Macroexpansion Reflective Tower *

) Christian Queinnec!
Ecole Polytechnique & INRIA-Rocquencourt

Abstract

Macros are reflective tools that operate on the representation of programs. Though having been
used, and still being useful, for more than thirty years, their semantics and pragmatics are still unclear.
This paper proposes a new model to understand the macroexpansion process; this model is based on a
reflective tower of macroexpansion engines.

1 Introduction

Macros are definitely a forte of Lisp dialects. They confer upon the powerful users a means to adapt their
language to their problems and this is, in our mind, one of the key reasons for Lisp’s longevity. Despite
the various attempts to standardize macros [Ste90, CR91b] and even if most of them are just quite simple
abbreviations, they still represent one of the thorniest problems that occur when porting code between
dialects of Lisp: a sure sign of their ambiguous nature. Even in Scheme, macros still have a dark side with
respect to their scope, their extent and their meaning i.e., their definition language. This paper proposes an
understandable model covering these aspects.

The problem we address and the essence of our solution are presented in section 2. Section 3 details an
implementation along with some examples. Variations and applications are explored in section 4. Related
works are dealt with in section 5 before the final conclusion.

2 Foundation

Macros were introduced in 1963 by Timothy P. Hart [SG93]. They rely on a unique quality of Lisp: programs
are represented as data i.e., S-expressions. This identification allows us to write programs that convert
general S-expressions into regular programs. For a given dialect of Lisp, say L, there exists a pure denoter,
say pure-meaning, that takes programs written in L and returns their denotation. A denotation is an entity
that can be evaluated later i.e., interpreted or, compiled then executed. For instance, depending on the
technology used for the evaluator, a denotation may be viewed as a bytecode vector, as an immutable copy
of the original program, etc.

Besides this pure denoter, there is often another facility, say meaning, that takes general S-expressions
and macroexpands them into pure L programs before denoting these programs with the L pure denoter.
Less informally:

meaning(w) = pure-meaning(expand(w))

It may be tempting to consider meaning as a pure denoter of another language, say L', based on L with
additional syntax. This would be erroneous since (i) the L’ language evolves as new macros are added, (i)
to define a macro is a side-effect and therefore this hypothetical pure denoter would have state which is
against denotational tenets. History has shown that users are more interested in the meaning facility that
offers a macroexpansion service rather than in the bare pure-meaning denoter. Moreover, the latter is often

*Revision: 1.20 typeset on February 29, 1996 at 17:03 — To appear in the proceedings of the Reflection’96 conference.
tLaboratoire d’'Informatique de 1'Ecole Polytechnique (URA 1439), 91128 Palaiseau Cedex, France - Email:
Christian.Queinnec@polytechnique.fr This work has been partially funded by GDR-PRC de Programmation du CNRS.

absent from Lisp/Scheme systems while the former is generally part of the eval facility. Since the goal of
meaning is to produce a denotation, let’s call it a denoter though it is not a pure denoter.

In its full generality, the macroexpansion is a regular and unrestricted evaluation whose particularity is
just that it handles pieces of programs and builds programs. The reflective axiom, upon which our tower is
founded, 1s

expand(m) = eval((expand (quote m)))

To explicitly rely on an evaluator is not a surprise. It is a logical consequence of the fact that, at
macroexpansion time, the introduction of a new macro is made via an S-expression that must be turned,
on the fly, into an invocable procedure—an expander—by the macroexpansion engine itself. This capability
requires a dynamic evaluation facility.

Although numerous macroexpansion engines were studied [Ste90, KFFD86, BR88, DFH88, CR91a, QP91,
DHB93, DPS94, Que94, dM95], their properties in terms of scope and extent are unclear. Since macroex-
pansion is a disguised evaluation, it has to be performed with some state. Where does this state come from?
What happens to it after macroexpansion? Is it shared? These are questions that must be answered to give
a precise model of how macros work and to allow users to denote their programs without depending on a
hidden and uncontrolled state.

To minimize the interaction with the evaluator, the macroexpansion is often performed as a preprocessing
phase. This is consistent with our previous definition for meaning and particularly obvious for compilers
since the compile-time world is disjoint from the run-time world. If macroexpansion were performed as an
external process (as ¢pp does for the C compiler) then the macroexpand-time world would also be different.
To clearly separate these multiple worlds is a key for the comprehension of the macroexpansion mechanism
as it is also for delivery [DPS94].

