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Réseaux de capteurs...

Avant tout un système réparti
Communications filaires ou non

Des contraintes embarquées
Empreinte mémoire, consommation

Autres contraintes
Mobilité, Temps-réel, fiabilité, variabilité du milieu...

Dimensions variables
Quelques cm... quelques mm... bientôt moins?
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Temps-réel

Mais avant tout...
C’est un TR2E...
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Systèmes embarqués aujourd’hui, 
un exemple

3

Un véhicule = un système réparti embarqué
Fonctions locales nombreuses : AUTOSAR = middleware
Système critique => Fiabilité
Liaisons distantes (IVI = In-Vehicle Infotainment)

Contrôle-moteur

ABS/EPS

Climatisation(s)

affichages

Radars

Commandes

Suivi route

air-bagsLiaisons
distantes

Temps
Réel
Réparti
Embarqué

Distributed
Real-time
Embedded
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Vision actuelle (et idéale    )
du Model Driven Engineering?

Automatiser = prévenir les incertitudes du développement
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Modeler1

Modeler2 Modeler3
Modelern

Référentiel
de modèles

Simulation
Analyse 
formelle

Code généré
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une sémantique fondée

et cohérente
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Modeler1

Modeler2 Modeler3
Modelern

Référentiel
de modèles

Simulation
Analyse 
formelle

Code généré

Il faut s’appuyer sur
une sémantique fondée

et cohérente

Langage pivot(assembleur sémantique pour la vérification)
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Analyse formelle?

Preuve formelle (approche «algébrique»)
Paramétré
Peu automatisé
Diagnostic difficile

Analyse Statique
Approche statique (structure plus simple)
Capture du comportement délicate (vision 
structurelle)

Model Checking
Automatisable
Diagnostic aisé
Explosion combinatoire
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Ennemis du model checking:1) Consommation mémoire2) consommation CPU
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TR2E = systèmes complexes

Interoperabilité
Communications asynchrones => Complexité

Dynamicité
Pas forcément de borne => encore plus de complexité

Symétries
Schéma de répétition dans le système
Permutabilité de certains éléments

Structuration
Traiter la localité dans certains systèmes
Partager des portions communes des configurations

Hiérarchie
Meilleure organisation et gestion des «répétitions»

Model Checking: éléments 
«à charge» et «à décharge»
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Et maintenant?

Quelques observations sur ces systèmes complexes
Exploiter les «bonnes» caractéristiques

Une proposition: «Instantiable Transition Systems»
Sans temps
Encodage du temps

Liaison à une approche «MDE»

Éléments de conclusion...
    ... avant exposé suivant
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Transparents 
suivants en anglais

Observations

Hierarchy is good
for distributed systems

[Hong 2012]
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Symbolic Encoding of the State 
Space with decision Diagrams

Based on the notion of locality [Bryant 1986] + [Clarke 1992]
State = vector of integers
Share of common parts in a set of states

Sequence of variable affectations
Accepting sequence: x←a, y←1 and x←a, y←2

Exponential gain in favorable cases
Order of the variable encoding is crucial

9
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x 1y
{a} {1}

x←a, y←1{ }
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representation
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More required to have hierarchy

Hierarchical Decision Diagrams [Couvreur 2005]
Arcs labeled by sets
A decision diagram represents a set
Recursivity

Example
Structured data: <p1,{1,3}> + <p2,{1,3}>
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   Performances (regular system)
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PNXDD, a first application

Objective: exploit the structure of large Petri Nets
Obtained from «unfolding of Colored Nets»
Characteristics: large models with repeated patterns

Involved techniques
Compute a variable order

FORCE [Aloul 2003] or NOA99 [Heiner 2009]
Hierarchically cluster this order

Anonymize the clusters as much as possible
Anonymization = contextual interpretation
Reused patterns contextually

11
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Anonymization...
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Anonymization...
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PNXDD: performances

13
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PNXDD: performances

13

   PolyORB case Study (1 state = up to 2KB)
number State Flat order Hierarchical orderof Ins- Space Flat performance performance Gain (in %)
tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

2 1.6×106
F 223,243 3.1×106 580.8 1,316 27,548 491,803 29.3 352 88 84 95 73N 78,785 451,494 98.7 273 10,050 127,791 6.2 81 87 72 94 703 2.8×107
F 593,363 1.2×107 4,708 2,851 78,067 2.1×106 188.7 692 87 83 96 76N 280,068 2.5×106 948.8 1,513 33,526 524,288 64.3 358 88 79 93 764 2.1×108
F 1.2×106 3.1×107 8,310 5,765 146,589 4.2×106 528.7 1,780 87 86 94 69N 666,886 8.4×106 217,173 2,457 84,126 2.1×106 326.0 1,451 87 75 99 415 1.4×109
F TOF TOF TOF TOF 143,903 1.1×107 2,361.6 3,045 ∞ ∞ ∞ ∞N TOF TOF TOF TOF 87,875 4.2×106 1,045.1 2,216 ∞ ∞ ∞ ∞6 9.2×109
F TOF TOF TOF TOF 288,649 2.2×107 15,757 6,144 ∞ ∞ ∞ ∞N TOF TOF TOF TOF 140,565 1.5×107 19,474 4,865 ∞ ∞ ∞ ∞7 -
F TOF TOF TOF TOF MOF MOF MOF MOF - - - -N TOF TOF TOF TOF TOF TOF TOF TOF - - - -

