
Modèles Hiérarchiques pour 
la vérification efficace de 

systèmes temps-réel

Fabrice.Kordon@lip6.fr

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Réseaux de capteurs...

Avant tout un système réparti
Communications filaires ou non

Des contraintes embarquées
Empreinte mémoire, consommation

Autres contraintes
Mobilité, Temps-réel, fiabilité, variabilité du milieu...

Dimensions variables
Quelques cm... quelques mm... bientôt moins?

2



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Réseaux de capteurs...

Avant tout un système réparti
Communications filaires ou non

Des contraintes embarquées
Empreinte mémoire, consommation

Autres contraintes
Mobilité, Temps-réel, fiabilité, variabilité du milieu...

Dimensions variables
Quelques cm... quelques mm... bientôt moins?

Besoins en certification
Analyse des capacités du système à effectuer ses missions
Systèmes complexes = éviter les comportement inattendus

2

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Réseaux de capteurs...

Avant tout un système réparti
Communications filaires ou non

Des contraintes embarquées
Empreinte mémoire, consommation

Autres contraintes
Mobilité, Temps-réel, fiabilité, variabilité du milieu...

Dimensions variables
Quelques cm... quelques mm... bientôt moins?

Besoins en certification
Analyse des capacités du système à effectuer ses missions
Systèmes complexes = éviter les comportement inattendus

2

Temps-réel

Mais avant tout...
C’est un TR2E...



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Systèmes embarqués aujourd’hui, 
un exemple

3

Un véhicule = un système réparti embarqué
Fonctions locales nombreuses : AUTOSAR = middleware
Système critique => Fiabilité
Liaisons distantes (IVI = In-Vehicle Infotainment)

Contrôle-moteur

ABS/EPS

Climatisation(s)

affichages

Radars

Commandes

Suivi route

air-bagsLiaisons
distantes

Temps
Réel
Réparti
Embarqué

Distributed
Real-time
Embedded

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Vision actuelle (et idéale    )
du Model Driven Engineering?

Automatiser = prévenir les incertitudes du développement

4



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Vision actuelle (et idéale    )
du Model Driven Engineering?

Automatiser = prévenir les incertitudes du développement

4

Modeler1

Modeler2 Modeler3
Modelern

Référentiel
de modèles

Simulation
Analyse 
formelle

Code généré

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Vision actuelle (et idéale    )
du Model Driven Engineering?

Automatiser = prévenir les incertitudes du développement

4

Modeler1

Modeler2 Modeler3
Modelern

Référentiel
de modèles

Simulation
Analyse 
formelle

Code généré



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Vision actuelle (et idéale    )
du Model Driven Engineering?

Automatiser = prévenir les incertitudes du développement

4

Modeler1

Modeler2 Modeler3
Modelern

Référentiel
de modèles

Simulation
Analyse 
formelle

Code généré

Il faut s’appuyer sur
une sémantique fondée

et cohérente

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Vision actuelle (et idéale    )
du Model Driven Engineering?

Automatiser = prévenir les incertitudes du développement

4

Modeler1

Modeler2 Modeler3
Modelern

Référentiel
de modèles

Simulation
Analyse 
formelle

Code généré

Il faut s’appuyer sur
une sémantique fondée

et cohérente

Langage pivot(assembleur sémantique pour la vérification)



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Analyse formelle?

Preuve formelle (approche «algébrique»)
Paramétré
Peu automatisé
Diagnostic difficile

Analyse Statique
Approche statique (structure plus simple)
Capture du comportement délicate (vision 
structurelle)

Model Checking
Automatisable
Diagnostic aisé
Explosion combinatoire

5

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Analyse formelle?

Preuve formelle (approche «algébrique»)
Paramétré
Peu automatisé
Diagnostic difficile

Analyse Statique
Approche statique (structure plus simple)
Capture du comportement délicate (vision 
structurelle)

Model Checking
Automatisable
Diagnostic aisé
Explosion combinatoire

5

Approches 
complémentaires



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Analyse formelle?

Preuve formelle (approche «algébrique»)
Paramétré
Peu automatisé
Diagnostic difficile

Analyse Statique
Approche statique (structure plus simple)
Capture du comportement délicate (vision 
structurelle)

Model Checking
Automatisable
Diagnostic aisé
Explosion combinatoire

5

Approches 
complémentairesSujet de 

cet 
exposé

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Analyse formelle?