2.1 Upper levels

To keep worlds separate means that if a denotation is asked for in some world, there must exist an associated

world where the macroexpansion is performed. Just as in the reflective evaluation towers [dRS84, WF88]

the associated world is said to stand at the upper level. The macroexpansion tower is built accordingly.
To denote an S-expression at level n requires that it be expanded before.

meaning, (7) = pure-meaning, (ezpand, (7))

According to our axiom, to expand an S-expression at level n is simply to evaluate a call to the expand
procedure at the upper level. That is, we define the world where the macroexpansion required by level n is
to be performed, to be level n + 1.

ezpand, (7) = eval,+1((expand (quote 7)))

But to evaluate a program requires it to be denoted before. For the sake of the following explanation, we
consider eval to be the composition of meaning and run. The run procedure is able to execute the denotation
produced by meaning and is sufficiently abstract to encompass interpretation and compilation.

evaly,+1 (ﬂ') = TUlp41 (meaningn+1(7r))

Therefore, combining all these facts yields:

meaning, () = pure-meaning, (run,1(meaning, ,,((expand (quote 7)))))

The tower is now apparent in its infinite regressive beauty: to obtain the denotation of an S-expression
7 at level n involves the denotation of the new (and simpler) program (expand (quote w)) at level n + 1.
If 7 defines and/or uses macros, they will be created at level n + 1 and stored in the state of the evaluator
of level n + 1, thus they will not clutter level n. This model, see figure 1, is not restricted to its first two
levels since macros (at level n) may themselves be defined with the help of macros (of level n 4 1) that do

Level O Level 1 Level 2
l/ _ 7

expand expand expand
meaning T meaning T meaning T IS
run run run
interpret
compile

Figure 1: Macroexpansion reflective tower

not need to be visible from other levels. Fortunately, the upper levels of the tower do not use macros and
therefore may be shunted since, at these macro-less levels, (expand (quote 7)) = 7.

Our model does not impose restrictions on macroexpansion engines provided they can be triggered with a
call to the expand procedure. Apart from the ground level where the language designer may restrict or forbid
access to expandy and evaly, other levels are regular evaluators with unrestricted evaluation capabilities. In
particular, expanders may use external utility procedures or variables and complex macros may be defined
by a bunch of files and dynamically loaded. Finally, once the expansion is finished, no dependency remains:
the result of the expansion is immediately given back to the pure (stateless) denoter, pure-meaning, and
turned into a denotation that owes nothing! to the upper level.

From now on, we assume the macroexpansion procedure to be the value of the expand variable of the
upper level. Its result is granted to be the expanded program.

3 Consolidation

We will detail our solution using Scheme but other languages may adopt our proposal provided they allow the
building and evaluating of representations of programs. We will first explain how the tower is implemented
and then we will focus on the macroexpansion protocol to show that it is expressive enough for the usual
needs.

To be independent of any particular evaluation mechanism, we abstract from them with the following
five procedures:

e pure-meaning takes a program written in pure Scheme i.e., without macros, and yields its denota-
tion (a tuple made of its code and its list of free variables; these two components may be accessed
with meaning-code and meaning-free-variables). Note that pure-meaning is a real mathematical
function.

e create-standard-env returns the standard environment of R*RS Scheme [CR91b]. Since all levels
have their own separate unshared environment, the standard environment should be considered as
immutable or freshly copied.

e enrich extends an environment with the specified variables; the enriched environment is returned.
Depending on the implementation, it may be the same updated environment or a new one incorporating
new locations for these new variables. With this latter possibility, environments are immutable objects.
If a variable already appears in the environment, it is left unchanged; otherwise it is adjoined with an
uninitialized state.

1Remember that quotations do not mention the value to be returned per se but rather describe it [Mul92]. This is obvious
when looking at a Scheme to C compiler where quotations are turned into some C code to regenerate some value. Therefore
there is no hidden sharing between levels.

e env-set! sets the value of a variable within an environment to some value. Its result is unspecified.
e run evaluates some code within some environment and returns its resulting value.

First-class environments [RAMS84, 84M84, Que94] facilitate the definition of some of the above proce-
dures. They also often exist, at some low-level, within byte-code interpreters. Otherwise, they can be easily
simulated on top of an interpreter written in Scheme.

