Garbage Collecting the World

Bernard Lang*
INRIA-Rocquencourt

Christian Queinnect
Ecole Polytechnique

T +
José Piquer+

Universidad de Chile

& INRIA—Rocquencourt

Abstract

Distributed symbolic computations involve the existence of
remote references allowing an object, local to a processor,
to designate another object located on another processor.
To reclaim inaccessible objects is the non trivial task of
a distributed Garbage Collector (GC). We present in this
paper a new distributed GC algorithm which (7)is fault-
tolerant, (#) is largely independent of how a processor
garbage collects its own data space, (iii) does not need
centralized control nor global stop-the-world synchroniza-
tion, (iv) allows for multiple concurrent active GCs, (v)
does not require to migrate objects from processor to pro-
cessor and (i) eventually reclaims all inaccessible objects
including distributed cycles.

These results are mainly obtained through the concept
of a group of processors (or processes). Processors of a
same group cooperate together to a GC inside this group;
this GC is conservative with respect to the outside of the
group. A processor contributes to the global GC of all
groups to which it belongs. Garbage collection on small
groups reclaims quickly locally distributed garbage clus-
ters, while garbage collection on large groups ultimately
reclaims widely distributed garbage clusters, albeit more
slowly. Groups can be reorganized dynamically, in partic-
ular to tolerate failures of some member processors. These
properties make the algorithm usable on very large and
evolving networks of processors. Other than distributed
symbolic computations, possible applications include for
example distributed file or database systems.
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1 Introduction

Computations performed by collections of processors
are more and more common today. Shared memory
systems only allow for a limited number of proces-
sors. Some problems instead are clearly parallel and
would benefit from greater and greater numbers of
cooperating processors. This paper presents a new
distributed Garbage Collection (GC) algorithm well
suited for very large nets of possibly heterogeneous
processors, even for a world-wide net. Our proposal
can be roughly sketched as follows.

Any processor manages its own data space with a lo-
cal GC. Remotely referenced objects have a reference
counter so that a large part of these objects can be
easily deallocated when becoming inaccessible. Pro-
cessors are organized into groups. The processors of
a group cooperate to partial GCs global to the group:
the aim of a group is therefore to discover and re-
claim all unreachable distributed cycles of objects in
the group by means of a concurrent mark-and-sweep
collector. Multiple overlapping group GCs can be si-
multaneously active. When a processor or a communi-
cation link fails to cooperate, the groups within which
it lies are reorganized and continue their work. Even-
tually all distributed clusters of unreachable objects
will belong to a group that reclaims these clusters
when it finishes its associated GC.

Our algorithm has some other interesting proper-
ties:

e it supports failure of processors but is still able
to reclaim unused cells when located on working
processors only. It also supports the addition of
new processors, or changes in the network topol-
ogy.

e it does not need a centralized control: for in-
stance, a net may split into two disconnected sub-
nets each of which will continue to scavenge its
own space. Multiple group GCs can be simulta-
neously active, each of which is focusing on a par-
ticular subnet where garbage must be reclaimed.

e it can use any kind of tracing GC (mark-and-
sweep, copy, etc.) for local collections, provided
this local GC transmits the marks used by the
group GC from remote entry references to remote



exit references. However no special bits for the
group GC are required during the local collec-
tions.

o the detection and/or reclamation of unused cells
does not require the migration of objects from
processor to processor: the algorithm respect the
locality of objects as decided by the mutator.

Our algorithm is robust and we think that it can be
used not only in the run-time library of distributed
symbolic computation languages, but also by dis-
tributed file systems or distributed database systems
to reclaim unused files or objects. It is particularly
attractive for these systems since it makes weak as-
sumptions on their local GCs.

We first establish the context and our terminology
in section 2, and then describes in section 3 the work-
ing of algorithm for a single group of network nodes.
The problem of node failure and of possible recovery
strategies from the point of view of both the GC algo-
rithm and the application program are then discussed
in section 4. The next section discuss ways of perform-
ing cheaply several group collection at the same time.
Some comparison with related work and a conclusion
end the paper.

2 Terminology

We consider a collection of nodes organized into a net-
work and communicating by exchange of messages.
We call node a processor or a process on a proces-
sor able to manage its own memory space. Nodes may
contain processes called mutators performing indepen-
dent computations and allocating chunks of memory
called cells, either for their own need or to serve other
nodes. Cells may contain references to cells in the
same or other nodes. Each node also contains roots
which are references to cells it considers useful. In par-
ticular, all cell references known by a mutator (e.g. in
registers or in an execution stack) are roots. Cells ref-
erenced by a root directly or indirectly through other
cells are said to be reachable or live. Other cells are
said to be unreachable or dead, and they constitute the
garbage memory to be reclaimed by garbage collection
(GC). A reference to a cell in the same node (as that
where the reference is found) is said to be local. A ref-
erence to a cell on another node is said to be remote.
Garbage collection within a node on the basis of local
roots and local references is called a local GC.

A remote reference to a cell v is represented by a
reference to an ezit item on the same node, which
references an entry item on another node, which it-
self references locally the cell 4 (see figure 1). To
fetch the value of a remote reference, three indirec-
tions and some communication time are required; it is
of course hoped that the number of remote references

is far outnumbered by the number of local references.
Exit (resp. entry) items are immutable with respect
to the cells they refer to, and thus they can be safely
shared: each node has only one exit item for all remote
references to a given cell, and only one entry item for
each remotely referenced local cell.

