MODÈLES HIÉRARCHIQUES POUR LA VÉRIFICATION EFFICACE DE SYSTÈMES TEMPS-RÉEL

Fabrice.Kordon@lip6.fr

RÉSEAUX DE CAPTEURS... Réseaux de contraintes Avant tout un système réparti Communications filaires ou non Des contraintes embarquées Empreinte mémoire, consommation Autres contraintes Mobilité, Temps-réel, fiabilité, variabilité du milieu.... Dimensions variables Quelques cm... quelques mm... bientôt moins? Analyse des capacités du système à effectuer ses missions Systèmes complexes = éviter les comportement inattendus

MODEL CHECKING: ÉLÉMENTS «À CHARGE» ET «À DÉCHARGE»

PNXDD, A FIRST APPLICATION Frontee Linear of Linear on a contextual sequence of a contextual sequence 2013 Objective: exploit the structure of large Petri Nets Obtained from «unfolding of Colored Nets» Characteristics: large models with repeated patterns Involved techniques Compute a variable order FORCE [Aloul 2003] or NOA99 [Heiner 2009] Hierarchically cluster this order Anonymize the clusters as much as possible Anonymization = contextual interpretation Reused patterns contextually

PNXDD: PERFORMANCES

F. Kordon — LIP6/MoVe — UPMC

of Ins-	State Space	Flat		Flat o perform	rder nance			Hierarchie	cal order	,			(1	
tances	Size	F	Final	Peak	Time	MB	Final	Peak	Time	MB	Final	Gain Peak	(1n %) Time	Mem
2	1.6×10^{6}	N	78,785	$3.1 \times 10^{\circ}$ 451.494	580.8 98.7	1,316 273	27,548	491,803	29.3	352	88	84	95	73
3	2.8×10^{7}	F	593,363	1.2×10^{7}	4,708	2,851	78.067	$\frac{127,791}{2.1 \times 10^6}$	6.2 188.7	81 602	87	72	94	70
		N F	280,068 1.2×10 ⁶	2.5×10^{6}	948.8	1,513	33,526	524,288	64.3	358	87 88	83 79	96 03	76 76
4	2.1×10^{8}	N	666,886	3.1×10^{6} 8.4×10^{6}	8,310 217 173	5,765	146,589	4.2×10^{6}	528.7	1,780	87	86	94	69
5	1.4×10^{9}	F	TOF	TOF	TOF	TOF	143,903	2.1×10^{6} 1.1×10^{7}	326.0 2 361 6	1,451	87	75	99	41
		N F	TOF	TOF	TOF	TOF	87,875	4.2×10^{6}	1,045.1	2,216	∞	∞	∞	∞
6	9.2×10^{9}	N	TOF	TOF	TOF	TOF	288,649	2.2×10^{7}	15,757	6,144	∞	∞	∞	∞
7	-	F	TOF	TOF	TOF	TOF	140,565 MOF	1.5×10 ⁷ MOF	19,474 MOF	4,865	∞	∞	∞	∞
		N	TOF	TOF	TOF	TOF	TOF	TOF	TOF	TOF	-	-	-	-

Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel - Rabat, Septembre 2013

42	P	NX		: РЕ	ERF	OR	MA	NC	ES					
rdon — LIP6/Md	oVe — UPMC	;		13	Mo	odèles Hiér	rarchiques p	our la vérifi	cation effi	cace de s	ystèmes t	emps-réel	– Rabat	, Septembre
		N	EOPPC	DD cas	e St	udy (i stat	te = u	p to	2.4K	B)			
number of Ins-	State Space	Flat	Final	Flat ord performa Peak	ler ince Time	MB	H Final	ierarchica perform Peak	al order ance Time	MB	Final	Gain (Peak	in %) Time	Mem
2	194	F N	202 463	679 1,688	0.024	4.1 4.5	80 154	217 558	0.007 0.011 0.15	3.42 3.57 8.2	60 67 81	68 67 74	71 55 82	17 21 57
3	90,861	F N	$5,956 \\ 3,820$	48,269 23,974	0.86	19.0 12.2	1,120 709	4,838	0.10	6.7 70.8	81 86	80 82	87 92	45 79
4	9.7×10 ⁸	F N	84,398 155,759	1.0×10^{6} 1.3×10^{6}	62.6 186.1	338.8 490.3	11,728 19,875	217,536	0.007	114.2	87	83	99	77

