
A library for quizzes

Christian Queinnec
Université Paris 6 — Pierre et Marie Curie

LIP6, 4 place Jussieu, 75252 Paris Cedex — France

Christian.Queinnec@lip6.fr

ABSTRACT
Programming web dialogs is already known to be well served
by continuations; this paper presents a continuation-based li-
brary for a particular class of web dialogs: quizzes for stu-
dents. The library is made of objects representing the individ-
ual questions and of functional combinators hiding the imper-
ative aspects of page shipping over HTTP and management
of continuations. Mixing these three styles provide an elegant
framework that fulfills our initial goal. The description of that
library is hoped to be helpful for quizzes designers.

1. INTRODUCTION
Last year, we designed a CD-ROM in order to support a

college-level course named “Evaluation process” strongly based
on the Scheme programming language [1]. This is the first
computer science (CS) course delivered to young scientists
(eighteen-year old) who still have to choose whether to spe-
cialize in maths, CS, mechanics or physics. The goal of the
course is to introduce students to recursion, trees, grammars
and language interpretation.

The CD-ROM was given to a special group of 45 computer-
equipped students who were then able to work at home com-
fortably with the same means they have access to at the univer-
sity. Therefore, besides our course material, the CD-ROM also
contains copies of the DrScheme programming environment
[3] along with some add-ons providing exercises and quizzes.

An exercise is an assignment that should be performed with
the help of the programming environment. A student chooses
an exercise (with an additional menu), reads the question (an
HTML page displayed by the inner browser of DrScheme),
writes the required function(s) (as well as the required testing
function(s)), tests them then hit the “check” button which syn-
thetizes a new HTML page with some comments and a mark
ranking the provided solution (see Figure 1). Above a given
threshold, teachers’ solutions are displayed and the student
may proceed to the next question.

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires prior specific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright c© 2002 Christian Queinnec.

Quizzes are tightly bound to the written course. The course
is chopped into a number of HTML pages, each centered on a
single topic. For ease of use, these pages are accessed through
a mainstream browser such as Explorer or Communicator (the
inner browser of DrScheme 103 was not able to handle forms).
After every topic, the system proposes various quizzes (as HTML
links) checking various levels of understanding. We distin-
guish level-1 quizzes that are simple applications of the course:
they mainly correspond to very simple Scheme questions that
do not require the whole power of the DrScheme environment
(see Figure 2). Level-2 quizzes strive the student to verbalize
its understanding; these questions are not checked but links
to appropriate answers are given back. Finally, level-3 quizzes
help to understand how the topic contributes to the overall goal
of the whole course.

Technically, links to quizzes are served by a web server run-
ning as a thread inside DrScheme. A quiz (and the average ten
questions it contains) is entirely held in a single file that is sim-
ply evaluated by the web server. Continuations [6] are used

• to suspend the server after shipping a page to the student

• and to resume the server with student’s answers to the
displayed questions.

In order to give a uniform look for the quizzes and to min-
imize code for the definition of the individual questions of
quizzes, quizzes were defined with the help of a library of
functions and macros. A question is represented by an ob-
ject, a quiz is a combination of questions, and combinators
embed (and hide) the imperative aspects of page shipping and
continuations management.

The rest of the paper presents that library and some elements
of the rationale behind it. Section 2 will describe the “ques-
tion” object, Section 3 will present how questions are com-
posed via appropriate combinators to form quizzes. Section 4
will detail the imperative implementation of combinators and
their use of continuations. Finally, Section 5 will conclude.

2. QUESTIONS
A quiz is made of a succession of pages, each of them con-

tains one or more questions. When a question is asked, its
terms are generated into HTML. Answers are graded; this grad-
ing triggers the synthesis of a good or a bad answer (both in
HTML). The grade is a number – positive if the answer is cor-
rect, negative otherwise. The HTML produced by a question
is limited to the terms or to the good or bad answer without

1



Figure 1: Screen capture of an exercise – The student hit the “Tester” (check) button and got a mark good enough to let him
see a solution (more than one solution may appear).

Figure 2: Screen capture of a quiz – This quiz corresponds to a compound question where the student has to write a function
that is, its type, its definition and some associated tests.

2



any adornment. The resulting HTML is one (or more) para-
graph(s), not a complete HTML page.

