}]\!]_{\pi_0} = N$
- 2 Call $IM(\mathcal{N}, \pi_0)$ and assume K_r is the resulting constraint
- **3** Measure the system robustness
- 4 If the system is non-robust, render it robust (if possible)

Metrics for Measuring Local Robustness

- **Ranging** interval of a parameter RI(p)
 - Minimum and maximum admissible values within K_r

Metrics for Measuring Local Robustness

- **Ranging interval of a parameter** RI(p)
 - Minimum and maximum admissible values within K_r
- Local lower/upper variability of a parameter
 - Distance between $\pi_0(p)$ and and the lower/upper bound of RI(p)
 - Given RI(p) = (a, b), then $LLV(p) = \pi_0(p) a$ and $LUV(p) = b \pi_0(p)$

Metrics for Measuring Local Robustness

- **Ranging interval of a parameter** RI(p)
 - Minimum and maximum admissible values within K_r
- Local lower/upper variability of a parameter
 - Distance between $\pi_0(p)$ and and the lower/upper bound of RI(p)
 - Given RI(p) = (a, b), then $LLV(p) = \pi_0(p) a$ and $LUV(p) = b \pi_0(p)$
- \blacksquare Local robustness: distance between $\pi_0(p)$ and the closest border within K_r
 - $\blacksquare LR(p) = \min(LLV(p), LUV(p))$

Critical Timing Bounds

Critical timing bounds are those with a null local robustness

Remark

If any of the timing bounds is critical, classical (" Δ -based") approaches will just classify the system as non-robust.

Relaxing Timing Bounds

Definition (Potential robustness)

An ITPN N is potentially robust if, for all timing bounds p_i , $LLV(p_i) > 0$ or $LUV(p_i) > 0$.

Intuitively: A system is potentially robust if each parameter can vary within K_r .

A Subsection

Relaxing Timing Bounds

Definition (Potential robustness)

An ITPN N is potentially robust if, for all timing bounds p_i , $LLV(p_i) > 0$ or $LUV(p_i) > 0$.

Intuitively: A system is potentially robust if each parameter can vary within K_r .

Theorem (Rendering a system robust)

If N is potentially robust, then there exists $\pi_{\rm R}$ such that $[N]_{\pi_{\rm P}}$ is LT-robust, and has the same trace set as N.

Construction: choose $\frac{LLV(p)+LUV(p)}{2}$ for each parameter p.

Relaxing Timing Bounds: Remarks

The potential robustness is a non-necessary condition to render a system robust

The potential robustness is based on the local robustness, that comes from K_r, that may be non-complete

Relaxing Timing Bounds: Remarks

The potential robustness is a non-necessary condition to render a system robust

- The potential robustness is based on the local robustness, that comes from K_r, that may be non-complete
- 2 The potential robustness considers the variability of each timing bound in an independent manner

• In that case, the system is not potentially robust (since $LLV(p_2) = LUV(p_2) = 0$), but could still be made robust (by choosing a point in the middle of K_r)

Laure Petrucci (Paris 13) Precise Robustness Analysis 20 Spetember 2013 22 / 27

Comparison with Related Work (1/2)

- Robustness studied for timed automata and time Petri nets (see [Markey, 2011] for a survey)
- " Δ -based" approaches
 - Robustness studied with respect to a single enlargement △ for all bounds
 - or to a single shrinking Δ for all bounds
 - Extension to a (constant) vector

Comparison with Related Work (2/2)

Recent approaches

- Parameterised robust reachability in timed automata is decidable [Bouyer et al., 2012]
- Computing the greatest acceptable variation △ is decidable for flat timed automata with progressive clocks [Jaubert and Reynier, 2011]
- CEGAR-based approach using parametric techniques to evaluate the greatest acceptable variation △ for parametric timed automata (not decidable in general) [Traonouez, 2012]

Comparison with Related Work (2/2)

Recent approaches

- Parameterised robust reachability in timed automata is decidable [Bouyer et al., 2012]
- Computing the greatest acceptable variation △ is decidable for flat timed automata with progressive clocks [Jaubert and Reynier, 2011]
- CEGAR-based approach using parametric techniques to evaluate the greatest acceptable variation △ for parametric timed automata (not decidable in general) [Traonouez, 2012]
- In contrast to most approaches, we consider a local robustness measure for each delay
 - Sor linear-time properties
 - © More flexible: Bounds can be both enlarged and shrinked
 - Some precise: Exhibits the critical timing bounds
 - 🙁 May not terminate

Outline

- 1 Time Petri Nets with Inhibitor Arcs
- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Conclusion

- Local robustness analysis of timed systems
 - For linear-time properties
 - Using the inverse method
 - Quantifies the robustness of each timing bound
 - \sim Identifies critical bounds

Sufficient condition for rendering a non-robust system robust

- Comparison with related approaches
 - One precise than most existing approaches
 - 🙂 May not terminate

Conclusion

- Local robustness analysis of timed systems
 - For linear-time properties
 - Using the inverse method
 - Quantifies the robustness of each timing bound
 - \sim Identifies critical bounds

Sufficient condition for rendering a non-robust system robust

- Comparison with related approaches
 - One precise than most existing approaches
 - 🙂 May not terminate
- Linear-time properties, hence untimed
 - But timed properties can be considered using observers

Perspectives

Implementation

- Work in progress
- Comparison with other tools such as Shrinktech [Sankur, 2013]

Improve conditions for rendering non-robust systems robust

• Variation of the clocks speed (" ϵ ")

- Addition of two parameters for the admissible decrease and increase of the clock rate
- Extension of the inverse method to non-linear (hybrid) systems

Bibliography

Bibliography

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013

Bibliography

References I

André, É., Chatain, Th., Encrenaz, E., and Fribourg, L. (2009). An inverse method for parametric timed automata. *IJFCS*, 20(5):819-836.