EXAMPLE:	TRAINS CROSSING
F. Kordon — LIP6/MoVe — UPMC 19	Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013
$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$	Fine Petri Nets $ \begin{array}{c} $

	EXAMPLE: TRAINS CROSSING													
F. Ko	rdon – L	IP6/MoVe —	UPMC	19 mbad	Т	Modèles I	liérarchiques	pour la vérif	ication effica	ce de syst	èmes temps-rée	– Rabat, Septem	bre 2013	
[3	Integration in Romeo, good performances against known tools													
[2	² Train (<i>N</i> is the number of trains) Roméo RED UPPAAL/sym Roméo/SDD													
	N tm mm sm				tm	mm	tm	mm	sm	tm	mm	sm		
	6	43.1	36 948	29 640	7	202412	0.14	908	432	1.5	7 360	4.83 10 ⁶		
	7	6115	377 452	131 517	66	723 428	0.23	3 200	957	2.5	10 304	6.28 107		
	8	DNF	-	-	-	OOM	1	3 3 3 6	2078	4	14 188	8.16 10 ⁸		
	13	-	-	-	-	-	2634	13 188	79 598	26	56 660	$3.02\ 10^{14}$		
	15	-	-	-	-	-	60 860	61 256		42	86 360	5.11 10 ¹⁶		
	16	-	-	-	-	-	DNF	-	-	52	104 848	6.65 10 ¹⁷		
	44	-	-	-	-	-	-	-	-	1143	2.13 10 ⁶	1.03 10 ⁴⁹		
	1						1-4	-		-		1		
1	-	L T	L							1	1			

	EXAMPLE: TRAINS CROSSING													
F. Ko	rdon — L	IP6/MoVe —	UPMC	19		Modèles I	Hiérarchiques	pour la vérif	ication effica	ce de syst	èmes temps-réel	— Rabat, Septem	bre 2013	
G	He	ere,	ITS e	embed	Ti	me Pe	etri N	lets						
1	In EnterFirst													
IJ	Integration in Romeo, good performances against known tools													
12					Trai	n (N is the	number	r of traiı	ns)				1	
14			Roméo			RED	UP	PAAL/s	ym		Roméo/S	SDD	1	
	N	N tm mm sm			tm	mm	tm	mm	sm	tm	mm	sm		
	6	43.1	36 948	29 640	7	202 412	0.14	908	432	1.5	7 360	4.83 10°	1	
	7	6115	377 452	131 517	66	723 428	0.23	3 200	957	2.5	10 304	6.28 107		
	8	DNF	-	-	-	OOM	1	3 3 3 6	2078	4	14 188	8.16 10 ⁸		
	13	-	-	-	-	-	2634	13 188	79 598	26	20,000	3.02 10**		
	15	-	-	-	-	-	60 860	61 256		42	86 360	5.11 10 ¹⁶		
	16	-	-	-	-	-	DNF	-	-	52	104 848	6.65 10 ¹⁷		
	44	-	-	-	-	-	-	-	-	1143	2.13 10 ⁶	1.03 1049		
	1	1	1							1	1	1		
Coner														
													1	
													27.1	

	EXAMPLE: TRAINS CROSSING													
F. Ko	ordon — L	IP6/MoVe —	UPMC	19		Modèles I	Hiérarchiques	pour la vérif	ication effica	ce de syst	èmes temps-rée	– Rabat, Septem	bre 2013	
G	He	ere,	ITS e	embed	Ti	me Pe	etri N	lets						
T.	In EnterFirst													
[3	Integration in Romeo, good performances against known tools													
Î	Train (N is the number of trains)													
[2			Roméo			RED UPPAAL/sym Roméo/SE							ן 🥇 ן	
	N	N tm mm sm				mm	tm	mm	sm	tm	mm	sm		
	6	43.1	36 948	29 640	7	202 412	0.14	908	432	1.5	7 360	4.83 10 ⁶		
	7	6115	377 452	131 517	66	723 428	0.23	3 200	957	2.5	10 304	6.28 10 ⁷		
	8	DNF	-	-	-	OOM	1	3 3 3 6	2078	4	14 188	8.16 10 ⁸		
	13	-	-	-	-	-	2634	13 188	79 598	26	56 660	3.02 1014		
	15	-	-	-	-	-	60 860	61 256		42	86 360	5.11 10 ¹⁶		
	16	-	-	-	-	-	DNF	-	-	52	104 848	6.65 10 ¹⁷		
	44	-	-	-	-	-	-	-	-	1143	2.13 10 ⁶	1.03 1049		
	1		the second second				1-4			1	1	1		
4	-		1							1		1		
													127 N	