1
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PNXDD: performances
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NEOPPOD case Study (1 state = up to 2.4KB)

number State Flat order Hierarchical order

of Ins- Space Flat performance performance Gain (in %)

tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

2 194
F 202 679 0.024 4.1 80 217 0.007 3.42 60 68 71 17

N 463 1,688 0.024 4.5 154 558 0.011 3.57 67 67 55 21

3 90,861
F 5,956 48,269 0.86 19.0 1,126 12,491 0.15 8.2 81 74 82 57

N 3,820 23,974 0.76 12.2 709 4,838 0.10 6.7 81 80 87 45

4 9.7×108
F 84,398 1.0×106 62.6 338.8 11,728 178,921 5.0 70.83 86 82 92 79

N 155,759 1.3×106 186.1 490.3 19,875 217,536 0.007 114.2 87 83 99 77

1
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Preliminary Conclusion

Combination of techniques can help tackling complexity
MCC@Petri Net 2013 (as well as in 2011 and 2012) showed this
Complex distributed systems enable «good techniques»

Suitable for Systems of Systems
Complexity: «additive logic» instead of «product logic» 

But Distributed systems are also Embedded
OK for the main characteristics...
     ... but we need time!

Need for a formal assembly language to manage time
ITS (Instantiable Transition Systems) [Thierry-Mieg 2009]

Combine: symmetries + decision diagrams + saturation
How to extend for time!

14



Instantiable Transition Systems
and Time

[Thierry-Mieg 2011]
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ITS in a Nutshell..

A formal framework for verification
Elementary ITS

16

Embed a LTS
(or LTS generator)

ITS1
I1

I2
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A formal framework for verification
Elementary ITS
Composite ITS
Recursion...
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I1

I2
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ITS in a Nutshell..

A formal framework for verification
Elementary ITS
Composite ITS
Recursion...
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ITS1
I1
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ITS2
I’1

I’2

I’’1

Advantages:Express localityDefine instancesHierarchy
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Performances (MCC 2012 @ Petri Nets)

The «recursive unfolding» technique
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And what about time?

Discrete time can be encoded in a similar way
An extra interface : 
All  are synchronized
Caution: consistency of synchronized time constraints

Only synchronize untimed transitions?
Only synchronize transitions with the same time constraints?

Then, all the underlying tricks can be activated
Deduction of locality
Various encoding patterns
Rewriting mechanisms to enable «saturation»
etc...
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Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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Example: trains crossing...

Here, ITS embed Time Petri Nets

19

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 1. Train Component (default time interval is [0,![)
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that
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and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =
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v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that
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












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!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
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0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that
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and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that
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and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
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Example: trains crossing...

Here, ITS embed Time Petri Nets
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.
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where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
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and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =
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v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
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Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:
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Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
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action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
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Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 1. Train Component (default time interval is [0,![)
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
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{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that
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and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
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∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains
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complete system

g: gate c: controller "
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Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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Example: trains crossing...

Here, ITS embed Time Petri Nets
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
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represents the value in N of an implicit clock associated with t.
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the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that
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




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





!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
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labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
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Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
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Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
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Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system
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Fig. 6. Synchronization for a 2
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Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
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labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)
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Example: trains crossing...

Here, ITS embed Time Petri Nets
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
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0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
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#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.
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Here, ITS embed Time Petri Nets
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
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and ∀t ′ ∈ Tr,v′(t ′) =
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v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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Although this tabular presentation for composite is directly linked to the formal
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Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.
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with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that
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and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.
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Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.
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Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.
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1 1 1
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Fig. 5. Synchronization for the
complete system
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Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Towards Generation from a High-
Level Language

VeriSensor (Domain Specific Modeling Language)
Dedicated to sensor networks
Proposes relevant concepts

Compilation into ITS
Seeking for the activation of the presented mechanisms
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Towards Generation from a High-
Level Language

VeriSensor (Domain Specific Modeling Language)
Dedicated to sensor networks
Proposes relevant concepts

Compilation into ITS
Seeking for the activation of the presented mechanisms

Good scalability

More Tomorrow
Ph.D. Defense of Yann Ben Maissa
Tomorrow, 10h00, same place 
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Conclusions & Perspectives

Combination of techniques to handle discrete time
Hierarchy + Symmetries + Decision Diagrams
    Shows good scalability so far!

Relation with the System architecture
Structure can be exploited
Potential «assembly language» for Verification

Distributed systems
Timing constraints

Implementation available
http://ddd.lip6.fr

Library & tool (graphic interface with Eclipse)
Reads Romeo & TINA nets...

Some of the presented tools embedded in the CosyVerif project
http://cosyverif.org
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