Preuve formelle (approche «algébrique»)
Paramétré
Peu automatisé
Diagnostic difficile

Analyse Statique
Approche statique (structure plus simple)
Capture du comportement délicate (vision 
structurelle)

Model Checking
Automatisable
Diagnostic aisé
Explosion combinatoire

5

Approches 
complémentairesSujet de 

cet 
exposé

Ennemis du model checking:1) Consommation mémoire2) consommation CPU



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

TR2E = systèmes complexes

Interoperabilité
Communications asynchrones => Complexité

Dynamicité
Pas forcément de borne => encore plus de complexité

Symétries
Schéma de répétition dans le système
Permutabilité de certains éléments

Structuration
Traiter la localité dans certains systèmes
Partager des portions communes des configurations

Hiérarchie
Meilleure organisation et gestion des «répétitions»

Model Checking: éléments 
«à charge» et «à décharge»

6

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Et maintenant?

Quelques observations sur ces systèmes complexes
Exploiter les «bonnes» caractéristiques

Une proposition: «Instantiable Transition Systems»
Sans temps
Encodage du temps

Liaison à une approche «MDE»

Éléments de conclusion...
    ... avant exposé suivant

7



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Et maintenant?

Quelques observations sur ces systèmes complexes
Exploiter les «bonnes» caractéristiques

Une proposition: «Instantiable Transition Systems»
Sans temps
Encodage du temps

Liaison à une approche «MDE»

Éléments de conclusion...
    ... avant exposé suivant

7

Transparents 
suivants en anglais

Observations

Hierarchy is good
for distributed systems

[Hong 2012]



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Symbolic Encoding of the State 
Space with decision Diagrams

Based on the notion of locality [Bryant 1986] + [Clarke 1992]
State = vector of integers
Share of common parts in a set of states

Sequence of variable affectations
Accepting sequence: x←a, y←1 and x←a, y←2

Exponential gain in favorable cases
Order of the variable encoding is crucial

9

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Symbolic Encoding of the State 
Space with decision Diagrams

Based on the notion of locality [Bryant 1986] + [Clarke 1992]
State = vector of integers
Share of common parts in a set of states

Sequence of variable affectations
Accepting sequence: x←a, y←1 and x←a, y←2

Exponential gain in favorable cases
Order of the variable encoding is crucial

9

x 1y
{a} {1}

x←a, y←1{ }



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

{1}

{2}

Symbolic Encoding of the State 
Space with decision Diagrams

Based on the notion of locality [Bryant 1986] + [Clarke 1992]
State = vector of integers
Share of common parts in a set of states

Sequence of variable affectations
Accepting sequence: x←a, y←1 and x←a, y←2

Exponential gain in favorable cases
Order of the variable encoding is crucial

9

x 1y
{a}x←a, y←1

x←a, y←2{ }
Shared 

representation

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

{1}

{2}

Symbolic Encoding of the State 
Space with decision Diagrams

Based on the notion of locality [Bryant 1986] + [Clarke 1992]
State = vector of integers
Share of common parts in a set of states

Sequence of variable affectations
Accepting sequence: x←a, y←1 and x←a, y←2

Exponential gain in favorable cases
Order of the variable encoding is crucial

9

x 1y
{a}x←a, y←1

x←a, y←2{ }
Shared 

representation



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

More required to have hierarchy

Hierarchical Decision Diagrams [Couvreur 2005]
Arcs labeled by sets
A decision diagram represents a set
Recursivity

Example
Structured data: <p1,{1,3}> + <p2,{1,3}>

10

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

More required to have hierarchy

Hierarchical Decision Diagrams [Couvreur 2005]
Arcs labeled by sets
A decision diagram represents a set
Recursivity

Example
Structured data: <p1,{1,3}> + <p2,{1,3}>

10

1
{p1, p2}



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

More required to have hierarchy

Hierarchical Decision Diagrams [Couvreur 2005]
Arcs labeled by sets
A decision diagram represents a set
Recursivity

Example
Structured data: <p1,{1,3}> + <p2,{1,3}>

10

1
{p1, p2}

1
{1,3}

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

More required to have hierarchy

Hierarchical Decision Diagrams [Couvreur 2005]
Arcs labeled by sets
A decision diagram represents a set
Recursivity

Example
Structured data: <p1,{1,3}> + <p2,{1,3}>

10

1
{p1, p2}

1
{1,3}Can be reused to 

encode another 
part of the system



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

More required to have hierarchy

Hierarchical Decision Diagrams [Couvreur 2005]
Arcs labeled by sets
A decision diagram represents a set
Recursivity