A group GC is a non-local GC, i.e. a GC which
involves more than one node. A group GC operates
on a group of nodes, and it reclaims any cell of the
group that it can prove inaccessible from any root of
any node. Note that entry or exit items are not part
of the set of roots. The creation of a remote reference
involves the synchronized creation of the associated
entry and exit items.

! entry item

o Y
exit item

remote edge

Figure 1: Remote reference

Entry items have a reference counter that is equal
to the number of exit items referencing them (up to
messages in transit). When an exit item is reclaimed,
a decrement message is sent to the counter of the en-
try item it was referencing. If this decrement mes-
sage brings its counter down to zero, the entry item
is reclaimed too. This is the only available mecha-
nism to reclaim entry items; it is safe since non coop-
erative nodes (or nodes that are down) do not send
decrement messages and thus the cells they refer to
cannot be reclaimed at all (without an external in-
tervention). Reference counters along with increment
or decrement messages do pose some problems in a
distributed environment where no global time order
exists. Nevertheless weighted reference count [Bev87],
generational reference count [Gol89] or indirect refer-
ence count [Piq91] can, for instance, be safely used to
maintain these counters. The problem with reference
counters is that they cannot reclaim dead cycles of
cells spanning several nodes.

On each node, a local collector reclaims unreachable
cells while the computation proper is done by a local
mutator. The mutator and the collector can inter-
leave their work with a granularity ranging from the
usual stop-and-collect mode to the concurrent mode
described in [DLM*78]. We restrict local GCs to be-
long to the “tracing” family, following the terminology



of [LD8T].

Several nodes can form a group in order to perform a
GC global to this group. Such a group GC will reclaim
unreachable cells and, in particular, the unreachable
cycles that span nodes within the group. A group
GC is partial unless the group contains all possible
nodes. Groups can overlap or form hierarchies and
therefore can contain smaller groups. Hierarchies are
useful when gathering nodes that exhibit some sort of
locality. This locality may be for instance topological
or geographic: a group can be defined to contain the
different processes of a processor, the processors of a
local area network, the networks of a country etc. The
locality may also be a logical one, for example based
on the ratio of mutual remote references.

Though groups can be dynamically created to per-
form group GCs, we expect that preferred hierarchies
of groups can be foreseen, for example based on phys-
ical neighbourhood (as above) to minimize communi-
cation problems.

Groups are intended to gather nodes or groups that
will cooperate without failure during a group GC. We
assume a fail-stop mode where a failing node (or link)
ceases to communicate and does not fool other nodes
in a byzantine way. If a node fails or, more gener-
ally if a node does not want to cooperate, then the
groups to which it belongs can exclude it so that the
work can be pursued on smaller groups without los-
ing what is already done. Any cycle passing through
a non-cooperative node cannot be reclaimed at all,
but dead cycles spanning only cooperative nodes in a
same group will still be reclaimed by the group GC
performed on this group. Some groups must be large
enough so that long cycles can be recovered, but the
larger they are the longer the group GC takes, and
the higher the probability that some node in the cy-
cles fails before the end of the group GC. However, if
groups can be defined to exactly cover the cycles that
are expected to be reclaimable, a global GC can thus
be achieved on all nodes through independent partial
group GCs.

3 The basic algorithm

We consider a network of nodes containing cells, some
of which are linked by remote references. We first
describe how a group may be created, and how a global
GC is performed on the group. In section 5.2 we shall
discuss in more detail the simultaneous execution of
this algorithm on several groups or on all of them.

The steps listed here constitute the single group al-
gorithm. They are further developed in the remainder
of this section.

1. group negotiation: A node wanting to partici-
pate to a group GC sets up a group within which

it will be performed.

2. initial marking: All the entry items of nodes
within the group are marked with respect to the
group. The marks on entry items depend on
whether they are referenced from inside or from
outside the group.

3. local propagation: Local GCs propagate the
marks of the entry items towards the exit items.

4. global propagation: The group GC propagates
the marks of the exit items towards the entry
items they reference, when within the group.

5. stabilization: The preceding two steps are re-
peated until marks of entry or exit items of the
group no longer evolve.

6. dead cycles removal: The group GC breaks the
unreachable cycles in the group.

7. group disbanding: The work is now finished
and the group may be disbanded.

Recall that, as announced above, several group GC
may actually take place simultaneously, for groups of
varying sizes, possibly overlapping.

The single group algorithm can be viewed as the
cooperation of a variety of traditional GCs at various
levels: local GCs can be any kind of tracing GCs, en-
try or exit items are managed by means of reference
counters, and any dead cycle through these items is
eventually broken by a global concurrent mark-and-
sweep GC on a group encompassing the cycle.

3.1 Group negotiation

When a node decides to participate to a new group
GC, it inspects the other nodes to determine in co-
operation with them what group can be set up for
that purpose. There are multiple reasons to be in-
volved in a group GC: the node can be idle, or its
entry items have not been accessed for a long time, or
it is not currently involved in any group GC of some
given size range, etc. The node is free to choose the
kind of group it wants. It can either choose to form
a small group with very close nodes or to undertake
a major group GC with all nodes it is aware of. Let
us suppose for now that the newly created group is
composed of nodes only (we will explain later how to
manage groups containing groups). The group is a set
of nodes willing to cooperate together until the end of
the associated group GC. Once the group is created,
there is no such thing as a leader of the group but all
nodes of the group are aware of their co-members.
The technique actually used for group formation is
not essential to our algorithm. One simple way to im-
plement group negotiation is to predefine a hierarchy
of groups, as shown in figure 2, based for instance on
neighbourhood criteria. Small dead clusters of cells
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Figure 2: Group hierarchy

are quickly reclaimed by GCs on small groups, while
larger ones are ultimately reclaimed by the slower GCs
on large groups. If groups are predefined then group
negotiation is an instance of a distributed consensus
algorithm [LS76, GraT78].