			EXA	MPLE	E: -	FRAI	NS	CRO	SSII	٩G.	•••			
F. K	ordon — L	IP6/MoVe —	UPMC	19		Modèles H	Hiérarchiques	pour la vérif	ication effica	ce de syst	èmes temps-rée	el — Rabat, Septen	nbre 2013	
G	He	ere,	ITS e	embed	Ti	me Pe	etri N	lets						
Ţ	EnterFirst													
[3	Integration in Romeo, good performances against known tools													
10	Train (N is the number of trains)													
[2			Roméo			RED	UP	PAAL/s		Roméo/	SDD	1		
	N	tm mm sm				тт	tm	mm	sm	tm	mm	sm		
	6	43.1	36 948	29 640	7	202 412	0.14	908	432	1.5	7 3 6 0	4.83 10°		
	7	6115	377 452	131 517	66	723 428	0.23	3 200	957	2.5	10 304	6.28 107		
	8	DNF	-	-	-	OOM	1	3 3 3 6	2078	4	14 188	8.16 10 ⁸		
	13	-	-	-	-	-	2634	13 188	79 598	26	56 660	3.02 1014		
	15	-	-	-	-	-	60 860	61 256		42	86 360	5.11 10 ¹⁶		
	16	-	-	-	-	-	DNF	-	-	52	104 848	6.65 10 ¹⁷		
	44	-	-	-	-	-	-	-	-	1143	2.13 106	1.03 1049		
							1-4					-	- 1	
L	L	T	I							1		1		
													1.25	

REFERENCES

F. Kordon – LIP6/MoVe – UPMC

[1loul 2003] F. Aloul, I. Markov, K. Sakallah, FORCE: a fast and easy-to-implement variable- ordering heuristic. In: ACM Great Lakes Symposium on VLSI, pp. 116–119. ACM, 2003

Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel - Rabat, Septembre 2013

- [Ben Maïssa 2013] Y. Ben Maïssa, F. Kordon, S. Mouline and Y. Thierry-Mieg. Modeling and Analyzing Wireless Sensor Networks with VeriSensor: an Integrated Workflow. Transactions on Petri Nets and Other Models of Concurrency (ToPNoC), VIII, pages 24–47, Springer Verlag, 2013
- [Berard 2008] B. Bérard, S. Haddad, L. Hillah, F. Kordon, and Y. Thierry-Mieg. Collision avoidance in intelligent transport systems : towards an application of control theory. 9th International Workshop on Discrete Event Systems (WODES'08), pp 346-351, IEEE, 2008
- [Bryant 1986] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 8:677-691, 1986
- [Clarke 1996] E. Clarke, R. Enders, T. Filkorn, and S. Jha, Exploiting symmetry in temporal logic model checking, Formal Methods in System Design, vol. 9, no. 1, pp. 77–104, 1996
- [Couvreur 2005] J.-M. Couvreur, Y. Thierry-Mieg. Hierarchical Decision Diagrams to Exploit Model Structure,
 25th IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems (FORTE), LNCS, Taiwan, pp. 443-457, 2005
- [Heiner 2009] M. Heiner, M. Schwarick, A. Tovchigrechko. DSSZ-MC A Tool for Symbolic Analysis of Extended Petri Nets. In PETRI NETS 2009. LNCS, vol. 5606, pp. 323–332. Springer
- [Hong 2012] S. Hong, F. Kordon, E. Paviot-Adet and S. Evangelista. Computing a Hierarchical Static order for Decision Diagram-Based Representation from P/T Nets. Transactions on Petri Nets and Other Models of Concurrency (ToPNoC), to appear, Springer Verlag, 2012
- [Thierry-Mieg 2009] Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hierarchical Set Decision Diagrams and Regular Models. 15th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), LNCS vol 5505, pages 1–15, Springer Verlag, March 2009
- [Thierry-Mieg 2011] Y. Thierry-Mieg, B. Bérard, F. Kordon, D. Lime, and O. H. Roux. Compositional Analysis of Discrete Time Petri nets. In 1st workshop on Petri Nets Compositions (CompoNet), vol 726, pages 17-31, CEUR, June 2011