Example
Structured data: <p1,{1,3}> + <p2,{1,3}>

10

1
{p1, p2}

1
{1,3}Can be reused to 

encode another 
part of the system

   

Representation
 of a freeway [Bérard 20

08]

1

delay[0]

delay[1] 0..2
0..2

CONTROL

LANE

POS

SPEED0..4

0..10

0..1

1CONTROL
0

CONTROL

0..1

del0
veh1

veh2
veh3

x1
x2

x4
x1

1

delays

vehicle

vehicle

vehicle

veh2

veh2

vehicle

vehicle

veh3

veh1 veh2

veh1 veh2

del0

m
ai

n 
le

ve
l

sh
ar

ed
 le

ve
l

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

More required to have hierarchy

Hierarchical Decision Diagrams [Couvreur 2005]
Arcs labeled by sets
A decision diagram represents a set
Recursivity

Example
Structured data: <p1,{1,3}> + <p2,{1,3}>

10

1
{p1, p2}

1
{1,3}Can be reused to 

encode another 
part of the system

   

Representation
 of a freeway [Bérard 20

08]

1

delay[0]

delay[1] 0..2
0..2

CONTROL

LANE

POS

SPEED0..4

0..10

0..1

1CONTROL
0

CONTROL

0..1

del0
veh1

veh2
veh3

x1
x2

x4
x1

1

delays

vehicle

vehicle

vehicle

veh2

veh2

vehicle

vehicle

veh3

veh1 veh2

veh1 veh2

del0

m
ai

n 
le

ve
l

sh
ar

ed
 le

ve
l

   Performances (regular system)

50
100

150

2
3

4

140

190

240

290

340

390

440

490

50
100
150

2
3

4

0

1x10

2x10

3x10

4x10

5x10

6x10

7x10

10

10

10

10

10

10

10

10
5

5

5

5

5

5

5

lanes vehi
cles

st
at

e 
sp

ac
e

D
D
 n

od
es

lanes vehi
cles



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

PNXDD, a first application

Objective: exploit the structure of large Petri Nets
Obtained from «unfolding of Colored Nets»
Characteristics: large models with repeated patterns

Involved techniques
Compute a variable order

FORCE [Aloul 2003] or NOA99 [Heiner 2009]
Hierarchically cluster this order

Anonymize the clusters as much as possible
Anonymization = contextual interpretation
Reused patterns contextually

11

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Anonymization...

12

H1

1

H2H2

P1 P2

1
P1 P2

0

1

0

1

0

Level 1 Level 2

P4 P5

1
P4 P5

0

1

0

1

0

P3

P3 0

0

1



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Anonymization...

12

H1

1

H2H2

P1 P2

1
P1 P2

0

1

0

1

0

Level 1 Level 2

P4 P5

1
P4 P5

0

1

0

1

0

P3

P3 0

0

1

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Anonymization...

12

v

v

1

vv v

1
v v

0

1

0

1

0

Applies on
places P1,P2

Applies on
places P3,P4,P5

v

v

1

0

0

Level 1 Level 2



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

PNXDD: performances

13

   
Comparing to random order 0

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0  100  200  300  400  500
N

od
es

Final SDD

 0

 5000

 10000

 15000

 20000

 0  100  200  300  400  500

N
od

es

Peak SDD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  100  200  300  400  500

Ti
m

e 
(s

)

CPU Time

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

M
em

or
y 

(M
B)

Memory

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

PNXDD: performances

13

   Comparing to random order

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0  100  200  300  400  500

N
od

es

Final SDD

 0

 5000

 10000

 15000

 20000

 0  100  200  300  400  500

N
od

es

Peak SDD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  100  200  300  400  500

Ti
m

e 
(s

)

CPU Time

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

M
em

or
y 

(M
B)

Memory



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

PNXDD: performances

13

   PolyORB case Study (1 state = up to 2KB)
number State Flat order Hierarchical orderof Ins- Space Flat performance performance Gain (in %)
tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