In order to distinguish messages relevant to a spe-
cific group, or a specific group GC cycle, a unique
tdentifier is associated to each group GC cycle and
is made known to the nodes in the group. This can
be done concurrently with the group creation and the
initialization of marks for this group GC (cf. next
section). This unique identifier is necessary to keep
track of dynamic reconfiguration of groups during a
cycle (for example because of a node failure), or sim-
ply for the proper management of messages. Its role
is actually dependent on the variant of our algorithm
one chooses to implement, and on the need to handle
some fault tolerance problems (e.g. late or disordered
messages).

3.2 Initial marking

Within each group, entry and exit items have a
mark. A key point of our algorithm is that marks are
local to groups i.e. are only meaningful with respect
to a particular group GC. Different groups may give
different marks to a same (entry or exit) item. With
respect to a group, an entry item may be marked soft
or hard, and an exit item may be marked none, soft
or hard. These marks are strictly exclusive and can
only be increased from none to hard during the local
GC for exit items, and from soft to hard during the
group GC for entry items.

Initially, a hard mark for an entry item means that
it is “needed outside the group”, while a soft mark
means that the entry item is only referenced from in-

side the group (if at all). Later, a hard mark may also
mean “accessible from a root of a node in the group”.
The unused cycles that will be reclaimed in the end
only include soft marked items (i.e. items that are un-
reachable both from outside the group and from the
roots in the group).

The initial marks of the entry items of a group
can be determined locally to this group by means of
the reference counters: this technique was inspired by
Christopher [Chr84]. Christopher’s algorithm allows,
given a group G and after a computation local to G,
to know precisely which (and how many times) en-
try items are referenced from outside G. The initial
marking protocol can thus be done in four successive
steps:

1. on every node of the group and for every entry
item, a copy of the reference counter is created
for this group.

2. on every node of the group and for every exit
item, if it references an entry item belonging to a
node in the same group, a decrement message is
sent that will decrement the copy of the reference
counter of that entry item.

3. when all decrement messages generated during
the previous step are received then on every node
of the group, any entry item that has a strictly
positive copy of the reference counter is marked
hard. Otherwise the copy of the reference counter
is zero, the entry item is therefore only referenced
from inside the group and it is accordingly marked
soft.

4. the space for the copies of the reference counters
is reclaimed (though we shall see that it may be
useful to keep these copies).

In practice, many groups may coexist and a node may
belong to several groups. Marks and copies of refer-
ence counters must be separate for each group. An
entry or exit item data structure can contain these
additional fields indexed by the group identifier.

A classical termination detection algorithm has to
detect that (i) no decrement message for this ini-
tialization is still in transit, and (i) all nodes in the
group have sent their decrement messages. Group ne-
gotiation and initial marking can be partly combined.
A request to a node for cooperation in a group GC may
be accompanied by a bunch of decrement messages.

Once marks have been initialized, every node starts
propagating them locally and globally as described by
the next two sections.

3.3 Local propagation

A group GC needs cooperation from local GCs. Local
GCs are not time-constrained. A group GC simply



waits for the local garbage collector to start a new
local cycle, and thereby contribute to the group GC.
Each local GC cycle is followed by extra steps that
propagate its results for the benefit of group GCs, as
explained in section 3.4. A local GC cycle may be ini-
tiated by local computational need, or may be urged
from an external source such as another node notic-
ing it has not contributed for a long time to some
group GC. Local GCs are not required to be marking
or copying GCs, they are only required to propagate
the marks from the entry items to the exit items they
locally reference, directly or indirectly. After a local
GC on a node, any exit item locally accessible from
an entry item (of the same node) is marked at least
as hard as this entry item was at the beginning of the
local GC.

A node is said to be stable w.r.t. a group GC when
the propagation of its entry marks to the exit items
by a local GC would not change the previously found
marks on its exit items, and thus would not contribute
any new data to the group GC (cf. section 3.5).

One simple way to achieve the propagation of entry
marks is to have a two-phase marking for the local GC

(see figure 3).

e Initially, all marks on exit items are reset to none.
If the exit marks resulting from a previous local
GC are to be kept (cf. section 3.4), a copy is made
in an appropriate location.

e then a first tracing is performed from the hard
entry items and the internal roots. Any exit item
reached by this tracing is marked hard.

e finally, a second tracing is performed starting
from the soft entry items. This second tracing
completes the first, i.e., for example in the case of
a marking algorithm, the marks of the first trac-
ing are not removed. Any exit item reached by
this second tracing is marked soft, if it is not yet

marked hard.
After such a local GC cycle, the following is known:

e Tracing from soft entry items is conservative since
it is not yet known whether the entry items are
useful or not w.r.t. the whole network. Cells that
have not been visited at all are not reachable ei-
ther from outside the node (trough entry items) or
from the local roots. They can thus be reclaimed
safely (this is implicit in case of a copying algo-
rithm).

e The sameis true of exit items that are still marked
none. They can be safely reclaimed, though the
entries they reference must be informed (see be-
low).

e Exit items marked hard are reachable either from
a hard marked entry or from a local root. Hence
they are either reachable from a root within the
group or referenced from outside the group (up
to floating garbage, i.e. the reference may have
disappeared since the beginning of the group GC
cycle). The same is of course true of the entry
items referenced by these exit items.

e Exit items marked soft carry no new mark-
ing/usefulness information w.r.t. the group GC,
since the entries they reference are at least already

marked soft.