André, É., Petrucci, L., and Pellegrino, G. (2013). Precise robustness analysis of time Petri nets with inhibitor arcs. In *FORMATS*, volume 8053 of *Lecture Notes in Computer Science*, pages 1-15. Springer.

Bouyer, P., Markey, N., and Sankur, O. (2012). Robust reachability in timed automata: A game-based approach. In *ICALP*, volume 7392 of *Lecture Notes in Computer Science*, pages 128-140. Springer.

Jaubert, R. and Reynier, P.-A. (2011). Quantitative robustness analysis of flat timed automata. In *FoSSaCS*, volume 6604 of *Lecture Notes in Computer Science*, pages 229-244.

Springer-Verlag.

Markey, N. (2011).

Robustness in real-time systems.

In SIES, pages 28-34. IEEE Computer Society Press.

References II

Merlin, P. M. (1974).

A study of the recoverability of computing systems. PhD thesis, University of California, Irvine, CA, USA.

Sankur, O. (2013).

Shrinktech: A tool for the robustness analysis of timed automata. In *CAV'13*, volume 8044 of *Lecture Notes in Computer Science*, pages 1006-1012. Springer.

Traonouez, L.-M. (2012).

A parametric counterexample refinement approach for robust timed specifications. In *FIT*, volume 87 of *EPTCS*, pages 17-33.

Traonouez, L.-M., Lime, D., and Roux, O. H. (2009). Parametric model-checking of stopwatch Petri nets. Journal of Universal Computer Science, 15(17):3273-3304.

Additional explanation

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013 31 / 27

Explanation

The Algorithm

```
Algorithm 1: IM(\mathcal{N},\pi)
   input : PITPN N of initial class c_0 and initial constraint K_0, valuation \pi
   output: Constraint K_r
1 i \leftarrow 0; K_c \leftarrow K_0; C \leftarrow \{c_0\}
2 while true do
         while \exists \pi-incompatible classes in C do
3
               Select a \pi-incompatible class (M, D) of C
4
               Select a \pi-incompatible J in D<sub>P</sub>
5
             K_{c} \leftarrow K_{c} \land \neg J; \quad C \leftarrow \bigcup_{i=0}^{i} Post_{\mathcal{N}(K_{c})}^{j}(\{c_{0}\})
6
         if Post_{\mathcal{N}(K_c)}(C) \subseteq C then
7
          return K_r \leftarrow \bigcap_{(M,D) \in C} D \downarrow_P
8
         i \leftarrow i + 1; C \leftarrow C \cup Post_{\mathcal{N}(K_{n})}(C)
9
```

Explanation

Explanation for the 4 pictures in the beginning

Allusion to the Northeast blackout (USA, 2003) Computer bug Consequences: 11 fatalities, huge cost (Picture actually from the Sandy Hurricane, 2012)

Allusion to any plane crash (Picture actually from the happy-ending US Airways Flight 1549, 2009)

Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991) No fatalities Computer bug: inaccurate finite element analysis modeling (Picture actually from the Deepwater Horizon Offshore Drilling Platform)

Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991) 28 fatalities, hundreds of injured Computer bug: software error (clock drift) (Picture of an actual MIM-104 Patriot Missile, though not the one of 1991) Licensing

Licensing

Laure Petrucci (Paris 13)

Precise Robustness Analysis

20 Spetember 2013

Source of the graphics used (1/2)

Title: Hurricane Sandy Blackout New York Skyline Author: David Shankbone Source: https://commons.wikimedia.org/wiki/File:Hurricane_Sandy_Blackout_New_York_Skyline.JPG License: CC BY 3.0

Title: Miracle on the Hudson Author: Janis Krums (cropped by Étienne André) Source: https://secure.flickr.com/photos/davidwatts1978/3199405401/ License: CC BY 2.0

Title: Deepwater Horizon Offshore Drilling Platform on Fire Author: ideum Source: https://secure.flickr.com/photos/ideum/4711481781/ License: CC BY-SA 2.0

Title: DA-SC-88-01663 Author: imcomkorea Source: https://secure.flickr.com/photos/imcomkorea/3017886760/ License: CC BY-NC-ND 2.0

Source of the graphics used (2/2)

Title: Smiley green alien big eyes (aaah) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien big eyes (cry) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

 $(IAT_EX \text{ source available on demand})$

Author: Étienne André

https://creativecommons.org/licenses/by-sa/3.0/