2 1.6×106
F 223,243 3.1×106 580.8 1,316 27,548 491,803 29.3 352 88 84 95 73N 78,785 451,494 98.7 273 10,050 127,791 6.2 81 87 72 94 703 2.8×107
F 593,363 1.2×107 4,708 2,851 78,067 2.1×106 188.7 692 87 83 96 76N 280,068 2.5×106 948.8 1,513 33,526 524,288 64.3 358 88 79 93 764 2.1×108
F 1.2×106 3.1×107 8,310 5,765 146,589 4.2×106 528.7 1,780 87 86 94 69N 666,886 8.4×106 217,173 2,457 84,126 2.1×106 326.0 1,451 87 75 99 415 1.4×109
F TOF TOF TOF TOF 143,903 1.1×107 2,361.6 3,045 ∞ ∞ ∞ ∞N TOF TOF TOF TOF 87,875 4.2×106 1,045.1 2,216 ∞ ∞ ∞ ∞6 9.2×109
F TOF TOF TOF TOF 288,649 2.2×107 15,757 6,144 ∞ ∞ ∞ ∞N TOF TOF TOF TOF 140,565 1.5×107 19,474 4,865 ∞ ∞ ∞ ∞7 -
F TOF TOF TOF TOF MOF MOF MOF MOF - - - -N TOF TOF TOF TOF TOF TOF TOF TOF - - - -

1

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

PNXDD: performances

13

   PolyORB case Study (1 state = up to 2KB)
number State Flat order Hierarchical orderof Ins- Space Flat performance performance Gain (in %)
tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

2 1.6×106
F 223,243 3.1×106 580.8 1,316 27,548 491,803 29.3 352 88 84 95 73N 78,785 451,494 98.7 273 10,050 127,791 6.2 81 87 72 94 703 2.8×107
F 593,363 1.2×107 4,708 2,851 78,067 2.1×106 188.7 692 87 83 96 76N 280,068 2.5×106 948.8 1,513 33,526 524,288 64.3 358 88 79 93 764 2.1×108
F 1.2×106 3.1×107 8,310 5,765 146,589 4.2×106 528.7 1,780 87 86 94 69N 666,886 8.4×106 217,173 2,457 84,126 2.1×106 326.0 1,451 87 75 99 415 1.4×109
F TOF TOF TOF TOF 143,903 1.1×107 2,361.6 3,045 ∞ ∞ ∞ ∞N TOF TOF TOF TOF 87,875 4.2×106 1,045.1 2,216 ∞ ∞ ∞ ∞6 9.2×109
F TOF TOF TOF TOF 288,649 2.2×107 15,757 6,144 ∞ ∞ ∞ ∞N TOF TOF TOF TOF 140,565 1.5×107 19,474 4,865 ∞ ∞ ∞ ∞7 -
F TOF TOF TOF TOF MOF MOF MOF MOF - - - -N TOF TOF TOF TOF TOF TOF TOF TOF - - - -

1



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

PNXDD: performances

13

   
NEOPPOD case Study (1 state = up to 2.4KB)

number State Flat order Hierarchical order

of Ins- Space Flat performance performance Gain (in %)

tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

2 194
F 202 679 0.024 4.1 80 217 0.007 3.42 60 68 71 17

N 463 1,688 0.024 4.5 154 558 0.011 3.57 67 67 55 21

3 90,861
F 5,956 48,269 0.86 19.0 1,126 12,491 0.15 8.2 81 74 82 57

N 3,820 23,974 0.76 12.2 709 4,838 0.10 6.7 81 80 87 45

4 9.7×108
F 84,398 1.0×106 62.6 338.8 11,728 178,921 5.0 70.83 86 82 92 79

N 155,759 1.3×106 186.1 490.3 19,875 217,536 0.007 114.2 87 83 99 77

1

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Preliminary Conclusion

Combination of techniques can help tackling complexity
MCC@Petri Net 2013 (as well as in 2011 and 2012) showed this
Complex distributed systems enable «good techniques»

Suitable for Systems of Systems
Complexity: «additive logic» instead of «product logic» 

But Distributed systems are also Embedded
OK for the main characteristics...
     ... but we need time!

Need for a formal assembly language to manage time
ITS (Instantiable Transition Systems) [Thierry-Mieg 2009]

Combine: symmetries + decision diagrams + saturation
How to extend for time!

14



Instantiable Transition Systems
and Time

[Thierry-Mieg 2011]

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

ITS in a Nutshell..

A formal framework for verification
Elementary ITS

16

Embed a LTS
(or LTS generator)

ITS1
I1

I2



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

ITS in a Nutshell..

A formal framework for verification
Elementary ITS
Composite ITS
Recursion...

16

ITS1
I1

I2

ITS2
I’1

I’2

I’’1

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

ITS in a Nutshell..

A formal framework for verification
Elementary ITS
Composite ITS
Recursion...