Only a single bit mark is needed for marking the cells
within the node, to indicate whether they are (conser-
vatively) live according to the local GC. The distinc-
tion between soft and hard is done by separating the
two phases, so that it can be propagated from entry
items to exit items, where the two kind of marks are
physically distinct.

Soft Hard
|
. vy

Roots

Node

A\ RA A A
Hard

None Soft

Figure 3: Two-phase marking in a local GC

When an exit item is reclaimed, a decrement mes-
sage is sent to its associated entry item, which is then
reclaimed in turn if its reference count reaches zero,
even if it is marked hard. In summary, note that
(i) the two-phase marking may be performed by any
kind of tracing GC!, (i) the work required by the
two-phase marking is equivalent to that of traditional
tracing GC except for the order of exploration of cells,

1The tracing GC must actually trace all the local cells in
order to properly propagate marks. This is not done by gen-
erational GCs [LH83]. In their case, a simple approach to un-
derstanding the problem is to consider generations as distinct
nodes, and then to adapt the techniques presented here. In the
case of a strictly hierarchical organization of groups (see sec-
tion 5.2), it may be convenient to privilege generational prox-
imity over geographical proximity for organizing the groups
(e.g. by grouping together young generations of different nodes).
This has not been pursued in depth by the authors.



(iii ) no extra bits are required on local cells to record
the global marks, only entry or exit items differentiate
between them. Indeed, the two-phase marking may
be performed by a copying collector that does not use
marks at all.

It is possible to use a concurrent local GC [Wad76,
KS77, DLM*78, Bak78, Yua90], but not a page-
oriented one as in [BDS91]. The only difference is
that the mutator has to cooperate with the collector by
marking some of the cells it touches. The trick is to ask
the mutator to always do hard marking. During the
hard phase, this works like an incremental collector.
At the end of the hard marking phase, all cells that
the mutator can access in the future (except for cells
it will create and mark hard) are already marked hard.
Hence, during the soft phase, continued cooperation
from the mutator (still a hard marker) will only mark
already hard marked cells, and this will be totally in-
nocuous though with some time overhead due to this
useless marking. Extra floating garbage [Wad76] may
also be produced because the exploration order of the
two-phase marking may not be optimal. Note however
that the working of the algorithm with concurrent col-
lectors is actually very complex to analyze because of
incoming messages and interactions with mutators on
other nodes.

3.4 Global propagation

When an exit item is known to be hard ie. ac-
cessible from a local root or referenced by at least
one exit item not belonging to the group, its mark
has to be propagated to the entry item it references

whenever it belongs to the group under consideration.

It is not mandatory to send this information immedi-
ately, it may be batched with other messages to lessen
transmission cost. Conversely, it is not necessary to
wait till the end of the local collection before propa-
gating a hard mark, and early propagation may speed
up the termination of the group GC. The propagation
of a hard mark from an exit item can only harden the
mark of the associated entry item. Note that once
an exit item has been marked hard with respect to a
group, remembering this mark will avoid sending fur-
ther hardening message from that exit item and with
respect to that group. Hence it may be useful to pre-
serve the marks previously found for exit items w.r.t.
each group GC.

A local GC may work for one or several group GC at
a time. When it finishes a local cycle, it is free to start
a new one, provided the hard marks on exit items have
been propagated or preserved for later propagation.
This new cycle may be for purely local use, or also for
the same group(s) and/or other groups.

When a new remote reference is created, the asso-
ciated entry item is marked hard since it is (will be)

necessarily accessible from a root of the node for which
it is created, and to which this remote reference will
be sent?.

3.5 Stabilization

Global propagation of marks is finished when all en-
try items of the nodes participating in the group GC
are marked hard whenever they are reachable from a
cell outside the group or from a root belonging to the
group. Note that is a conservative requirement: some
hard marks may be due to past reachability that has
disappeared since the beginning of the group GC cycle
(floating garbage).

Such a situation, called group stability is reached
when

e All nodes are stable, i.e. they have no new data
that could justify hardening more entry items lo-
cally or elsewhere within the group.

e There are no messages in transit that request the
hardening of some entry item.

A node is stable if it has propagated all the (relevant)
hard marking data it is aware of to the other nodes
in the group. This is normally done after a local GC.
New hard marking data comes mainly as requests to
mark hard an entry item previously marked soft w.r.t.
to the current group GC. When this occurs, the node
reverts to (or remains in) a non stable state until the
marking has been propagated to the exit items by a
local GC and (new) hard marks on exit items have
been propagated to the other nodes of the group.

The stability of a node may also be lost when a
new entry item is created on this node. Though the
cell referenced by the new entry item must have been
live, this fact may not yet have been discovered by the
group GC, and there is the possibility that the path
that formerly kept it alive will be severed before hard
marking may be propagated to it.

Finally, stability may be lost when a cell immigrates
from another node. Though this cell is obviously live,
the knowledge of this liveness may not have been yet
propagated to the local cells or the local exit items it
references.