Besides these characteristics, a question also knows how to
be logged (when displayed, answered or graded): this is nec-
essary in order to assess students’ progress. Of course, all
questions are identified with a unique identifier. Logging is
done via an HTTP Post request to a centralized logging service
feeding a database from which students’ progress is deduced.

When a question is displayed again (for instance after a stu-
dent answers incorrectly), the HTML fields are pre-filled with
their former content. It is also possible to blank those fields if
required.

We chose to represent questions as objects with fields and
methods. Here are the signatures of the methods on the ques-
tion objects. They are given in a Meroon [5] style (although
the current implementation uses message passing rather than
Meroon itself).

(define-method (id (question))
returns the identifier (a string) )

(define-method (author (question))
returns the author (a string) )

(define-method (reset (question))
erases all already-filled fields )

(define-method
(html-question (question) interactive?)

returns an HTML string: the question stem.
if interactive? is true then generate also the
HTML INPUT tags (textfield, textarea, checkbox, etc.) )

(define-method
(report-question (question) nextUrl)

logs that the question was asked )

(define-method
(report-answer (question) request)

logs the answer )

(define-method (verify (question) request)
grades student’s answer (encoded in the HTTP
request) and returns a number coding the
grade )

(define-method
(html-good-answer (question) request a)

generates a positive comment (an HTML string)
based on a grade a )

(define-method
(html-bad-answer (question) request a)

generates a negative comment (an HTML string)
based on grade a )

We adopt objects to structure behavior sharing. The hierar-
chy of questions is sketched on Figure 3 where indentation de-
notes the subclass relationship. The first two classes generate
questions offering single or multiple choices. The terms of a
question of the third class always display a box where the stu-
dent types in his answer. The predicate field of the ques-
tion analyzes this answer that is, a string. Some subclasses
exist for instance, the question-regexp which imposes
students’ answers to satisfy a given regexp.

Another, more important, subclass is the question-scheme
that expects students’ answers to be legal Scheme expressions.
The associated predicate then receives that Scheme ex-
pression instead of a string (of course, the Scheme expres-
sion might be a Scheme string). Among questions expecting a

question-qcu with radio buttons
question-qcm with check boxes for multiple choice
question-simple with a box for the answer: a string
question-regexp the answer must satisfy a regexp
question-scheme the answer must be a legal S-expression

question-evaluation
question-reverse-evaluation

question-context
question-function with multiple specialized S-expression
boxes

Figure 3: Fragment of the class hierarchy for questions

Scheme answer, we have the question-evaluation that
says “What is the value of some expression ?”. The predicate
checks that the students’ answer is indeed that some expres-
sion: the quiz writer just has to mention the some expres-
sion. Similarly, the question-reverse-evaluation
says “Give an expression whose value is some value”. Fi-
nally, the question-context says “Give an expression
using some expression and its expected value”. There again,
the quiz writer just mentions the fragment some expression to
be used (for instance (list +)). Questions of this last class
display two boxes related by one predicate.

The last mentioned class, question-function, see Fig-
ure 2, displays a number of boxes to help a student define a
function, its type, its definition, some invocations of this func-
tion and their expected values. The quiz writer just has to men-
tion his own version of the specified function.

To sum up, we have a number of questions constructors for
various types:

• question without answer

• question with an unchecked textual answer

• question with a regexp-checked textual answer

• question with a checked Scheme answer

• question with unique choice (radio buttons or menus).
For instance, what is the arity of some function ?

• question with multiple choices For instance, which arity
are correct for some function ?

We also have a number of refinements for questions with
checked answers. Their appearance may differ as well as the
grading process. Here are some of our scheme-based ques-
tions:

• what is the Scheme encoding of . . . ?

• what is the value of . . . ?

• give a program whose value is . . .

• give a valid program containing . . . , what will be its
value ?

• define a function whose specification is . . . , give n ex-
amples of invocations and the expected values.

For the moment, they cover all our needs for our CD-ROM.
We even use a quiz for the registration procedure (when stu-
dents install the CD-ROM on their home machine in order to
log in our databases the sole students we want to assess). We
also write a little quiz to define simple quizzes.

3



3. COMBINATORS
Questions form the basic building blocks for HTML pages,

therefore, they should be freely re-usable in various contexts.
For instance, when building a quiz, one may want a simple
question to be iterated until the student answers it correctly,
repeat another question at most twice if badly answered and
so on. Questions must be combined in order to form quizzes.