16

ITS1
I1

I2

ITS2
I’1

I’2

I’’1

Advantages:Express localityDefine instancesHierarchy



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Performances (MCC 2012 @ Petri Nets)

The «recursive unfolding» technique

17

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Performances (MCC 2012 @ Petri Nets)

The «recursive unfolding» technique

17

 1

 10

 100

 1000

 10000

 5  10
 20

 50
 100

 200
 500

 1000

 2000

 5000

 10000

 50000

 100000

T
im

e
 (

s)
, 
lo

g
 s

ca
le

Scaling parameter (log scale)

CPU for state space generation (Philosophers)

2
4

/0
6

/2
0

1
2

, 
1

1
:2

6

AlPiNa
Helena

ITS−Tools
Marcie

PNXDD



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Performances (MCC 2012 @ Petri Nets)

The «recursive unfolding» technique

17

 1

 10

 100

 1000

 10000

 5  10
 20

 50
 100

 200
 500

 1000

 2000

 5000

 10000

 50000

 100000

T
im

e
 (

s)
, 
lo

g
 s

ca
le

Scaling parameter (log scale)

CPU for state space generation (Philosophers)

2
4

/0
6

/2
0

1
2

, 
1

1
:2

6

AlPiNa
Helena

ITS−Tools
Marcie

PNXDD

Memory limit : 4GBCPU limit: 1hNone reached with ITS

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Performances (MCC 2012 @ Petri Nets)

The «recursive unfolding» technique

17

 1

 10

 100

 1000

 10000

 5  10
 20

 50
 100

 200
 500

 1000

 2000

 5000

 10000

 50000

 100000

T
im

e
 (

s)
, 
lo

g
 s

ca
le

Scaling parameter (log scale)

CPU for state space generation (Philosophers)

2
4

/0
6

/2
0

1
2

, 
1

1
:2

6

AlPiNa
Helena

ITS−Tools
Marcie

PNXDD

+o
o

+1
.6
x1
04
77
1

+1
.7
x1
09
54

+2
.7
x1
09
5

+5
.2
x1
04
7

Memory limit : 4GBCPU limit: 1hNone reached with ITS



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

And what about time?

Discrete time can be encoded in a similar way
An extra interface : 
All  are synchronized
Caution: consistency of synchronized time constraints

Only synchronize untimed transitions?
Only synchronize transitions with the same time constraints?

Then, all the underlying tricks can be activated
Deduction of locality
Various encoding patterns
Rewriting mechanisms to enable «saturation»
etc...

18

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Groups of 4
 trains?

t0: train t1
: train t2: tr

ain t3: train
!

App " " " App

" App " " App

" " App " App

" " " App App

Exit " " " Exit

" Exit " " Exit

" " Exit " Exit

" " " Exit Exit

1
1

1
1

1

Fig. 7. Flat
representat

ion of 4 tra
in scalar se

t.

t0: train2
t1: train2

!

App
" App

" App App

Exit
" Exit

" Exit Exit

1
1

1

Fig. 8. Rec
ursive repr

esentation
of 4

train scalar
set, as two

times two t
rains.

The type ”
train2” cor

responds t
o the

composite
of figure 4

In [24], sev
eral strateg

ies were ma
nually expe

rimented to
encode suc

h regular m
od-

els, the mo
st basic on

e building
a composit

e containin
g n instanc

es of the em
bedded

type. This c
an be gener

alized by b
uilding a co

mposite of
n/k instanc

es of a com
posite

containing
k instances

(or k+1 to
capture the

remainder o
f the divisio

n n/k) of th
e basic

type. More
subtle are r

ecursive en
coding stra

tegies, whe
re the type

of a (sub-)c
omposite

containing
k instances

is itself defi
ned as a gro

up of group
s of instanc

es. This rec
ursive

strategy lea
ds in some

cases (like
for the din

ing philoso
phers) to lo

garithmic o
verall

complexity
in time and

memory.

With these
additional d

efinitions o
f scalar set,

the encodin
g strategy c

an be confi
g-

ured by the
user at run

time, by si
mply settin

g an option
. Two para

meters guid
e the

encoding: T
he width gi

ves the num
ber of varia

bles at any
given level

of composi
te, and

the depth g
ives the nu

mber of lev
els of hiera

rchy or nes
ting introdu

ced. The us
er can

choose to b
ound one o

r the other
and select t

he more effi
cient. For i

nstance the
flat en-

coding of F
ig. 7 has w

idth 4 and d
epth 1, whi

le the enco
ding of Fig

. 8 has wid
th 2 and

depth 2.
We thus ge

neralize for
easy reuse

the very fa
vorable enc

odings from
[24] (for un

-

timed syste
ms), which

thanks to hi
erarchy can

be exponen
tially more

efficient tha
n what

is available
with other

decision di
agram varia

nts.