Assuming that all messages arrive3, group stabil-
ity must be reached since marks can only increase
from none to hard and the total number of entry or

2The creation of a remote reference requires some care to
keep a consistent reference count on the new entry item, while
its intended recipient has not yet received (and acknowledged) a
reference to it. This problem, as well as other problems related
to protocols to preserve the consistency of distributed reference
counts have been discussed in other proposals. They are not
considered further in this paper.

3Fault-tolerance w.r.t. message behaviour is not discussed
in this paper.



exit items 1s bounded by the total number of possi-
ble cells that can be allocated in the nodes of the
group. Moreover any entry item created during the
group GC is marked hard. Group stability can be
detected by any distributed termination detection al-
gorithm when no node failure occurs. Examples of
such algorithms in the area of garbage collection may
be found in [HK82, Aug87, Der90]. The handling of

node failure is discussed in section 4.

3.6 Dead cycles removal

After stabilization, all entry items that are directly or
indirectly accessible from a root or from a node out-
side the group are marked hard. Entry items marked
soft can only be part of inaccessible cycles local to the
group and can thus be safely reclaimed. Soft entry
items can be independently reclaimed by each node
of the group without group synchronization. This is
gracefully achieved by relying on the reference count-
ing mechanisms.

When group stability is detected, each node in the
group modifies its soft entry items to now reference
nil rather than alocal cell. This mutation is safe since
these entry items are dead. The former offsprings of
these entry items, not otherwise accessible, will be re-
claimed by the next local GC. Similarly the exit items
that were kept alive exclusively by these entries will
be reclaimed by the next local GC. The reclamation
of such an exit item causes the sending of a decrement
message to the entry item it references. In the case of
dead loops, (dead) entry items on the loop eventually
receive decrement messages from all the (dead) exit
items that reference them. Hence their reference coun-
ters decrease to 0 and they are eventually reclaimed
by the normal reference counting mechanism. This
protocol achieves a delayed reclamation instead of a
synchronized deletion of useless cells. The latter is
difficult, since we cannot brutally reclaim the useless
exit items which are still referenced from local cells,
and since we cannot either reclaim the useless entry
items because they are still referenced by exit items.

Observe that our algorithm is independent of the
nature of inaccessible cell clusters: they can be simple
cycles or more complex cycles entangled with subcy-
cles, etc. Occasionally they may even be non cyclic
structures, though these are often reclaimed earlier
through the reclamation of exit items marked none
after a local GC. All inaccessible entry items are re-
claimed and no heuristics is needed to identify poten-
tial cycles. Also note that the deallocation mechanism
of entry items is unique and only based on reference
counters. Similarly the deallocation of exit items is
only a consequence of local GCs. The removal of dead
cycles is effectively obtained by cutting all the remote
edges of these cycles.

3.7 Group disbanding

When a group GC is finished, its associated group may
be disbanded, though it is often convenient to keep
the same groups for further group GC. Marks (and
possibly other data structures) relative to this group
can then be reclaimed. If the delayed protocol of the
previous step is used, this reclamation can take place
as soon as it finishes mutating to nil its soft entry
items.

4 Failure

If a node fails, i.e. ceases to cooperate, then we assume
that this will be detected by some of the other nodes of
the group, for example those nodes which precisely re-
quire cooperation. For that detection, messages with
acknowledgements and time-out can be used. A node
which detects such a failure may choose between sev-
eral non-exclusive options:

e It can decide that this failure is probably only
temporary and waits for the failed node to wake
up. This only slows down the work of some groups
to which the silent node belongs.

e It can reorganize the group i.e. create a new group
excluding the failing node (and all other nodes
with which communication is now impossible if,
for example, relayed by the failing node).

The simplest method to reorganize the group is to
build a new group, subgroup of the failed group, and
to restart from scratch a new group GC on that sub-
group. However the existing information already gath-
ered by the failed group can be used to initialize the
new group. In this case the hard-marks are kept and
transferred as hard-marks for the new group. The
marking initialization procedure of section 3.2 is used
only to promote from soft to hard all entry items ac-
cessible from nodes that have been excluded from the
new group. The group GC on the new subgroup is
then resumed and since it starts from more advanced
marking information, it can stabilize more quickly.
However to start from marks inherited from the failed
group may increase the ratio of hard-marked floating
garbage.

The failed group may be aborted immediately. It
may also be preserved for some time in the hope that
the failure is temporary and the group GC can be
resumed later, or until the failure is definitely known
as non-recoverable.

A transmission link may fail and divide a group into
disconnected subgroups. These subgroups will then
reorganize themselves independently, and they will re-
sume independent parts of the group GC that will re-
claim all cycles that are local to each of the reorganized



subgroup. Of course, cycles spanning through missing
links will not be reclaimed by these partial group GCs.

Note that, in all cases, the cells that were reachable
from the failed node will never be reclaimed, since the
reference counts of the entry items referenced from the
failed node can no longer decrease to 0. Hence, even
if the group GC is aborted, no remote data used by
the failing node will have disappeared when it resumes
operations.

When a node has a non-recoverable failure, three
types of problems may have to be considered:

1. what happens to cells referenced by the failed
node?

2. what is to be done of remote references to cells in
the failed node?

3. what is to be done of cells in the failed node that
can be recovered by external means (e.g. local op-
erator intervention, or known replication on dif-
ferent nodes)?

Answers to the second question are essentially the re-
sponsibility of the application. However, if some cells
can be recovered in the failed node together with their
network identity (the corresponding entry item), it
may be useful to have a mean to migrate these cells
to another node which is made known to the network
so that corresponding exit items may be updated. A
similar action may be first taken when the death of
the node has to be decided by an external agent?.