3.1 The tower

Each level of the tower is materialized by a level tuple composed of its global environment (accessed with
level-env and modified by set-level-env!) and its upper level (accessed with level-next). New levels
are allocated with make-level. Using the non standard define-structure, levels could be defined as:

(define-structure level env next)

Level 0 is the ground floor where a denotation is first requested, see figure 1. This organization explicitly
separates the different worlds. Remember that the following definitions participate in the implementation of
the tower, they do not belong to any level of the tower.

Within each level, there is a pure evaluator: it denotes a program, enriches and updates the global
environment of the current level with the free variables contained in this program, then runs the associated
code at this level and returns its value.

(define (do-pure-eval e level)
(let ((mn (pure-meaning e)))
(set-level-env! level (enrich (level-env level)
(meaning-free-variables mn)))
(run (meaning-code mn) (level-env level))))

The usual evaluator, often provided to the users of a real Scheme implementation as the value of the
eval variable, simply expands expressions into programs before purely evaluating them.

(define (do-eval e level)
(do-pure-eval (do-expand e level) level))

Expansion is an evaluation at the upper level but, to avoid an infinite construction, we force that upper
level to exist before. Note that the expand variable must be defined as a unary procedure at the upper level.
It is useless for expand to exist at level 0 since it is sufficient to display macroexpanded results at level 1.
Another more subtle trick to break the infinite regression is to use do-pure-eval instead of do-eval since
the call to expand is written in pure Scheme and does not need to be expanded.

(define (do-expand e level)
(do-pure-eval ‘(expand ’,e) (force (level-next level))))

We can now detail how levels are built. Initially a level is built out of a copy of the standard Scheme
environment and a promise to build the upper level if needed. All levels but the ground floor, which may
forbid it to its users, require the presence of an expand variable which in turn needs a dynamic eval
facility. This eval procedure must operate within the current level global environment; that’s why we
enrich the current level with the eval variable (the env-set! primitive takes care of the compatibility of the
invocation protocols that may be different between levels as well as different from the implementation). For
simplicity, we assume that every level has initially the same macroexpansion engine; the definitional text of
this macroexpansion engine, an S-expression, is contained in the expand-definition variable and will be
commented upon later.

(define expand-definition-meaning (pure-meaning expand-definition))
(define (create-level)
(make-level
(create-standard-env)
(delay
(let ((nextlevel (create-level)))
; s install the free variables of the macroexpansion engine

(set-level-env! nextlevel (enrich (level-env nextlevel)
(meaning-free-variables
expand-definition-meaning)))

; sinstall the current eval facility

(env-set! ’eval (level-env nextlevel)

(lambda (value)
(do-eval value nextlevel)))
;5 and run the code of the macroexpansion engine
(run (meaning-code expand-definition-meaning)
(level-env nextlevel))
nextlevel))))

We can now build the ground level and start, for instance, a classical top-level evaluator. With this
evaluator, there are no predefined macros at any level but, when created, they persist at their definition
level.

(define (toplevel)
(define levelO (create-level))
(let loop ()
(display (do-eval (read) levelO))
(1oop)))

3.2 Expansion

The previous section detailed the tower independently of the macroexpansion mechanism. We now address
that topic. We will show that, although very simplistic, its protocol is all we need.

The macroexpansion engine receives an S-ezpression and expands it into a program that will be given
to a pure denoter. We took some care not to mix these two words in this paper. But it must be observed
that the macroexpansion engine works on a syntactically fuzzy and unstructured value; the goal of the
macroexpansion engine being to expand that value into another value acceptable by the pure denoter.
Therefore a macroexpansion engine must be robust with respect to the S-expressions it has to walk and
should not suppose much about their syntax. Conversely one may restrict the input syntax accepted by
macros to ensure stronger properties with respect to a-conversion or horizontal captures [Mul94].

The macroexpansion is triggered through the invocation of the unary expand procedure with the S-
expression to expand as argument. We propose, as a first experiment, to define a small but extensible
macroexpansion engine standing on the shoulders of eval. Since macroexpansion is the art of weaving
computations on more than one level, it is sufficient to let the user access the evaluator of the upper level.
More elaborate macroexpansion engines, such as EPS [DFH88], could of course have been directly defined.
Note that this definition for expand is given as an S-expression to be evaluated at every upper level and
therefore is written in a pure macro-less Scheme since it is not expanded.