3.3 ITS Tools

The ITS to
ols can be u

sed for mod
eling and a

nalysis of I
TS specific

ations. The
graphi-

cal front-en
d is an Ecli

pse plugin
built upon C

oloane (con
figure coloa

ne.lip6.fr/n
ight-

updates in
eclipse upd

ate sites), t
hus runs on

all platform
s. The actu

al analysis
tools

are provide
d on ddd.l

ip6.fr as p
re-compile

d binaries
for commo

n platforms
(Linux,

MacOS, W
indows).

In the mod
eling envir

onment, TP
N can be u

sed as buil
ding bricks

to define IT
S

instances. T
he tool cur

rently featu
res import/

export func
tionality fo

r both Rom
éo and

Tina forma
ts, full mod

eling capab
ility, the ab

ility to ”fla
tten” a com

posite ITS
defini-

tion to an e
quivalent T

PN, use of
variables in

arc labels a
nd time con

straints, an
d CTL

model-chec
king for an

alysis. To j
ump-start n

ew users, b
oth exampl

es used in
this pa-

per are ava
ilable direc

tly through
the ”New->

Example” e
clipse men

u. Figure 9
shows



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Groups of 4
 trains?

t0: train t1
: train t2: tr

ain t3: train
!

App " " " App

" App " " App

" " App " App

" " " App App

Exit " " " Exit

" Exit " " Exit

" " Exit " Exit

" " " Exit Exit

1
1

1
1

1

Fig. 7. Flat
representat

ion of 4 tra
in scalar se

t.

t0: train2
t1: train2

!

App
" App

" App App

Exit
" Exit

" Exit Exit

1
1

1

Fig. 8. Rec
ursive repr

esentation
of 4

train scalar
set, as two

times two t
rains.

The type ”
train2” cor

responds t
o the

composite
of figure 4

In [24], sev
eral strateg

ies were ma
nually expe

rimented to
encode suc

h regular m
od-

els, the mo
st basic on

e building
a composit

e containin
g n instanc

es of the em
bedded

type. This c
an be gener

alized by b
uilding a co

mposite of
n/k instanc

es of a com
posite

containing
k instances

(or k+1 to
capture the

remainder o
f the divisio

n n/k) of th
e basic

type. More
subtle are r

ecursive en
coding stra

tegies, whe
re the type

of a (sub-)c
omposite

containing
k instances

is itself defi
ned as a gro

up of group
s of instanc

es. This rec
ursive

strategy lea
ds in some

cases (like
for the din

ing philoso
phers) to lo

garithmic o
verall

complexity
in time and

memory.

With these
additional d

efinitions o
f scalar set,

the encodin
g strategy c

an be confi
g-

ured by the
user at run

time, by si
mply settin

g an option
. Two para

meters guid
e the

encoding: T
he width gi

ves the num
ber of varia

bles at any
given level

of composi
te, and

the depth g
ives the nu

mber of lev
els of hiera

rchy or nes
ting introdu

ced. The us
er can

choose to b
ound one o

r the other
and select t

he more effi
cient. For i

nstance the
flat en-

coding of F
ig. 7 has w

idth 4 and d
epth 1, whi

le the enco
ding of Fig

. 8 has wid
th 2 and

depth 2.
We thus ge

neralize for
easy reuse

the very fa
vorable enc

odings from
[24] (for un

-

timed syste
ms), which

thanks to hi
erarchy can

be exponen
tially more

efficient tha
n what

is available
with other

decision di
agram varia

nts.

3.3 ITS Tools

The ITS to
ols can be u

sed for mod
eling and a

nalysis of I
TS specific

ations. The
graphi-

cal front-en
d is an Ecli

pse plugin
built upon C

oloane (con
figure coloa

ne.lip6.fr/n
ight-

updates in
eclipse upd

ate sites), t
hus runs on

all platform
s. The actu

al analysis
tools

are provide
d on ddd.l

ip6.fr as p
re-compile

d binaries
for commo

n platforms
(Linux,

MacOS, W
indows).