The first question is the more interesting one for
our algorithm. References from the failed node may
be determined by Christopher’s technique, provided a
reference count of references internal to the group has
been kept up-to-date on all entry items of the group®.
Let G be the original group, N the failing node, and
G’ the group G less the node N. We can run Christo-
pher’s algorithm on G’ to obtain for the entries in G
the count of references from within G’. By taking the
difference with the reference counts w.r.t. group G,
we can determine which entries in G were being refer-
enced by the failing node N (or any number of failing
nodes taken together). It is then possible for a net-
work or application administrator (either a program
or a human being) to take appropriate action with re-
spect to these entry items and the cells they access.
Decrement messages may be sent to the concerned en-
tries to consummate the death of the references from
the failing node®. Alternatively the administrator may

4 Migration with reference counter is taken into account by
[Piq91].

5Maintaining group based reference counts is also useful to
initialize the marking of entry items when a new GC cycle is
decided for the same group. Then Christopher’s algorithm need
be used only when creating a new group.

6This must be remembered to inform the failing node, when
there is a chance of later partial or total recovery, so as to avoid

decide that the cells that were accessed by the failing
node contain important data that should not be al-
lowed to die. In that case he or it may decide to create
new live references to these cells.

Note that the recovery facility described above re-
quires keeping up-to-date the internal reference counts
for each entry w.r.t. each group it belongs to. This en-
tails both a space overhead on each entry, and a time
overhead since several reference counts have to be up-
dated whenever a remote reference is lost or created.
The hierarchical scheme proposed in the next section
will answer both these concerns.

5 Simultaneous group collec-

tions

5.1 Contention between group GCs

Our algorithm makes use of local GCs to perform parts
of a group GC. In other words, a group GC delegates
to a local GC the propagation of the marks belonging
to the group GC. This situation could be replicated
at other levels, and in particular a subgroup G’ of a
group G could be considered as a single node from
the point of view of the collection in group G. While
this could possibly be useful in some cases (e.g. large
variations in network connectivity and/or communi-
cation speed), it seems not to be generally advisable.
A first reason is that entry items w.r.t. a subgroup
G' are still to be located on nodes. Though they can
be the same objects as node entry items, not all node
entry items are subgroup entry items since some re-
mote references may be fully local to the subgroup.
This entails additional management overhead for en-
tries. Similarly, exit items have to be created for the
subgroup GG and kept till the end of the group GC for
G’, i.e. much longer than the duration of a local GC
on a single node.

It is instead much simpler and more efficient to con-
sider that several group GCs take place simultane-
ously, and that a local GC on a node can contribute
to several of them. Entry and exit items can then
be common to all group GCs, though they must keep
separate marks (and possibly separate group reference
counts — cf. section 4) for each group.

If we consider as above a group G and a subgroup
G' of G, a hard mark w.r.t. G on an entry item means
that it is accessible from some root in G or from cell
outside G. Hence this entry item must also be marked
hard w.r.t. G’ since it must be also accessible either
from a root in G’ or from outside G’ (because G’ is
included in G). Hence, any local collection that con-

dangling references. Such a mechanism does not properly be-
long to the garbage collection algorithm, but it must be available
to allow the application programs to handle this situation.



tributes to the group GC of G can also contribute to
the group GC of G’ by propagating a hard mark w.r.t.
G’ to every entry item for which it does it w.r.t. G.
However the hard marking phase of a local GC w.r.t.
G is not a complete one for G’ since some entry items
may be marked hard w.r.t. G’ and soft w.r.t. G. Thus
if a local GC works for for the group GC of G, this
may slow down the progression of the group GC for
G'. Conversely, if a local GC works for for the group
GC of G/, its hard marking cannot be used at all for
the group GC of GG, which is even more slowed down.
Contention between two embedded groups is far
from a clear-cut issue. Each slows the other down,
but not to the same extent. Smaller groups can termi-
nate faster, with less floating garbage, but they recover
less storage and never the large dead cycles, and they
do not contribute to the group GCs of larger embed-
ding groups. Conversely, larger groups may take much
longer to terminate, thus leave more floating garbage,
but they usually recover more storage and only they
can recover larger dead cycles of cells. Additionally
a large group GC contributes to some extent to the
GCs of smaller embedded groups, and when a group
GC on a larger group finishes its work, it reclaims all
its dead internal storage, thereby also completing the
work of all its subgroups (up to floating garbage).
The situation is simply worse when a node belongs
to two overlapping groups (i.e. groups with a non triv-
ial common intersection). Then the speed of the two
group GCs is halved on the average since the local GC
can work only for either group, as there is no simple
relation between the marks for the two group GCs.
This discussion hints first at the necessity of having
a strictly hierarchical embedding of groups (no par-
tial overlap) to avoid group contention over the ser-
vices of the local GCs. We show in section 5.2 how
to deal with the contention problem in the case of
embedded groups, and thus have each local GC of a
node contribute to the group GCs of all groups to
which the node belongs. Hence all GCs can terminate
faster, dead cells are recovered earlier, and less floating
garbage is produced.

5.2 Hierarchical cooperation of group
GCs

We now consider that all groups are organized in a
strictly hierarchical order by inclusion. If two group
overlap, then one contains the other. We further as-
sume that there is one group containing all the node
in the network, which we call the universal group.
Each group can then be assigned a level index which
is the number of groups it is strictly embedded in.
Hence the universal group has level 0. Note that the
level of a group may change as groups embedding it
may be destroyed or newly created. This problem

must be taken in consideration when implementing
the algorithm below since it uses level related data. At
any given time, on a given node, group levels uniquely
identify the groups that contain the node. Each node
will keep a table relating the unique identifier of each
containing group to its group level.