(define bare-expand-definition
’(define expand s Level 1, 2 ... program.
(lambda (e)
(if (pair? e)
(if (eq? (car e) ’eval-in-expansion-world)
(eval (car (cdr e)))
e)
e))))
(define expand-definition bare-expand-definition)

This macroexpansion engine behaves as the identity except on S-expressions whose top-level car is the
keyword eval-in-expansion-world. In this case, the expression that follows is considered as a program
that must be evaluated at the upper level. The result of this evaluation is returned as the result of the
expansion.

Although rather crude as a protocol, it offers the user that ability to define (or load) its proper macroex-
pansion engine replacing this bare one. This might be done with the following level 0 S-expression. Note

that this S-expression does not use macros nor derived syntax such as let or and since it is expanded via
the bare expander.

(eval-in-expansion-world ; Level 0, 1, 2 ... programs
(begin
(define expand
(lambda (e) ; the main function

(really-expand e global-expand-env)))
(define macro-env
(lambda (e) ;the environment of macros encoded as
(if (pair? e) ; & predicate returning an exrpander.
(if (eq? (car e) ’eval-in-expansion-world)
(lambda (e m) (eval (car (cdr e))))
(if (eq? (car e) ’quote)
(lambda (e m) e)

#£))
#£)))
(define global-expand-env
(lambda (e) ; wraps macro-env to always use its last value.

(macro-env e)))
(define really-expand
(lambda (e m)
((lambda (expander)
(if expander
(expander e m)
(default-expand e m)))

(m e)))) ;18 there an associated expander?
(define default-expand
(lambda (e m) ;the default expander
(if (pair? e)
((lambda (a) s left to right

(cons a (really-expand (cdr e) m)))
(really-expand (car e) m))

e)))
(define again-izer ;turn an expander into an equivalent
(lambda (expander) ; expander the result of which is reexpanded

(lambda (e m)
(really-expand (expander e m) m))))
(define form-extend

(lambda (m key fn) ;return a new macroenv similar tom
(lambda (ee) ; except that it returns £n on a pair
(if (pair? ee) ; whose car is key.
(if (eq? (car ee) key)
fn
(m ee))
(m ee)))))

(define install-macro-form!
(lambda (name expander) ;ezxtends the global environment of macros with
(set! macro-env ;@ new macro.
(form-extend macro-env name expander))
#f))
#t))

This new engine might have been defined in lieu of the original bare expander. It improves on it since
it recursively walks S-expressions; it now allows eval-in-expansion-world forms to appear anywhere, it

recognizes and ignores quotations. It might itself be improved, for instance to give local variables of lambda
forms precedence over homonym macros (but this requires lambda expressions to have a decipherable list of
variables). This macroexpansion engine has been kept simplistic to save space.

The global-expand-env and macro-env predicates record whether an S-expression has an associated
expander. The install-macro-form! procedure records macros in the macro-env variable and therefore
extends the environment of macros, global-expand-env, with new global macros. An expander takes an
S-expression and an environment of macros and returns a new S-expression. The again-izer procedure
converts an expander into an expander whose result is re-expanded with the current local environment of
macros. This improved engine is still simple but not constraining.

3.3 Local macros

Local macros are quite easy to introduce using the really-expand procedure of the improved macroexpan-
sion engine, since the current environment of macros is held in its second variable. This environment of
macros will be enriched with some local macros to process the S-expressions in the scope of the local macros.
The S-expressions defining the local macros are turned into invocable expanders with the eval facility. To
save room, the following let-abbreviation global macro introduces only one local abbreviation. Note that
let-abbreviation is defined as a macro at level 0 only; it is of course written with the level 1 language.

(eval-in-expansion-world
(install-macro-form!
>let-abbreviation ;(let-abbreviation ((key parameters...) expansion...) scope...)
(lambda (e m)
(really-expand
‘(begin ,@(cdr (cdr e)))
(form-extend m (car (car (car (cdr e))))
(again-izer
((lambda (expander)
(lambda (ee mm) (apply expander (cdr ee))))
(eval ‘(lambda ,(cdr (car (car (cdr e))))
,@(cdr (car (cdr ¢))))))))))))

For the sake of the following example, we suppose that the improved macroexpansion engine and the
let—abbreviation macro had been appropriately installed at level 2 with:

(eval-in-expansion-world
(eval-in-expansion-world
(begin (define expand ...)
(install-macro-form! ’let-abbreviation ...))))