A quiz is a Scheme file that, when evaluated, builds pages
with questions and ships them to the student. When the student
answers (with an HTTP request), the quiz is resumed at the
point where the page was shipped. This is the essence of web
continuations [6]. When resumed, the quiz dispatches the re-
quest towards the asked questions, gathers the positive/negative
comments along with some new or previous questions, packs
these all in a new page and ships it to the student. Reaching
the end of the file ends the quiz.

In order to be able to re-use questions in various contexts,
we separate questions’ content from the way questions are
asked. In a given context, a question may be mandatory while
in another context, the same question may be grouped (and dis-
played) with three others among which two good answers may
be sufficient to proceed past this group of four questions. We
must be able to precisely state how the student is led through
the quiz depending on his previous good or bad answers.

Here are our current combinators:
(ask-only-once question)
(loop-until-verified question)
(loop-at-most n question exhaustion)

(ask-multiple-questions-once questions...)
(ask-multiple-questions n questions...)

(mute-ask-only-once question)
(mute-ask-multiple-questions-once questions...)

We group them into three families. The first family just
confers a behavior to questions that is, — ask a question only
once and proceed to the rest of the quiz even if the answer
is incorrect — ask a question until obtaining a correct an-
swer (students complain against this behavior, even though we
scarcely used it) — ask a question until obtaining a correct
answer or at most n times. After n failures, the student may
proceed to the next question but is given a notice generated by
(exhaustion n).

The second family just gathers questions to make them ap-
pear as a single one. This is not an easy point since the mean-
ing of the correctness of a group of questions immediately oc-
curs. There is no such problem with the ask-multiple-
questions-once, it just gathers the comments for the group
of questions. The second combinator generalizes the loop-
at-most combinator with the following behavior: the group
of questions is asked again and again but correctly answered
questions are removed from the group until the maximal num-
ber of iterations is reached or all questions are correctly an-
swered.

The last family corresponds to examination performed on
computers. They are similar to the combinators with the same
name less the mute- prefix. The differences are

• positive/negative comments are not displayed

• students are not allowed to submit more than one answer
to any questions (more on that point later).

Here is a contorted example of a quiz that asks a question
over and over until the student clicks the “Yes” button. A con-
firmation is asked for (only once) immediately after. The first
two questions are roughly the same but they are defined with
alternate means: the first uses a macro while the second uses a
function instead. The macro makes available finer details and
adopts a uniform keyword-value look and feel.

The third question asks for a Scheme expression returning a
number (but at most 2 times). The question generator, named
7-77 (a local value) generates a question asking for a pro-
gram whose value is a number between 7 and 77. If the an-
swer is correct, the quiz ends with a final cul-de-sac com-
binator that displays a specific page telling the student that
the quiz is over (this allows us to override the implicit call to
cul-de-sac with a default message). If the answer is not
correct (this is notified with an assignment to the local vari-
able named success?) the same question generator exactly
is called to create a new question that will be asked ad libitum.

;;; parameterless question generator
(define-question-generator (understood?)

type: qcu ;question with unique choice
id: "q-qnc-understood1"

choices: ’(yes no) ;rendered as radio-buttons
correct: ’yes
author: "Christian.Queinnec@lip6.fr"

bad-answer: "Please think harder!"
text: "This is a quiz, i.e., a dialog

where you get questions that you must answer."
(p "Do you understand ?") )

(h1 "Welcome to a regular quiz") ;inter-title

(loop-until-verified ;combinator
(understood?) ) ;question

(ask-only-once ;combinator
(one-choice-question ;question
"q-qnc-understood2"
’(yes no)
’yes
(div "Do you really understand ?") ) )

(h1 "Welcome to a less simplistic quiz");inter-title

(let again ((success? #t))

;;another (hand-made) question generator:
(define (7-77)

(reverse-evaluation-question ;question
"q-qnc-7-77"
(+ 7 (random 70)) ) )

(loop-at-most ;combinator
2
(7-77)
(lambda (n)

(set! success? #f)
"Alas!" ) )

(if success?
(cul-de-sac ;combinator
"The quiz ends here!" )

;;otherwise:
(again #t) ) )

So far we have a library of combinators over objects to de-
fine quizzes. Regular quizzes writers do not need further de-
tails, they just have to pick the right question generator, the

4



appropriate arguments and the right combinators (the first two
questions of the example are examples of regular quizzes).
Some of our colleagues even told us that they have the im-
pression of writing Scheme data rather than Scheme code.