Our objective is to have each local GC contribute
precisely to the marking of entries w.r.t. to the group
GCs of all groups containing the node. We have seen
in the previous section that when an entry is marked
hard w.r.t. some group G, it can also be marked hard
w.r.t. any subgroup G’ of G. Hence, for an entry z in
anode N, we can define a marking level Mark;(N) as
the least level (i.e. the level of the largest group) such
that the entry z is marked hard. Similar marking
levels can be used on exit items. Remember that a
lower marking level actually means more hard marks
since level indexes are in reverse inclusion order.

Now, instead of propagating an ordered binary
marking (hard or soft) from entry items to exit items
with a two phase tracing algorithm, the local GC must
propagate an integer marking by means of a multi-
phase tracing algorithm (or any equivalent algorithm).
Multi-phase marking is performed by propagating the
Mark() of entries in increasing order, so that each exit
item get the lowest marking level of all entries that
can reach it. The tracing from the roots is done with
the 0-level trace and thus marks exit items hard w.r.t.
all groups. This multiphase tracing is very similar
to the time-stamp propagation used in Hughes’ algo-
rithm [Hug85]. Some care has to be exercised with
the multiphase tracing (and with the 2-phase trac-
ing as well) because the marking level of some entries
could decrease while it is taking place, and these en-
tries should not be skipped.

Since levels are meaningful only locally to a node,
the marking levels on exit items are changed to the
unique identifier of the corresponding group before
they are sent to the node they reference. This unique
identifier can be turned back into a local marking level
upon arrival.

Stability is also detected by means of group levels.
A node is stable w.r.t. level £ when it has not re-
ceived any data that could justify decreasing the for-
mer marking level of some exit item down to or below
£ (cf. section 3.5). When global group stability is
known at level ¢ on a node, all entry items with a
level marking higher than ¢ may be reset to nil (cf.
section 3.6). Recall that this may not be true at level ¢
for all nodes, since their level £ group may be different.
level).

For the next GC cycle in this group, marking levels
of entry items must be reinitialized. Whenever, for
a given entry, the count of references external to the
group is non-zero, the marking level of that entry item
is set to the group level, unless it is already smaller.



Multiphase tracing can be extended to concurrent
local collectors (as it can be in the case of Hughes’
collector). As explained in section 3.3, the mutator
can just act as a O-level marker. Actually it just con-
tributes to the tracing in the usual way, of parallel
collectors. This contribution is naturally taken as 0-
level one during the 0-level phase (the first phase), and
is useless but innocuous during the later phases.

However, there is one drawback to hierarchical coop-
eration of GCs as described above. The assertion that
“ an entry item that is marked hard w.r.t a group
G has to be hard w.r.t. any subgroup G’ of G 7 is
not quite correct because of the existence of floating
garbage. The entry items on a dead cycle may have a
low marking level because they were formerly reach-
able in some large group (. This reachability may
have disappeared, but the marking remains low until
the end of the GC cycle for group G, which make take
a long time since the group G is large. During all that
time, the GC of any subgroup G’ containing the cycle
will have to assume that this dead cycle is live, be-
cause the marking level mechanism will keep the low
marking level of G on the entry items of the cycle.

Hence, if completing GC cycles on large groups
takes much longer than on small ones, it may be
advisable to occasionally suspend the work on the
larger groups, and perform hierarchical GC only for
the smaller groups to avoid the above effect”. After-
wards, hierarchical GC on all groups can be resumed
from its saved state. Remember though that this prob-
lem concerns only dead cycles since other garbage is
always reclaimed by the reference count mechanism.

5.3 Keeping group reference counts

Keeping reference counts up-to-date w.r.t. each group
can be useful for two reason:

e When groups do not change, it allows a faster
initialization of the marks on entry items (thus
avoiding the cost of Christopher’s algorithm).

e It is necessary to enable the recovery procedures
described in section 4

One obvious solution is just to keep them all in the
entry items, and update them when the number of
references change. In the case of a strictly hierar-
chical organization of groups, one can use an array
County|i, z] giving the reference count of entry z of

7 Actually new GC cycles may be started on the full hierarchy
with no additional cost. However, for the larger groups, these
GC cycles should not be terminated. Their partial results, i.e.
the markings obtained, should simply be merged with those of
the suspended GCs of the corresponding groups when the latter
are resumed. The merging on each entry is done by taking the
minimum of the marking levels attained by both GCs.
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node N for the level T group (i.e. the number of ref-
erences from inside that group). However this entails
a significant overhead, both in space for keeping the
counts, and in time for updating all of them.

Instead we propose to keep the usual global refer-
ence count for the whole network, and for each of the
other groups a difference count which is defined as fol-
lows:

Vi > 1, Diffn[i, 2] = County[i — 1,2] — Couniyl[i, x]

This has several advantages:

e Difference counts are very convenient for initial-
izing marking levels. The initial marking level is
the smallest i such that Diffnx[i, 2]# 0, or 0 if they
are all zero. However, during the reinitialization
of marking levels for the next GC cycle of a group,
it may be that the marking level of entry item z
is already smaller, in which case it is not changed
(cf. section 5.2).

e It requires less updates: when counts have to be
updated (incremented or decremented) only the
global reference count and one difference count
have to be modified.

e Difference counts are usually much smaller, often
equal to 0. Hence it is easier to use storage-saving
techniques such as 1 or 2 bits reference counts

[DB76, WET77).