Consider the following level 0 example where a local macro maps progn onto begin:

(define foobar
(lambda (x)
(let-abbreviation
((progn . body)
(let-abbreviation ((sequence . body) ‘(begin ,@body))
(sequence (display "Use begin instead of progn!")
‘(begin ,@body))))
(progn x (1list x)))))

When the local progn macro is defined at level 0, its associated expander is evaluated at level 1. During
this evaluation, its body is expanded and the sequence local macro is defined at level 1 with an associated
expander created at level 2. The body of the expander associated with progn makes use of the sequence
macro and is finally expanded into:

(lambda body
(begin (display "Use begin instead of progn!'™)
‘(begin ,@body)))

At the end of the macroexpansion nothing remains at any level since all implied macros were local and
disappeared at the end of their associated scope. This example uses a macro to define a macro. sequence
is invisible except for level 1 while progn is invisible except for level 0.

3.4 Global macros

The second facility we introduce will allow us to define global macros i.e., macros that persist at the level they
were defined. This define-abbreviation facility is implemented as a regular macro: it builds a program
describing the precise expander that will be triggered when the keyword is recognized. This program is
dynamically evaluated into an invocable expander recorded in macro-env, the global environment of macros.

(eval-in-expansion-world
(install-macro-form!
’define—abbreviation ;(define-abbreviation (key parameters...) expansion...)
(lambda (e m)
(install-macro-form!
(car (car (cdr e)))
(again-izer
((lambda (expander)
(lambda (ee mm) (apply expander (cdr ee))))
(eval ‘(lambda ,(cdr (car (cdr e)))
,@(cdr (cdr e))))))))))

Here is the previous example now rewritten with define-abbreviation. As before, we suppose de-
fine-abbreviationto be present at level 1. Recall that expansion is performed from left to right to allow the
definition of a macro and its subsequent use in the same begin form. Also note that define-abbreviation
requires its result to be re-expanded.

(define barfoo
(lambda (x)

(define-abbreviation (progn . body)

(define-abbreviation (sequence . body)
‘(begin ,@body))
(sequence (display "Use begin instead of progn!")
‘(begin ,@body)))

(progn (1list x))))

The progn macro is created at level 0 and its associated expander is created at level 1. During this
evaluation, its body is expanded at level 1 and defines the sequence macro whose expander is created at
level 2. After the macroexpansion, the progn macro persists at level 0 (and only at that level) while the
sequence macro persists at level 1. This exhibits a difference between the languages of level 0 (Scheme +
progn) and level 1 (Scheme + sequence). Therefore one may prepare a level to define the language for the
definition of a macroexpander that will be used for the definition of another language at the lower level.

4 Perspectives from the tower

Multiple incarnations of Scheme exist; they all have peculiar macro systems. We appreciated that variability
when porting the MEROON object system on 12 different Scheme incarnations, but it is not our intention to
describe or to compare these systems but only to show that our model may be successfully applied.

Interpreters often mix all levels of our tower into a single one. However, they may adopt our macroex-
pansion tower i.e., a tower of independent evaluators linked by a macroexpansion relationship. This would
have the additional benefit of easing the introduction of interactive modular programming such as [Tun92].

Pure compilers generally offer the first two levels but show their divergences on many points such as
macros creating macros, macros loading files, etc. They may adopt our macroexpansion tower and this will
standardize the effects, scope and extent of macros without constraining the macroexpansion algorithm.
This last fact might be appreciated by fans of standardization.

The worst case concerns interpreters/compilers providing a compile-file facility. The level 0 of the
compiler may or may not be the same as the level 0 of the interpreter therefore blurring the scope and extent
of macros defined for one or the other.

4.1 Coalesced levels

Another interesting view is possible where the tower is restricted to its ground level with all upper levels
coalesced into a single one. This structure has the advantage that when a macro is defined, it is immediately
available at any upper level: this saves the independent management of multiple levels while at the same
time retaining the separation of the ground level and all upper levels.

This last variation is easily implemented with create-level-all-the-same instead of create-level

(define (create-level-all-the-same)
(make-level
(create-standard-env)
(letrec ((nextlevel (make-level
(create-standard-env)
(delay nextlevel))))
(set-level-env! nextlevel (enrich (level-env nextlevel)
(meaning-free-variables
expand-definition-meaning)))
(env-set! ’eval (level-env nextlevel)
(lambda (value)
(do-eval value nextlevel)))
(run (meaning-code expand-definition-meaning)
(level-env nextlevel))
(delay nextlevel))))

4.2 Continuations

Nothing prevents level 1 from capturing continuations and this may have interesting properties. A macro
may suppose some properties to be true for a certain kind of expansion, it therefore captures the continuation
to which it returns the chosen expansion. If it happens, while expanding the rest of the S-expression, that
the assumed properties are not true then the macroexpansion engine may decide to change its previous
expansion and reinvoke the captured continuation with a more appropriate expansion.