4. IMPERATIVE ASPECTS OF COMBI-
NATORS

The combinators hide two very different aspects: they hide
continuation management and HTML generation details. Since
they manage continuations and HTTP, they require a deeper
understanding to be written.

4.1 HTML generation details
Questions only generate fragments of HTML. Between combi-

nator-expressions, there may be other HTML-generating ex-
pressions in the quiz (see, for instance, the h1 function gen-
erating a H1 tag in the previous quiz example; this tag will
appear before the HTML stem of the next question). All these
HTML fragments are sequentially (imperatively) accumulated
in the communication channel.

All combinators force an interaction with the student. They
gather all HTML fragments so far accumulated, wrap them in
a FORM tag with a fresh URL bound to the continuation of
the quiz (materialized as a “Submit” button), wraps again this
form into a complete HTML page (then introducing standard
headers, footers, logos, titles, styles, CSS, etc.) and ship it to
the student.

Observe that it is up to the final wrapper (a mutable prop-
erty of the communication channel) to decide how to arrange
all these HTML fragments. This isolates questions from their
appearance on students’ browsers. This also allows us to have
a uniform presentation for all pages.

The combinators also solve another problem on the ergonomic
side. To consider the quiz as made of a series of question/answer
is rather abstract since the quiz has to deal with HTTP where
server answers are only displayed when the user requests some-
thing. This is the usual inversion of control [4] which we
name question/answer (from the view point of the server) or
reply/request (from the point of view of the client’s browser)
where the question is the reply while the answer is the request.

When the server receives an answer, there are various dia-
logical strategies, see Figure 4:

1. it may reply with a negative comment and a link direct-
ing the student back to the old question,

2. it may reply with a negative comment and the old ques-
tion again (with pre-filled fields),

3. it may reply with a positive comment and a link to the
new question,

4. it may reply with a positive comment and the new ques-
tion,

After some experiments, we chose options 2 and 4 since
they minimize the number of clicks. Some of our colleagues
do not like option 4 when the comment is too big since it
refers to the previous question whose terms are gone and there-
fore pollutes the terms of the new following question. There
again, combinators isolate questions from the way the dialog
is chopped into pages.

go

q1 terms

q2 terms

go

good!

q2 terms

go

OK
good!

OK
bad!

go

q1 terms
go

bad!

q1 terms

previous

previous

Figure 4: Dialogical split

The imperative side of the communication channel allows
pages to share some information: the communication channel
plays the role of a sort of shared “session object”, but limited
to the quiz (as for servlets or ASP dynamic pages). For in-
stance, to be less uniform, messages, button labels and titles
are varied. Questions may also put some hints in the commu-
nication channel to suggest a title (recall the title of the page
is chosen by the HTML wrapper that may pack more than one
question on a single page).

For combinators that iterate over a question, the suggested
title displays the current trial number and the maximal number
of allowed trials.

4.2 Continuation management
Following previous work [6], continuations are mainly put

to use via the show function that receives an HTML page gen-
erator, captures the current continuation, binds it with a fresh
URL, feeds the HTML page generator with that URL, ships
the obtained HTML page and waits for an answer, that is, an
HTTP request that will become the value of the invocation of
the show function.

Combinators wrap a call to the show function with specific
management of continuations. These continuations are ob-
tained through the regular call/cc however some hackery
specific to DrScheme was required since continuations cannot
be called out of their birth thread.

On Figure 5 left, the student hits the “submit” button (la-
beled go), resumes the quiz server that decides whether to re-
ply with a positive comment and the new question or to reply
with a negative comment and the old question. This latter page
is not the same as the first one since the second one contains,
in addition, the negative comment. However the continuation
of the “submit” button is the same.

This situation must be contrasted with the mute- combi-
nators that prevent students from re-submitting to an already
answered question. On Figure 5 right, the student answers
question 1 then answers question 2 and obtains the terms of
question 3, the student then instructs the browser to go back
and back to question 1 and tries to change the answer. The
combinator detects that and forces the student back to the last

5



go

good comment
question2 go

go
question1

(show ...)
go

question1

go
question2

go

go
question1

bad comment
question1

question3
back−back

Figure 5: Continuations and dialogs

unanswered question that is, question 3. A fine point is that
the invoked continuation leads to the point right before show-
ing question 3 and not the continuation bound to the “submit”
button of question 2 (since the answer of question 2 is already
graded).