In the mod
eling envir

onment, TP
N can be u

sed as buil
ding bricks

to define IT
S

instances. T
he tool cur

rently featu
res import/

export func
tionality fo

r both Rom
éo and

Tina forma
ts, full mod

eling capab
ility, the ab

ility to ”fla
tten” a com

posite ITS
defini-

tion to an e
quivalent T

PN, use of
variables in

arc labels a
nd time con

straints, an
d CTL

model-chec
king for an

alysis. To j
ump-start n

ew users, b
oth exampl

es used in
this pa-

per are ava
ilable direc

tly through
the ”New->

Example” e
clipse men

u. Figure 9
shows

Recursive unfolding possible2x(2x(2x(train)))...

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Example: trains crossing...

Here, ITS embed Time Petri Nets

19
with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

with some delays introduced to model the time it takes to open or close the gate. These
three TPN models are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

!"

#$

%&&

'"
()'*+

,-.
)+,/

#$0/

!"#$%

!&#'% !(#(%

!"#$%&
$'&($)*)))+

Fig. 1. Train Component (default time interval is [0,![)

!"

!"#$%&'%(#

)*%

!

!

!"#$%

!+'#,*(#

!+'#!
!

Fig. 2. Controller module for 2 trains

!"#$%

!"#$&
'((

"()$

*+,-,$.

/0"-)10)+2,$.

/"3,$.

0"#)*,$.
45,6

7

8

!"#"$

!"#"$

!"#"$
!%#&$

!%#&$

9(

Fig. 3. Gate module (default time interval is [0,![)

The discrete time semantics of a TPN is described by a Discrete Time Transition
System (DTTS). A valuation v is an element of NT . Thus, for a transition t ∈ T , v(t)
represents the value in N of an implicit clock associated with t.

Definition 3 (Discrete Time Semantics of a TPN). For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, !,m0,",#〉, the semantics is a transition system SN = 〈S,s0,A∪{1},→〉
where:

– S=NPl×NTr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple 0 corresponds to the value 0 for all transition clocks.
– −→⊆ S× (A){1})×S is the transition relation defined for states 〈m,v〉,〈m′,v′〉 by:
The discrete transition relation:
〈m,v〉 a

−→ 〈m′,v′〉 iff there is a transition t ∈ Tr such that


















!(t) = a∧ enabled(m, t)∧ v(t)≥ "(t)
and m′ ∈ fire(m, t)

and ∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t .= t ′

0 otherwise

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Definition 6 (ITS Semantics of a Composite). The ITS type ! = 〈S,A,Locals,Succ〉
corresponding to a composite C = 〈I,Sync,A′,"〉, is defined by:

– S= SI ; A= A′ \{$};
– Locals : S %→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I,#i(s′) ∈ type(i).Locals(#i(s))∧∀ j ∈ I, j += i,# j(s′) = # j(s)
or ∃$ ∈ Sync,"($) =$,s′ ∈ NextI(s,$)

– Succ : S×A! %→ 2S is defined for s,s′ ∈ S, w= a1 · · ·an ∈ A! by: s′ ∈ Succ(s,w) iff
∃$1, . . . ,$n ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], "($ j) = a j∧ s j ∈ NextI(s j−1,$ j)∧
s0 = s∧ sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action of Locals in any
nested instance (without affecting the other instances), or states reachable from s through
the occurrence of any synchronization associated to the local label $.

Succ(s,w) is obtained by composing the effects of each label a in the word w using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train "
App % App
% App App
Exit % Exit
% Exit Exit
1 1 1

Fig. 4. Synchronization for 2
trains

tg: TrainGroup cc: ContrGate "
Exit Exit $
App App $
1 1 1

Fig. 5. Synchronization for the
complete system

g: gate c: controller "
App EnterFirst App
% Enter App
Exit ExitLast Exit
% Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controller and a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instances t0 and t1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labels App, Exit and 1. A state s of this
composite is thus defined as a cartesian product of the state of instance t0 (noted #t0(s))
and t1. The successors obtained by Succ(s, App) are the states in which either t0 or
t1 have fired App and the state of the other instance is unchanged (e.g. s′ such that
#t0(s

′) ∈ Train.Succ(#t0(s)) and #t1(s′) = #t1(s) or vice versa). There is no local ($
labeled) synchronization in this example, thus successors by Locals are states in which
either t0 or t1 have progressed by Train.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roméo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.