The following example defines a counting macro that counts the number of occurrences of a given variable
in some scope and makes these occurrences expand into forms revealing their order of occurrences.

(eval-in-expansion-world
(install-macro-form!
’counting
(lambda (e m)
((lambda (number)
(call/cc
(lambda (return)
((lambda (process)
(set! process
(lambda (i)
(really-expand
‘(begin ,@(cdr (cdr e)))
(form-extend
m (car (car (cdr e)))
(lambda (ee mm)
(set! i (-1 1))
(if (> i 0)

‘(quote (,i / ,(- number 1)))
(begin (set! number (+ number 1))
(return (process number)))))))))
(process number))
‘process))))
1))))

(counting (a) (1ist (a) (a) (list (a))))
= (list (3 / 3) ’(2/ 3) (1ist (1 / 3)))

This is not a property per se of the tower but this may be done safely since the relationship between the
expander and the denoter are now known and thus manageable. Observe also that the order of expansion is
crucial here.

5 Related work

Our macroexpansion tower is orthogonal to any particular macroexpansion algorithms such as Expansion
Passing Style (EPS) [DFHS88]. It is also unrelated to the concept of hygienic macros [KFFD86, CR9la,
DHB93] that provide a good solution to the specific problem of name collision. Nothing prevents the
landlord of a macroexpansion tower where the expand variable is mutable to install, at any level, the kind
of macroexpansion engine he is dreaming of.

It is amusing to see that the old view of macros where (foo m; 72 ...) was considered as a procedure
applied on the unevaluated text of its arguments and whose result is evaluated, is somewhat true in our
model since the previous macro call is approximately (eval-in-expansion-world (foo ’m; ’72 ...))
(supposing foo to hold the appropriate expander) except that the used evaluator is not the one of level 0.

The high-level macroexpansion engine defined by Scheme is based on a pattern language that can be
directly interpreted by the engine itself without requiring a dynamic evaluation facility. Unfortunately its
power is limited since it cannot handle arithmetic, for instance. This is not inconvenient for a vast majority
of macros but this excludes complex macros such as macros defining an object system which must manage
a state: a tree of inheritance.

We think that the power of macros should not be restricted and any possible computation on program
fragments should be possible. This is one of the preferred ways to implement new language features and the
macroexpansion mechanism should not rule it out: this is acknowledged by the low-level macroexpansion
engine of Scheme that allows expanders to be defined by unrestricted procedures. Alas, in this latter case,
nothing prevents these expanders from using the resources of the programs they are expanding thus mixing
run-time and expand-time (and/or compile-time depending on the nature of the evaluator). A possible
solution may be to extend the proposed eval feature of Scheme to take into account the macroexpansion
engine to use as a possible third argument.

To clearly separate the multiple worlds is discussed in [QP91, PNB93, DPS94]. The key is to define
modules with static directives telling which macros (from other modules) are imported and which macros
(defined in the current module) are exported. Our model is more oriented towards dynamic evaluation but,
contrary to [DPS94], allows macros to be defined and used on the fly i.e., in the same module. Our tower is
founded on the explicit existence of an eval facility whereas the solution of [DPS94] enriches (at link-time)
the compiler with the modules providing the imported macros.

6 Conclusion

We proposed a tower of macroexpansion engines providing a clear understanding of the macroexpansion
process for dynamic languages i.e., providing unrestricted computation capabilities on the representation
of programs. It clearly separates the multiple worlds involved in the expansion and the evaluation of S-
expressions. The model may also be used to describe existing Scheme implementations and works the same for
other languages. A less abstract version of the tower is presented in [Que94] with an extended construction to
capture meanings (thus allowing for hygienic macros) but requiring some cooperation (mutual understanding

10

of some data structures as well as interleaving the two computations) between the expansion engine and the

denoter.

7 Acknowledgment

Thanks to Luc Moreau, Pierre Parquier, Shriram Krishnamurthi, Daniel Friedman and the anonymous
referees for their stimulating comments.