6 Related works

Our algorithm, like many others, is based on the con-
cept of multi-area collection which was pioneered by
Bishop [Bis77]. Distributed [Hug85, LL86, Rud86,
Bev87, Gol89, Der90, Pig91] or fault-tolerant [Ves87,
Sch89, SGP90] or real-time [Bak78, QBQ89, Yua90,
Bak91] or concurrent GCs [KS77, DLM*78, HK82,
vdS87] (among others®) have been studied for long.

To mix increment and decrement messages through
asynchronous communication links to maintain refer-
ence counters raises some difficulties. However elegant
solutions [Bev87, Gol89, Piq91] have been proposed
based on variants of reference counters that avoid the
need of increment messages used by traditional ref-
erence counters. Their schemes have various proper-
ties but the “generational reference counting” scheme
of Goldberg allows a node to simply obtain the total
number of references on entry items. This is useful
when initializing the marks of a group.

Liskov and Ladin [LL86] is one of the first published
fault-tolerant distributed GC. The graph of remote
references is reconstructed on a single node and scav-
enged there. The results are sent back to all partici-
pating nodes which can then erase useless items. This

8Some of these algorithms belong to more than one category.



induces a logical synchronization of all nodes; this syn-
chronization is made safe through assumptions on de-
lays and global time but is not scalable to large num-
bers of nodes. Fault-tolerance is only with respect to
the failure of the central service but does not seem to
account for failures of normal nodes involved in the
group GC. The algorithm makes very strong assump-
tions on the ability of the local GCs to detect con-
nectivity between entry and exit items without giving
references to an actual algorithm satisfying these con-
straints.

Hudak and Keller proposed a real-time distributed
GC in [HK82]. Their algorithm performs a group GC
on the whole space, operates in real-time and is fur-
thermore able to reclaim irrelevant tasks. On the other
hand, it is not fault-tolerant, imposes extra fields on
every cell, and requires local mutators to strongly co-
operate. Except for the reclamation of tasks, our al-
gorithm can simulate theirs: a single group exists con-
taining all objects, and any cell is considered to form a
node by itself. Since there is a single group, reference
counters are no longer useful and can be abandoned as
well as the initial marking which is useless since there
is nothing outside the group.

Rudalics presented a real-time distributed GC in
[Rud86]. It is strongly based on a copying local GC
and tolerates out-of-order message transmission. It
operates on the whole space and is not fault-tolerant,
on the other hand it propagates global marks faster
than ours.

In [Hug85], Hughes proposed an algorithm to
achieve a global GC. His algorithm is not fault-tolerant
but separates well local and global GCs. His basic al-
gorithm is similar to ours, but with a single group en-
compassing the whole network. On the other hand, his
use of time-stamps allows him to achieve at low cost
simultaneous global collections shifted in time. This
keeps a continuous flow of freed memory, and does not
let garbage float for very long. The drawback is that
completing a GC cycle on a very large network still
takes very long, and that is the time needed to actu-
ally reclaim garbage cells (it takes roughly half a GC
cycle on the average). Our hierarchical algorithm also
uses strictly ordered stamps, but they indicate spa-
tial multiplexing rather than temporal multiplexing
of global collectors. Though we lose on the frequency
of network-global GCs, and hence on the freeing of
very large cyclic clusters, we have faster and more fre-
quent GCs for small groups, and can reclaim quickly
clusters with good locality. In addition, this spatial
multiplexing is the basis for the ability of our algo-
rithm to tolerate and recover from failures. Hence we
believe our algorithm to be more scalable to very large
networks.

We were unable to compare our algorithm with that
of [Sch89] which we do not understand enough from
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his paper.

Shapiro, Gruber and Plainfossé [SGP90] presented
an extension of Vestal [Ves87] with many improve-
ments and refined protocols to deal with various types
of failures. They considers a single global group, and
reference counters of their entry items are represented
by the list of referencing nodes (for better tolerance
to data transmission faults). At the end of a local col-
lection, soft entry items as well as their soft local off-
spring are migrated towards other nodes so that cycles
will end in a single node and will be reclaimed there
(our algorithm does not need to migrate objects). The
ability of their algorithm to handle various types of
communication failures can be used in the reference
count part of our algorithm. Its tolerance to dupli-
cated messages would in particular increase the re-
silience of our algorithm against nodes where it could
be erroneously programmed, for example in the case
of erroneous sending of decrement messages.

7 Conclusions

This paper gives the principle of a distributed garbage
collector that can collect all garbage, and in particular
cyclic garbage with an efficiency proportional to the
locality of the structures to be reclaimed. It has min-
imal interaction with the computing processes (muta-
tors) and uses little synchronization. Its hierarchical
structure makes it potentially usable for very large
distributed systems.

Though we implicitely rely on many techniques that
have been adequately developed in the context of other
algorithms, it is clear that many points still need to be
made more precise, more than was possible within the
limits of this paper. In particular, several options and
design choices have been left open. Further choices
and refinements should depend on the characteristics
of the network and (most importantly) of message
transmission, the type of application programs con-
sidered (e.g. importance and size of cycles, ratio of
remote references, size of cells, etc.), and on exper-
imental results and measurements. Several aspects
also need further analysis and/or proof, for example
the use of concurrent collectors in local collections.
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