Still playing with continuations we also introduce a mode
where a teacher may see a quiz at once that is in a single page.
This is, of course, only possible if the quiz is static enough and
linear. The trick is to transform the show operator to simply
accumulate HTML fragments rather than shipping them. The
concatenation of all these fragments is performed at the end of
the quiz file.

These various modes are well served by the separation of
methods on questions. Answers may be not graded (when the
teacher wants to have a global look to the entire quiz or wants a
paper copy to circulate), answers may be graded without emit-
ting any comment (this is the examination mode).

5. CONCLUSIONS AND PERSPECTIVES
Concerning web continuations, the paper does not present

new results. It only shows how they may be put to work for
quizzes. Only the trick concerning the continuations just be-
fore or after the shipping of a page in the implementation of
the mute- combinators is new.

Therefore, the paper is centered on the main features of the
quiz library that had several goals:

1. separation of concerns: A question writer just has to
understand how to build questions. These questions may
then be put in a big database (correctly indexed to let
them be easily retrieved); this is future work!

A quiz writer just has to understand combinators in or-
der to assemble questions into dialogs. A quiz program-
mer may dynamically builds thematic quizzes extracted

from the previous database. A special quiz may be de-
signed to build quizzes interactively.

An HTML designer just has to change the HTML gener-
ation part of questions and combinators to alter the look.

A web-dialog designer (just) has to understand continu-
ations to implement other kinds of dialog. For instance,
students asked us in the examination mode (the mute-
combinators) to be able to see all questions in advance
that is, to only prevent submitting more than once to any
given question.

2. nice multi-paradigmatic fit: Programmation requires
mastering various programming styles making some tasks
easier. Refining questions is well served by objects and
classes. Combinators are nice means to assemble ques-
tions to form dialogs. The sequentiality of web interac-
tions via HTTP forces an imperative view for continua-
tions and HTML fragments accumulation.

This is the third version of that library, each version has im-
proved the separation of concerns and adopted the most appro-
priate framework to deal with the new concerns. The current
library has been stable for the last year. Quizzes may have
very reactive behaviors and are far more easier to define and
manage compared to the very static tools of generic authoring
systems. In such systems, a quiz is usually defined with a num-
ber of boxes, radio-buttons, menus to fill, click or unroll. The
resulting quizzes are, most of the time, sequential and made of
independent questions that are syntactically graded (syntacti-
cally since there is no relationship between the label of a radio-
button and the fact that this radio-button should be pressed for
a correct answer).

In our system and since we are teaching a language with an
easy to use evaluator, questions may be specified in a more
semantical way. Since the quiz is a program, it may use the full

6



power of the underlying language and use conditional or re-
cursion as shown in the previous quiz example where students
with good answers may terminate quickly whereas others are
provided fresh exercises until they got one right.

6. ACKNOWLEDGMENTS
Many thanks to the numerous (and anonymous as well) re-

viewers whose comments terrificly improves the paper.

7. REFERENCES
[1] A. Brygoo, T. Durand, P. Manoury, C. Queinnec, and

M. Soria. Experiment around a training engine. Complete
version of [2], Oct. 2002.

[2] A. Brygoo, T. Durand, P. Manoury, C. Queinnec, and
M. Soria. Experiment around a training engine. In IFIP
WCC 2002 – World Computer Congress, Montreal
(Canada), Aug. 2002. IFIP.

[3] R. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
Drscheme: A programming environment for scheme.
Journal of Functional Programming, 2001.

[4] M. A. Jackson. Principles of Program Design. Academic
Press, 1975.

[5] C. Queinnec. Designing MEROON v3. In C. Rathke,
J. Kopp, H. Hohl, and H. Bretthauer, editors,
Object-Oriented Programming in Lisp: Languages and
Applications. A Report on the ECOOP’93 Workshop,
number 788, Sankt Augustin (Germany), Sept. 1993.

[6] C. Queinnec. The influence of browsers on evaluators or,
continuations to program web servers. In ICFP ’2000 –
International Conference on Functional Programming,
pages 23–33, Montreal (Canada), Sept. 2000.

7