Bibliography

[84M84]
[BRSS]

[CR91a]
[CR91b]
[DFH8S]
[DHB93]
[dM95]

[DPS94]

[dR87]
[dRS84]
[Gra93]
[KFFDS6]
[Mul92]
[Mul94]

[PNB93]

[QP91]

[Que94]

[RAMS4]

[SG93]

Mit Scheme Manual, Seventh Edition. Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Mass., September 1984.

Alan Bawden and Jonathan Rees. Syntactic closures. In Proceedings of the 1988 ACM Symposium on
LISP and Functional Programming, Salt Lake City, Utah., July 1988.

William Clinger and Jonathan Rees. Macros that work. In POPL ’91 Fighteenth Annual ACM sympo-
stum on Principles of Programming Languages, pages 155-162, Orlando, (Florida USA), January 1991.

William Clinger and Jonathan A Rees. The revised* report on the algorithmic language Scheme. Lisp
Pointer, 4(3), 1991.

R. Kent Dybvig, Daniel P. Friedman, and Christopher T. Haynes. Expansion-passing style: a general
macro mechanism. International journal on Lisp and Symbolic Computation, 1(1):53 76, June 1988.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. International
journal on Lisp and Symbolic Computation, 5(4):295 326, 1993.

Antoine Dumesnil de Maricourt. Macro-expansion en Lisp, sémantique et réalisation. These d’université,
Université Paris 7, Paris (France), June 1995.

Harley Davis, Pierre Parquier, and Nitsan Séniak. Talking about modules and delivery. In Proceedings
of the 1994 ACM Conference on Lisp and Functional Programmming, pages 113 120, Orlando (Florida
USA), June 1994. ACM Press.

Jim des Rivieres. Control-related meta-level facilities in Lisp. In P. Maes and D. Nardi, editors, Workshop
on Meta-Level Architecture and Reflection, Alghiero, Sardinia (Italy), October 1987. North Holland.

Jim des Riviéres and Brian Cantwell Smith. The implementation of procedurally reflective languages. In
Conference Record of the 1984 ACM Symposium on LISP and Functional Programming, pages 331 347,
Austin, Texas, August 1984. ACM Press.

Paul Graham. On Lisp, Advanced Techniques for Common Lisp. Prentice-Hall, 1993.

Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic macro expan-
sion. Symposium on LISP and Functional Programming, pages 151-161, August 1986.

R. Muller. M-LISP: A representation-independent dialect of LISP with reduction semantics. ACM Trans-
actions on Programming Languages and Systems, 14, No. 4:589 615, 1992.

R. Muller. A staging calculus and its application to the verification of translators. In POPL 94 —
Twenty-first Annual ACM symposium on Principles of Programming Languages, pages 389-396, 1994.
Padget, J.A., Nuyens, G., and Bretthauer, H. An overview of EulLisp. Lisp and Symbolic Computation,
6(1/2):9 98, 1993.

Christian Queinnec and Julian Padget. Modules, macros and Lisp. In Eleventh International Conference of
the Chilean Computer Science Society, pages 111-123, Santiago (Chile), October 1991. Plenum Publishing
Corporation, New York NY (USA).

Christian Queinnec. Les langages Lisp. InterEditions, Paris (France), 1994. ISBN 2 7296 0549 5, 61 2448
1, English version soon available from Cambridge University Press.

Jonathan A. Rees, Norman I. Adams, and James R. Mechan. The T Manual, Fourth Edition. Yale
University Computer Science Department, January 1984.

Guy L. Steele, Jr. and Richard P Gabriel. The evolution of Lisp. In The Second ACM SIGPLAN History
of Proramming Languages Conference (HOPL-11), pages 231-270, Cambridge (Massachusetts, USA), April
1993. ACM SIGPLAN Notices 8, 3.

11

[Ste90]
[Tun92]

[WFss]

Guy L. Steele, Jr. Common Lisp, the Language. Digital Press, Burlington MA (USA), 2nd edition, 1990.

Sho-Huan Simon Tung. Interactive modular programming in Scheme. In Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, pages 86-95, San Francisco, USA, June 1992.

Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A non-reflective description of
the reflective tower. Lisp and Symbolic Computation, 1:11-37, 1988. Reprinted in Meta-Level Architectures
and Reflection (P. Maes and D. Nardi, eds.) North-Holland, Amsterdam, 1988, pp. 111 134.

12