Global synchronization for time elapse
(may reduce some symmetries)

Integration in Romeo, good performances against known tools

Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106
9 73 071 1.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106
10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107
170 - - - - OOM 7783 47 956 57 971 23 101 896 2.27 10120
700 - - - - - DNF - - 1391 1.82 106 2.66 10491
730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106
7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107
8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108
13 - - - - - 2 634 13 188 79 598 26 56 660 3.02 1014
15 - - - - - 60 860 61 256 42 86 360 5.11 1016
16 - - - - - DNF - - 52 104 848 6.65 1017
44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1. Performances measured for the Fischer and train models. Execution time is in
seconds (column tm), memory occupation in KB (column mm). Column sm provides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set. Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide: (i) automatic saturation, (ii)
shared representation of subsystems and (iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) with n instances side by side for the train model (i.e. n groups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Towards Generation from a High-
Level Language

VeriSensor (Domain Specific Modeling Language)
Dedicated to sensor networks
Proposes relevant concepts

Compilation into ITS
Seeking for the activation of the presented mechanisms

Good scalability

20



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Towards Generation from a High-
Level Language

VeriSensor (Domain Specific Modeling Language)
Dedicated to sensor networks
Proposes relevant concepts

Compilation into ITS
Seeking for the activation of the presented mechanisms

Good scalability

More Tomorrow
Ph.D. Defense of Yann Ben Maissa
Tomorrow, 10h00, same place 

20

Conclusion...

... and advertizing



F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

Conclusions & Perspectives

Combination of techniques to handle discrete time
Hierarchy + Symmetries + Decision Diagrams
    Shows good scalability so far!

Relation with the System architecture
Structure can be exploited
Potential «assembly language» for Verification

Distributed systems
Timing constraints

Implementation available
http://ddd.lip6.fr

Library & tool (graphic interface with Eclipse)
Reads Romeo & TINA nets...

Some of the presented tools embedded in the CosyVerif project
http://cosyverif.org

22

F. Kordon — LIP6/MoVe — UPMC Modèles Hiérarchiques pour la vérification efficace de systèmes temps-réel — Rabat, Septembre 2013

References

[1loul 2003] F. Aloul, I. Markov, K. Sakallah. FORCE: a fast and easy-to-implement variable- ordering heuristic. 
In: ACM Great Lakes Symposium on VLSI, pp. 116–119. ACM, 2003
[Ben Maïssa 2013] Y. Ben Maïssa, F. Kordon, S. Mouline and Y. Thierry-Mieg. Modeling and Analyzing Wireless 
Sensor Networks with VeriSensor: an Integrated Workflow. Transactions on Petri Nets and Other Models of 
Concurrency (ToPNoC), VIII, pages 24-47, Springer Verlag, 2013
[Berard 2008] B. Bérard, S. Haddad, L. Hillah, F. Kordon, and Y. Thierry-Mieg. Collision avoidance in intelligent 
transport systems : towards an application of control theory. 9th International Workshop on Discrete Event 
Systems (WODES'08), pp 346-351, IEEE, 2008
[Bryant 1986] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on 
Computers 8:677–691, 1986
[Clarke 1996] E. Clarke, R. Enders, T. Filkorn, and S. Jha, Exploiting symmetry in temporal logic model 
checking, Formal Methods in System Design, vol. 9, no. 1, pp. 77–104, 1996
[Couvreur 2005] J.-M. Couvreur, Y. Thierry-Mieg. Hierarchical Decision Diagrams to Exploit Model Structure, 
25th IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems 
(FORTE), LNCS, Taiwan, pp. 443-457, 2005
[Heiner 2009] M. Heiner, M. Schwarick, A. Tovchigrechko. DSSZ-MC - A Tool for Symbolic Analysis of 
Extended Petri Nets. In PETRI NETS 2009. LNCS, vol. 5606, pp. 323–332. Springer
[Hong 2012] S. Hong, F. Kordon, E. Paviot-Adet and S. Evangelista. Computing a Hierarchical Static order for 
Decision Diagram-Based Representation from P/T Nets. Transactions on Petri Nets and Other Models of 
Concurrency (ToPNoC), to appear, Springer Verlag, 2012
[Thierry-Mieg 2009] Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hierarchical Set Decision 
Diagrams and Regular Models. 15th International Conference on Tools and Algorithms for the Construction and 
Analysis of Systems (TACAS), LNCS vol 5505, pages 1-15, Springer Verlag, March 2009
[Thierry-Mieg 2011] Y. Thierry-Mieg, B. Bérard, F. Kordon, D. Lime, and O. H. Roux. Compositional Analysis of 
Discrete Time Petri nets. In 1st workshop on Petri Nets Compositions (CompoNet), vol 726, pages 17-31, CEUR, 
June 2011

23


